
1

ENGIN 100: Music Signal Processing

LAB #3: Discrete Spectral Analysis

Professor Andrew E. Yagle

Dept. of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Revised July 2016

I. ABSTRACT

This lab will teach you how to use a tool central to signal processing: spectral analysis of signals using the

discrete Fourier transform (FFT). The Background section presents: (a) the physics of vibrating strings; (b)

the Fourier series expansion of a periodic signal; (c) the sampling theorem; and (d) computation of Fourier

series coefficients. The goals of this lab are: (1) To gain the ability to use Matlab’s FFT command to

compute Fourier series coefficients from samples of a periodic signal; (2) To use these computed coefficients

to filter a noisy signal; (3) To compute these coefficients for simple sinusoids and plucked string signals to

determine their spectra. These have obvious applications in the music synthesizer and transcriber projects.

II. BACKGROUND

There is no way to present this material without a lot of mathematics. I have put the algebra into 3

separate appendices, at the end of this lab. This means you can skip them on first reading of the lab, and

then plow through them later, with a mug of non-decaf coffee or tea. You won’t be tested on them (whew!).

Appendix A is a simple 1-D analysis of the physics of a vibrating string. You should be able to follow it if

you have the basics of the first month of Math 115 (differential calculus) down. The point of this material

is that there are physical reasons for a vibrating string in particular, and music in general, to sound like a

fundamental sinusoid plus harmonics. Bernoulli first proposed this model for music, and we will follow him.

Appendix B derives the sampling theorem for bandlimited periodic signals: A signal can be reconstructed

perfectly from its samples if it is sampled at greater than twice its maximum frequency. This result is why

digital signal processing, CDs, DVDs, and pretty much everything digital exists: without it, digital could

never be as good as analog (ugh!). In fact, the periodicity is unnecessary, but the proof for non-periodic

signals requires much more math (specifically, the Fourier transform and continuous-time impulses). But if

we let the period be one century or more, we won’t be around when it starts to repeat!

Appendix C derives explicit formulae for computing the Fourier coefficients from sampled data. The math

here isn’t nearly as bad as it looks (really!), but it is tough wading. But it sure beats solving a huge set of

simultaneous linear equations! These are the formulae we will use for spectral analysis of music.



2

III. Fourier Series Expansions of Periodic Signals (“All You Need is Trig”)

From Appendix A, we can model the sound of a plucked string as (here T = 2L/a)

x(t) = C0 +
M∑

k=1

Ck cos(2πkt/T − θk) = A0 +
M∑

k=1

Ak cos(2πkt/T ) +Bk sin(2πkt/T ), (1)

for some constants {Ak, Bk, Ck, θk} related to each other by (remember from Lab #1)

Ak = Ck cos θk; Bk = Ck sin θk; Ck =
√

A2
k +B2

k; tan θk = Bk/Ak. (2)

What does x(t) look like? Clearly it is periodic (it repeats in time) with period=T:

x(t) = x(t+ T ) = x(t+ 2T ) . . . = x(t − T ) = x(t − 2T ) . . .

In fact any periodic function that occurs in the real world can be represented as a sum of sinusoids with

frequencies that are integer multiples of the “frequency”=1/period of the function. We need to include the

integer zero here since the signal may have a DC (constant) component. But music signals don’t have DC

components, so in the sequel we assume there is no DC component. Also note that B0=0 since sin(0)=0.

If we let M → ∞ we can handle non-real-world signals like square waves. However, this gets into con-

vergence issues that are very messy. In 1807, at a meeting of the Paris Acadeny, Jean Fourier claimed any

periodic function could be expanded as a (possibly infinite) sum of sinusoids. Lagrange stood up and said

he was wrong, and an argument ensued that lasted for years (they didn’t have TV then). It turns out that

there are exceptions, but they are (as mathematicians put it) “pathological,” so don’t worry about them.

What does this mean for Engin 100? Musical signals are periodic and can be expressed as a weighted

sum of sinusoidal signals whose frequencies are integer multiples of the “frequency”=1/period of the musical

signal. If there is only one sinusoid, the musical signal is a pure tone. If there is more than one sinusoid, the

extra sinusoids are called harmonics of the fundamental sinusoid, which would be the pure tone (T=period):

x(t) = C1 cos(2πt/T − θ1)︸ ︷︷ ︸
FUNDAMENTAL: 1

THz

+C2 cos(4πt/T − θ2)︸ ︷︷ ︸
HARMONIC: 2

THz

+C3 cos(6πt/T − θ3)︸ ︷︷ ︸
HARMONIC: 3

THz

+ . . . (3)

• The constants Ck produce the timbre (pronounced “tam-ber”) of the sound;

• The harmonics are also called partials (note they change if the period does);

• {Ak, Bk, Ck, θk} can be computed easily from samples of the signal x(t).

