Engin. 100: Music Signal Processing
Lab #3[1]: Computing Signal Spectra

• How do we define the spectrum of a signal?
• Why can we sample without losing information?
• How do we compute the spectrum of a signal?
• How do we use Matlab to compute the spectrum?
• Why should we bother to compute the spectrum? (to be answered next week—we need to know how to compute spectra before we can use them!)

What is the spectrum of a signal?

• In Engin. 100, we will only define spectra of periodic (repeating) signals. How come?

1. Each musical note played by an instrument is a periodic signal, so this is what we care about.
2. Definition and computation are much easier.
3. Actually, a non-periodic signal can be viewed as a periodic signal with a VERY long period.

Fourier Series of Periodic Signals

• Any real-world periodic signal with period=T (so x(t)=x(t+T) for all t) can be expanded as:
 \[x(t) = c_0 + c_1 \cos(2\pi t/T - \theta_1) + c_2 \cos(4\pi t/T - \theta_2) + \ldots \]

 - DC constant
 - fundamental period=T
 - harmonic period=T/2

 The spectrum of x(t) is just a stem plot of the amplitudes \(\{c_k\} \) vs. the frequencies \(\{k/T\} \) Hertz.

Fourier Series of Musical Signals

• Phase shift \(\theta \) cannot be perceived by the ear.
• No DC term in musical signals. So can use:
 \[x(t) = a_1 \cos(2\pi t/T) + a_2 \cos(4\pi t/T) + a_3 \cos(6\pi t/T) + \ldots \]

 - fundamental
 - harmonic
 - harmonic

• This model originally proposed by Bernoulli.
• Coefficients \(a_k \) = timbre (TAM-ber) of sound:
 - Is why a clarinet sounds different from a flute.
 - Plot of \(a_k \) vs. frequency \(k/T \) Hertz: sound spectrum.
Engin. 100: Music Signal Processing
Lab #3[1]: Computing Signal Spectra

• How do we define the spectrum of a signal?
• Why can we sample without losing information?
• How do we compute the spectrum of a signal?
• How do we use Matlab to compute the spectrum?

• Why should we bother to compute the spectrum? (to be answered next week-we need to know how to compute spectra before we can use them!)

Fourier Series of Periodic Signals

• Any real-world periodic signal with period=T can be expanded in either of these two forms:

\[
\begin{align*}
 x(t) &= c_0 + c_1 \cos(2\pi t/T - \theta_1) + c_2 \cos(4\pi t/T - \theta_2) + \ldots \\
 x(t) &= a_0 + a_1 \cos(2\pi t/T) + a_2 \cos(4\pi t/T) + \ldots \quad + b_1 \sin(2\pi t/T) + b_2 \sin(4\pi t/T) + \ldots
\end{align*}
\]

• Coefficients in these two forms are related by:
 \[A \cos(t) + B \sin(t) = C \cos(t - \theta) \] (cf. Lab #1) where \(C = (A^2 + B^2)^{1/2}; \tan \theta = B/A; A = C \cos \theta; B = C \sin \theta. \)

Example: Period=0.001 seconds

• x(t) has period=T=0.001 sec. x(t) has expansion:

\[
\begin{align*}
 x(t) &= a_0 + a_1 \cos(2\pi 1000 t) + a_2 \cos(2\pi 2000 t) + \ldots \\
 &= b_1 \sin(2\pi 1000 t) + b_2 \sin(2\pi 2000 t) + \ldots
\end{align*}
\]

• 0 1000 Hz (fund.) 2000 Hz (harmonic)

• In general, this expansion is infinite and requires infinitely high frequencies at integer multiples of the fundamental frequency=1/period=1000 Hz.
• But what if the signal is bandlimited to 8000 Hz?

Sampling Signals with Period=T
seconds and Bandlimited to B Hertz

• IDEA: If a signal is completely characterized by 2BT+1 numbers, we can compute those 2BT+1 numbers by sampling 2BT+1 times per period!

• THAT IS: Sample \textit{faster} than 2BT times/period.

• Sampling rate>(2BT times)/(T second)=2B Hertz. \textit{Need:} sampling rate>2(maximum frequency).

Sampling theorem: discovered by Claude Shannon, U-M CoE Class of 1936 (EE). Bust outside EECS.
Engin. 100: Music Signal Processing

Lab #3[1]: Computing Signal Spectra

- How do we define the spectrum of a signal?
- Why can we sample without losing information?
- How do we compute the spectrum of a signal?
- How do we compute the spectrum of a signal?
- How do we use Matlab to compute the spectrum?
- Why should we bother to compute the spectrum?

(to be answered next week—we need to know how to compute spectra before we can use them!)

