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Engin. 100: Music Signal Processing 
Lab #4: Spectrogram

Filtering signals to remove interference

Spectrogram: Time-varying spectrum

Removing Interference from Signals
• Noise: Unknown, unpredictable, but usually 

dominated by high frequency components.
• Interference: Known signal; want to eliminate. 

Easy if we have a record of the interference, or if 
we can generate it. But usually we have neither.

• Lab #3: Two trumpets playing simultaneously. 
Goal: Filter out one. How? Set its harmonics=0.

• Lab #4: Tonal versions of “The Victors” and 
awful interference. Goal: Eliminate interference.

Removing Interference from Signals
Spectrum of the signal. How can we tell signal from interference? 
We need something better: a time-varying spectrum of this signal.

>>FZ=abs(fft(Z)); FZ=FZ(1:20000)*2/78000; F=[0:19999]*8192/78000;   
plot(F,FZ) where Z is the signal. This doesn’t help very much, does it?

Time-varying spectral content
• “fft” is useful for analyzing periodic signals: 

x(t)=c0+c1cos(2πt/T+θ1)+c2cos(4πt/T+θ2)+… 
>>2/N*abs(fft(X,N)) computes [2c0 c1 c2…].

Time-varying spectral content
• “fft” is useful for analyzing periodic signals: 

x(t)=c0+c1cos(2πt/T+θ1)+c2cos(4πt/T+θ2)+… 
>>2/N*abs(fft(X,N)) computes [2c0 c1 c2…].

• BUT: Many (e.g., music) signals look like:
c11cos(2πt/T1+θ11)+c21cos(4πt/T1+θ21)+…t0<t<t1
c12cos(2πt/T2+θ12)+c22cos(4πt/T2+θ22)+…t1<t<t2
c13cos(2πt/T3+θ13)+c23cos(4πt/T3+θ23)+…t2<t<t3

Time-varying spectral analysis
• IDEA: Segment (chop up) signal in time.
• THEN: Apply “fft” to each signal segment.
• HOW: imagesc(abs(fft(reshape(X’,N,L),N)))
• WHERE: L=#segments and N=length(X)/L;

• WHAT: Computes “fft” of each of L segments.
• SHOW: Display freq. vertical, time horizontal.
• WHY: Gives a spectrum that varies with time.
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Example: “The Victors” spectrum
Just a histogram of note frequencies

(#times each frequency appears)
Example: “The Victors” spectrogram
• X=Tonal “The Victors”; sampled at 8192 Hertz.
• Has 26 notes of length 3000/8192 seconds each.
• Length(X)=78000=26(3000). So L=26, N=3000.
• >>imagesc(abs(fft(reshape(X’,3000,26)))) , 

colormap(gray). This is shown on the next slide.
• This is called the “spectrogram” of X.
• You can see that the signal is a single sinusoid 

whose frequency jumps every 3000/8192 seconds.
• Much more information than just the spectrum!

Example: “The Victors: spectrogram Example: “The Victors: spectrogram
• Frequency actually displayed from top down, but 

due to “fft” mirror also displayed from down up.
• Time displayed as increasing from left to right.
• Vertical slices are the spectra at different times.
• Horizontal slices are the presence/absence of a 

specific frequency as time varies.
• Brightness indicates strength at that time-freq.

Example: chirp signal
• Chirp: x(t)=cos(2πFt2): birds, dolphins.
• Frequency increases linearly with time.
• Instantaneous frequency=2Ft (not Ft) Hertz.
• >>X=cos([0:8191].^2/10000);plot(X(1:1000))
• >>imagesc(abs(fft(reshape(X',256,32))))
• >>colormap(gray) shown on next 2 slides.

Chirp signal: time waveform
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Chirp signal: spectrogram Chirp: Instantaneous frequency
>>X=cos([0:8191].^2/10000) means this:

• x(t)=cos(t2) sampled at t=n/100; duration=81.9
• The “Instantaneous frequency”=(2t)/(2π) Hertz.
• Increases from 0 to 2(81.9)/(2π)=26.08 Hertz.
• Interpret spectrogram: F=100; N=256; T=2.56
• Freq. in final window: (67-1)100/256=25.8 Hz. 

This is average of freqs in final time window.

Vertical slice of final (32nd) time window Removing Interference, Continued: 
Spectrogram of signal+interference.
Now we can see what’s happening.

Now you can 
see what you 
need to do to 
eliminate the 
interference. 
The rest is up 
to you in Lab.

Conclusion
• Can filter out noise from a noisy signal y using: 

fy=fft(y); fy(K:N+2-K)=0; z=real(ifft(fy)); where 
the signal has no components above index K.

• Noise tends to be high-frequency, so lowpass filter
• To remove interference, time-varying spectrum, 

computed as spectrogram, can give a much better 
picture (visualization!) of what is happening.

• Spectrogram can also aid in interpreting signal.

MORE EXAMPLES OF INTERPRE-
TING RESULTS OF MATLAB’s “fft”

Not presented in lecture unless time.
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Matlab train whistle spectrum: 
Approximate using 6 sinusoids

Matlab’s train whistle signal
• Signal duration=12880 samples=1.57 sec.   

Take periodic extension (repeats; T=1.57).
• Sampling rate=8192 Hertz. So N=ST=12880.

• >>load train.mat;length(y)[=12880];plot(y); 
F=fft(y);plot(abs(F(1:12880/2))) [1st half only]

• F(k) is component at frequency f=(k-1)S/N. 
f=(index-1)(8192/12880)=(index-1)/1.57 Hertz.

• [2/N*abs(F) angle(F)] gives numerical values.

Matlab train whistle spectrum
• Only about 6 significant sinusoids present.
• Closer examination of spectrum: Peaks at:
Index 1109 1394 1840 3326 4180 5521
Hertz 705 886 1170 2115 2658 3511

440cos(2π705t-1.70)+979cos(2π886t+2.93)+928cos(2π1170t+1.35)+ 
88cos(2π2115t+1.41)+93cos(2π2658t+0.84)+43cos(2π3511t+3.03)

Interpreting results of Matlab’s “fft”
• Data acquisition system samples@1024 Hertz. 

Results loaded into Matlab, in a vector X.   
GOAL: Determine spectrum of loaded data.

• Step #1: >>length(X) gives 3072. Means what?
• Step #1: (3072 samples)/(1024 samples/second). 

Duration=3 seconds. Take periodic extension.

Interpreting results of Matlab’s “fft”
• Step #2: >>F=(2/3072)*abs(fft(X,3072));
• F=0 except indices 97,193,289,2785,2881,2977. 

F=7 at those indices. How do we interpret this?
• Step #2: Last 3 nonzero mirror images of 1st 3: 

2977=3074-97;2881=3074-193;2785=3074-289.
• Three sinusoidal components at frequencies 

determined by table on next slide.

Interpreting results of Matlab’s “fft”
K=Matlab indices of nonzero values of F 97 193 289
Hertz=(K-1)1024/3072=(K-1)/T (N=FT) 32 64 96

Data(t)=7cos(2π32t+θ1)+7cos(2π64t+θ2)+ 7cos(2π96t+θ3).
Phase θ1: >>angle(F(97)). θ2: >>angle(F(193)). θ3: >>angle(F(289)).
Harmonic frequencies: Data(t) periodic with period=1/32 second.
Don’t confuse this with periodic extension of Data(t) (3 seconds).