The next page shows two simple examples of Fourier series converging to square and triangle waves. Note

that the triangle wave converges faster than the square wave, since it has no discontinuities.



3

0 2 4 6 8 10
−1

−0.5

0

0.5

1
sin(t)

0 2 4 6 8 10
−1

−0.5

0

0.5

1
sin(t)+sin(3t)/3+sin(5t)/5

0 2 4 6 8 10
−1

−0.5

0

0.5

1
sin(t)+...+sin(15t)/15

0 2 4 6 8 10
−1

−0.5

0

0.5

1
sin(t)+...+sin(25t)/25

0 2 4 6 8 10
−2

−1

0

1

2
cos(t)+cos(3t)/9+cos(5t)/25

0 2 4 6 8 10
−2

−1

0

1

2
cos(t)+...+cos(9t)/81



4

IV. Using Matlab to Compute Fourier Series Coefficients

Matlab’s fft computes (Ak–iBk)N/2, i=
√−1. Given N=2L samples X of a complete period of x[n],

L = length(X)/2;Ak = real(fft(X))/L;Bk = −imag(fft(X))/L;Ck = abs(fft(X))/L; θk = angle(fft(X))

fft is short for Fast Fourier Transform, which is a very efficient algorithm for computing Ak and Bk,

especially when N is a power of two. Note that the FFT is an algorithm, not a result–it is uncouth to speak

of “FFTing” a data set, although many engineers (incorrectly) do so. Note the following:

• fft(X) has the same length as X, although there are half as many Ak (M+1) and Bk (M) as there are of

x[n] (N=2M+1). The 2nd half of fft(X) is (AN−k+iBN−k)N/2, which is the mirror image of the 1st half.

• So when plotting spectra computed using fft(X), ONLY PLOT THE FIRST HALF!.

• Then X=real(ifft(FX)) computes X from fft(X), i.e., it sums the discrete-time Fourier series.

• The 1st value of fft(X) is the DC (average) value of X. For musical signals this is zero. But for FX=fft(X),

N=length(X), use: A0=FX(1)/N; Ak=2*real(FX(k+1))/N; Bk=-2*imag(FX(k+1))/N for k = 1 . . . N
2 .

• Yes, this indexing is confusing. You will get all of this straight by doing the lab exercises below.

A. Simple Example: Interpretation of Matlab’s fft

A data acquisition system provides data sampled at 1024 SAMPLE
SECOND . The data is read into Matlab (using

command fread) and into a row vector X. How do we use Matlab to determine the spectrum of the data?

We run the following Matlab commands, and get the following results:

• >> length(X) yields 3072. The duration is (3072 samples)
(

1
1024

SECOND
SAMPLE

)
=T=3 seconds.

• >> -(2/3072)*imag(fft(X,3072)) yields 3072 numbers < 10−14. That is roundoff, meaning it’s zero!

• >> (2/3072)*real(fft(X,3072)) yields zeros except at the following indices (locations):

• {97, 193, 289, 2785, 2881, 2977}. At those indices the values are {4, 3, 2, 2, 3, 4}, respectively.
• Given all of the above information, compute a sum-of-sinusoids formula for the data.

We interpret these results as follows:

• The duration=T=3 seconds means we take the periodic extension of the 3-second-long data.

• This models the data as being periodic with period=3 seconds, with harmonics at { 1
3 , 2

3 . . .} Hertz.
• The final three components are the mirror images of the first three, both in value and location:

• 2785=3072+2–289; 2881=3072+2–193; 2977=3072+2–97. Why do we need to add 2 each time?

• A component at Matlab index K corresponds to frequency (K–1) S
N=(K–1)

1
T where N=ST.

• We have components at (97–1)/3=32 Hertz. (193–1)/3=64 Hertz. (289–1)/3=96 Hertz. That’s all!

• These are all pure cosines, since the Bk are zero (to roundoff; see above).

• The data can therefore be written as x(t) = 4 cos(2π32t) + 3 cos(2π64t) + 2 cos(2π96t).

