Engin.100: Music Signal Processing Project #1: Specifications

- Musical notes: frequencies and relations
- · Basic musical staff and MIDI notation
- Musical tone synthesizer and transcriber:
- Specifications for the two deliverables;
- Two new Matlab commands for graphics

What you (hopefully) learned in Lab#2

- Frequencies of musical tones in "Victors":
- 392, 440, 494, 523, 587, 659, 698 Hertz.
- Semi-log plot revealed missing frequencies:
- 415, 466, 554, 622, 740 Hertz (accidentals).
- 12 frequencies with common ratio 1.06 (actually 2^{1/12} since 12 notes doubles freq)

MIDI (frequency) Musical Notation

- MIDI=<u>M</u>usical <u>Instrument Digital Interface</u>
- · Musical frequencies represented by integers
- MIDI=69+12log₂(frequency in Hertz/440)
- "The Victors": {71,67,69,71,67,69,71,72...}
- Also includes amplitude and duration info
- MIDI transcription is much easier than using:

Musical Staff Notation

- 7 "whole" notes labelled A,B,C,D,E,F,G.
- The 7 notes that appeared in "The Victors" (and make up most musical compositions)
- 5 "accidentals" labelled A#,C#,D#,F#,G#
- 5 equivalently labelled Bb,Db,Eb,Gb,Ab
- A# ("A-sharp") same as Bb ("B-flat"); between notes A and B (above A, below B)

Frequencies of musical tones													
NOT	EC	C#	D	D#	Е	F	F#	G	G#	Α	A#	В	
Hertz	523	554	587	622	659	698	740	784	830	880	932	988	
Ratio	20/12	21/12	22/12	23/12	24/12	25/12	26/12	27/12	28/12	29/12	2 ^{10/12}	211/12	
appro	X 1:1		9:8		5:4	4:3		3:2		5:3		15:8	
"The Sound of Music" (solfage) notation													
G	А	В	С	Ι)	Е	F#	#	G	D	Don't know		
1:1 392	9:8 440	5:4 494	4:3 523	3 5	:2 87	5:3 659	?:? 74	0	2:1 784	Humming these notes		ing otes	
DO	RE	MI	FA	S	0	LA	ΤI]	DO		might help.		

Comments on Musical Notes

- <u>Octave</u>: 2:1 frequency ratio (e.g., A to A).
- <u>Fifth</u>: 3:2 frequency ratio (e.g., A to E).
- <u>Previously</u>: small integer ratios between notes.
- <u>But then</u>: Key change \rightarrow ratios had to change.
- J.S. Bach, "The Well-Tempered Clavichord."
- Used 2^{1/12} ratio between "semi-tones" so that key changes preserve the ratios between notes.

Engin.100: Music Signal Processing <u>Project #1: Specifications</u>

- Musical notes: frequencies and relations
- Basic musical staff and MIDI notation
- Musical tone synthesizer and transcriber:
- Specifications for the two deliverables;
- Two new Matlab commands for graphics

Project #1: Specifications

- Pure tonal music synthesizer:
- Matlab-generated keyboard (shown later).
- Click on key with mouse generates that note.
- Writes sequence of played notes into .wav file.
- Pure tonal music transcriber:
- Input: .wav file of music played on synthesizer.
- <u>Output</u>: pseudo-musical-staff notation of music.
- Details of these specs are shown on other slides.
- <u>Suggestion</u>: output MIDI notation 1st, then staff.

Matlab Commands for Project #1

- >> uicontrol('Style', 'Pushbutton', 'Position', [100 250 40 80], 'String', 'B', 'Callback', '*')
- Creates button 40 pixels wide and 80 tall, located 100 from left and 250 above bottom of screen, and puts a "B" in the middle of it.
- When "pushed" by left-clicking with mouse, executes Matlab command "*"
- Use sequence of these commands to create:

Matlab Command for Project #1

- >>subplot(311),stem(X),axis([0 length(X) 0 4]) creates stem plot of the numbers in vector X that mimics musical staff notation w/o staffs
- >>set(gca,'Ygrid','on','Ytick',[0 1 2 3 4])
 creates the five musical staff lines behind
 Use stem(X,'filled') for filled-in circles
 Add 'GridLineStyle','-' for solid staff lines

Musical Tone Transcriber

- If using MIDI notation, this would be easy: Just stem-plot 12log₂(frequency/(440 Hertz))
- But musical staff notation treats whole notes differently from accidentals (sharps & flats)
- Need to plot whole notes at integer heights and accidentals at half-integer heights
- Let $I=12log_2(F/440)$ & plot S(I) for vector S

Musical Tone Transcriber

- Durations of N tones identical at M, so use
 >M=length(X)/N; Y=reshape(X',M,N);
 Z=(Y(3:M-1,:)+Y(1:M-3,:))./Y(2:M-2,:)/2;
 F=(8192/2/pi)*acos(mean(Z)); F=estimates
- Then generate MIDI number, then map to staff notation using [0 .5 .75 1 1.25 1.5...]. Example of how to do this on next slide.

Musical Tone Transcriber

• **Example**: Start with note A instead of E

Musical Note	А	A#	В	С	C#	D
Frequency (Hz)	440	466	494	523	554	578
12log ₂ (F/440)	0	1	2	3	4	5
vertical height	0	.5	1	2	2.5	3

- S=[0.5122.53...];stem(S(12*log2(F/440)))
- Use 12*log2(F/440) as an index (define log2)

Conclusion

- Tone Synthesizer and Transcriber (two .m files). Your lab IA should confirm both of these work.
- Your team will present your project results <u>orally</u>. You will learn how to do this in tech comm half. <u>This will be your grade for this project!</u>
- Save your presentation as a <u>.pdf</u>, not <u>.pptx</u>, file. (Select "print"; print to "Adobe" at <u>top</u> of menu.) The file name should be just your team name. Email to <u>aey@eecs.umich.edu</u> the night before.