Easiest way to illustrate how to do this:

Use a small numerical example

- \(x(t)\) is periodic with period \(T=0.001\) second.
- \(x(t)\) has maximum frequency \(B=1000\) Hertz.
- \(x(t)\) is then sampled at 4000 samples/second.
- Need: \(2BT+1=2(1000)(0.001)+1=3\) numbers.

\[
\begin{align*}
[x(t)] &= a_0 + a_1 \cos(2\pi t/0.001) + b_1 \sin(2\pi t/0.001). \\
\text{Sampling: } &\text{Have } x(t)=x(n/4000) \text{ for } n=0,1,2,3 \text{ since } x(4/4000)=x(0.001)=x(0) \text{ again (periodic).}
\end{align*}
\]

Small Numerical Example, Continued

- We observe these samples:

<table>
<thead>
<tr>
<th>(n/4000)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x(n/4000))</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
- \(x(1/4000)=a_0+a_1\cos(\pi/2)+b_1\sin(\pi/2)=a_0+b_1=4\).
- \(x(2/4000)=a_0+a_1\cos(\pi)+b_1\sin(\pi)=a_0-a_1=1\).
- \(x(3/4000)=a_0+a_1\cos(3\pi/2)+b_1\sin(3\pi/2)=a_0-b_1=2\).
- \(x(4/4000)=a_0+a_1\cos(2\pi)+b_1\sin(2\pi)=a_0+a_1=5\).

Collecting: \(a_0+b_1=4; a_0-a_1=1; a_0-b_1=2; a_0+a_1=5\).

Solving: \(a_0=3; a_1=2; b_1=1. \) [4 equations in 3 unknowns]

Closed-Form Solution to the Linear System of Equations

- General: Signal is sampled at \(S\) sample/seconds; has period \(T\) seconds; bandlimited to \(B\) Hertz.
- Data: \(\{x(1/S),x(2/S),x(3/S),…,x(ST/S)=x(T)\}\) (sampling every 1/S seconds, up to \(T\) seconds).
- Solve: \(ST=N\) equations in \(2BT+1\) unknowns:

\[
\begin{align*}
x(t) &= a_0 + a_1 \cos(2\pi t/T) + \ldots + a_BT \cos(2\pi BT t/T) \\
&\quad + b_1 \sin(2\pi t/T) + \ldots + b_BT \sin(2\pi BT t/T)
\end{align*}
\]

Small Numerical Example, Continued

- We observe these samples:

<table>
<thead>
<tr>
<th>(n/4000)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x(n/4000))</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
- \(a_0=(1/4)[4+1+2+5]=\text{average value of } x(t)=3\).
- \(a_1=(2/4)[4\cos(\pi/2)+1\cos(\pi)+2\cos(3\pi/2)+5\cos(2\pi)]=2\).
- \(b_1=(2/4)[4\sin(\pi/2)+1\sin(\pi)+2\sin(3\pi/2)+5\sin(2\pi)]=1\).

Answer: \(x(t)=3+2\cos(2\pi t/10000)+\sin(2\pi t/10000)\).

MUCH easier than solving \(ST\) simultaneous linear equations in \(2BT+1\) unknowns if \(ST \& 2BT\) large!
Engin. 100: Music Signal Processing
Lab #3[1]: Computing Signal Spectra

• How do we define the spectrum of a signal?
• Why can we sample without losing information?
• How do we compute the spectrum of a signal?
• How do we use Matlab to compute the spectrum?

• Why should we bother to compute the spectrum? (to be answered next week—we need to know how to compute spectra before we can use them!)

Using Matlab to Compute Spectra

• Matlab’s “F=fft(X)” computes the following:
 \[F(k) = \sum_{n=0}^{N-1} x(n) e^{-i2\pi nk/N} \]
 for \(k = 1, \ldots, N \)

• \(a_k \) = \(k \)th element of “\(2/N \times \text{real}(\text{fft}(X)) \)”, \(k = 1, 2, \ldots \)
• \(b_k \) = \(k \)th element of “\(-2/N \times \text{imag}(\text{fft}(X)) \)”, \(k = 1, 2, \ldots \)
• \(c_k \) = \(k \)th element of “\(2/N \times \text{abs}(\text{fft}(X)) \)”, \(k = 1, 2, \ldots \)

• \(X = \text{vector of sampled signal; } N = \text{ST (integer); we need to ensure } S > 2(\text{maximum frequency of } x(t)) \).

Using Matlab’s “fft” to compute spectra

• “fft” output has mirror symmetry (\(e^{-i2\pi(n-1)(k-1)/N} \)).
 \[\text{DELETE THE 2nd HALF OF ITS OUTPUT!} \]

• Watch indexing: Matlab: 1 to N. Math: 0 to N-1.

• \((2/N) \times \text{real}(\text{fft(\{x(0)…x(N-1)\},N))) \) gives
• \([a_0, a_1, a_2, \ldots, a_{N/2}, b_{N/2}, b_{N/2-1}, b_0, b_1, \ldots, b_{N/2-2}] \]

• \(-(2/N) \times \text{imag}(\text{fft(\{x(0)…x(N-1)\},N))) \) gives
• \([0, b_1, b_2, \ldots, b_{N/2}, 0, -b_{N/2}, -b_{N/2-1}, \ldots, -b_1] \)

• \((2/N) \times \text{abs}(\text{fft(\{x(0)…x(N-1)\},N))) \) gives
• \([c_0, c_1, \ldots, c_{N/2}, c_{N/2-1}, c_{N/2-2}, \ldots, c_2, c_1] \)

Small Numerical Example, Continued

<table>
<thead>
<tr>
<th>n=4000t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x(n/4000)</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Reorder samples of x(t) to start with x(0)=x(4/4000)=5. Then use:

\((2/4) \times \text{real}(\text{fft([x(0)…x(N-1)],4))) \) outputs [6 2 0 2] so \(a_0=6/2=3 \) and \(a_1=2 \).

Another Simple Numerical Example

• GIVEN: \(x(t)=\cos(2\pi 440t) \) sampled at 8192 Hertz.
• >>X=cos(2*pi*440*[0:8191]/8192);%T=1 second.
• >>F=(2/8192)*abs(fft(X,8192)) outputs all zeros except one at F(441)=1 and F(7753=8193-440)=1.

• So how do we interpret this Matlab output?
• Remember to delete the mirror image output.
• There is a single sinusoid, but what frequency?

Another Numerical Example, Continued

• S=sampling rate; T=period; N=ST=length of X.
• NOTE: \(x(t) \) is assumed by “fft” to be a single period.
• \(k \)th index is frequency \((k-1)/T=S(k-1)/N \) Hertz for \(k=1, 2, \ldots N/2 \) (require maximum frequency<\(S/2 \)).
• Frequency resolution (separation) is 1/T Hertz.

• HERE: \(x(t) \) is samples of one sinusoid at frequency \((441-1)(8192 \text{ sample/sec.(sec.)}/8192 \text{ samples})=440 \text{ Hz.} \)
• Plot only \textbf{first half of } \(F \) to get the spectrum of \(x(t) \)!
Engin. 100: Music Signal Processing
Lab #3[1]: Computing Signal Spectra

• How do we define the spectrum of a signal?
• Why can we sample without losing information?
• How do we compute the spectrum of a signal?
• How do we use Matlab to compute the spectrum?
• Why should we bother to compute the spectrum? (to be answered next week—we need to know how to compute spectra before we can use them!)

Periodic and Bandlimited Signals

• General: Signal periodic with period=T seconds, & bandlimited to maximum frequency=B Hertz, is completely characterized by 2BT+1 numbers.

• If we know (somehow) that this is bandlimited to 35 Hertz, then 2(35)(0.2)+1=15 numbers suffice. (Every other harmonic was zero in its spectrum.)

Example: Spectrum of periodic signal

Period=0.2 second (5 complete periods occur in 1 second). Other than that, all you can say is that this looks weird. But:

x(t)=15cos(10πt) + 5cos(30πt) + 3cos(50πt) + 2cos(70πt), 0≤t<1.

So the spectrum of this signal is actually quite simple:

Example: Spectrum of periodic signal

Great! But, given this waveform, how do I compute that formula?

Periodic and Bandlimited Signals

• General: Signal periodic with period=T seconds, & bandlimited to maximum frequency=B Hertz, is completely characterized by 2BT+1 numbers.

• If we know (somehow) that this is bandlimited to 35 Hertz, then 2(35)(0.2)+1=15 numbers suffice. (Every other harmonic was zero in its spectrum.)

Example: Spectrum of periodic signal

• The Matlab commands I used to make this example:
 T=0:0.01:99.99; %Sampling rate=1/0.01=100 samples/second.
 Duration=99.99 seconds. Length=100/0.01=10000 samples.
 X=15*cos(10*pi*T)+5*cos(30*pi*T)+3*cos(50*pi*T)+2*cos(70*pi*T);
 %Generates sampled signal. Of course, we don’t “know” this formula.
 We want to compute the spectrum of this signal from its samples X.

 FX=2/10000*abs(fft(X)); F=[0:4999]/100; plot(F,FX(1:5000))
 %Computes the spectrum FX and plots it vs. actual frequency F Hz.

Example: Spectrum of periodic signal

• Sampling rate=100 samples/second>2(max. frequency)=2(35 Hertz).
• Frequency resolution (discretization)=1/duration=1/100=0.01 Hertz.
 The longer the duration T, the higher the frequency resolution 1/T.

• If you want to be lazy, just plot(abs(fft(X))) where X=sampled signal.
• Peak at index K is at frequency f=(K-1)(sampling rate)/(length(X)).
 Here, peak at index K=501 is at frequency (501-1)(100)/10000=5 Hz.
 Peak at index K=1501 is at frequency (1501-1)(100)/10000=15 Hertz.
 Peaks at indices K=2501 and 3501 are at frequencies 25 and 35 Hertz.

Example: Spectrum of periodic signal

• Periodic signals (including musical notes) can be expanded in a Fourier series.
• The signal is a sum of sinusoids at frequencies that are integer multiples of 1/(period of signal).
• If signal is both bandlimited and periodic, then the Fourier series has only a finite #terms, and we can compute coefficients from its samples.
• There is a closed-form solution to the resulting linear system; Matlab can compute it easily.
• Use f=(K-1)S/N to get frequencies from index.

Conclusion