• Hence the data are actually periodic with period=1/32 second, not 3 seconds.



5

B. Harder Example: Interpretation of Matlab’s fft

Matlab includes a sampled train whistle signal. Let’s compute its spectrum.

We run the following Matlab commands, and get the following results:

• >>load train.mat;plot(y);F=fft(y);plot(abs(fft(F(1:round(length(y)/2)))))

• Remember to plot only the first half of abs(F) to get the spectrum! This is a very common mistake!

• The 2 upper plots are the signal and its spectrum; the 2 lower plots are the approximation given below.

• >> length(y) is 12880. The duration of the signal is (12880 samples)
(

1
8192

SECOND
SAMPLE

)
=T=1.57 seconds.

• The sinusoid depicted by a spike at Matlab index K has frequency (K-1)/T=K−1
1.57 Hertz.

• The amplitudes and phases can be computed using >> [2/12880*abs(F) angle(F)].

• There are only 6 significantly nonzero components:

Index K 1109 1394 1840 3326 4180 5521

Hertz K−1
1.57 705 886 1170 2115 2658 3511

You now know the frequencies, and you can read off amplitudes from the plot. The signal is 2
12880×:

440 cos(2π705t− 1.70) + 979 cos(2π886t+ 2.93) + 928 cos(2π1170t+ 1.35)
+88 cos(2π2115t+ 1.41) + 93 cos(2π2658t+ 0.84) + 43 cos(2π3511t+ 3.03) (4)

• The 1st 3 frequencies are in 5:3 and 5:4 ratios. This is suggestive of chords in the whistle sound.

• The 4th − 6th frequencies are triple the 1st − 3rd frequencies. Are these harmonics? I think so.

• Comparing the upper and lower plots shows that just 6 sinusoids represent the signal well.

• This is the basic idea behind MP3 and JPEG compression–store 18 numbers instead of 12880!

100 200 300 400 500

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

original whistle vs. time

100 200 300 400 500

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

synthesized whistle vs. time

0 1000 2000 3000 4000

200

400

600

800

spectrum of original vs. freq

0 1000 2000 3000 4000

200

400

600

800

spectrum of synthesized vs. freq



6

V. LAB #3: WHAT YOU HAVE TO DO

• A. Spectra of Simple Signals

– Plot the following three plots on one page using subplot.

– Type >> F=fft(cos(2*pi*137*[0:499]/500));plot(abs(F)). Examine values of F to confirm that

this is a sinusoid with frequency 137 Hertz. Note the second peak is a mirror image of the first!

– Type >> F=fft(cos(1000*[0:499]/500));plot(abs(F)). Note the broad base around the peak. Ex-

amine values of F to confirm that this is a sinusoid with frequency 1000
2π ≈ 159 Hertz. Why don’t you get

just a spike, like you did previously? HINT: Does the sample F have an integral number of periods?

• B. Filtering Noisy Data to (Almost) Eliminate the Noise

– Plot the following three plots on one page using subplot.

– Download file noisy.mat. >> load noisy.mat;plot(Y). It should look like noise.
– Hidden in this noise is a signal, sampled at 1000 SAMPLE

SECOND . All you will be told is:

∗ It is periodic with period=0.2 seconds, and it is bandlimited to about 20 Hz.
– From that information, clean up the signal by filtering out most of the noise.

– HINTS: How many harmonics does it have, and at what frequencies?

– Set other values of FX to zero and use X=real(ifft(FX)) where FX=fft(Y).

– Plot the original noisy signal, its spectrum, and the cleaned-up signal.

• C. Separating Two Trumpets Playing Different Notes

– Plot the following four plots on one page using subplot. Download twotrumpets.mat.

– Type >> load twotrumpets.mat;soundsc(X,44100),plot(X(1000:1199)). What does X sound like?

– Type >>FX=fft(X);plot(abs(FX(1:5000)))What does the spectrum of X tell you about X?

– Eliminate one of the two trumpets by setting some of FX to zero (don’t forget the mirror indices).

– Then type >>plot(abs(FX(1:5000)));Y=real(ifft(FX));soundsc(Y,44100),plot(Y(1000:1199)).

– Explain how this eliminated one of the two trumpets.



7

VI. APPENDIX A: PHYSICS OF VIBRATING STRINGS

The basic instrument of rock and folk music is the guitar. A guitar consists of several strings; plucking

these strings to make them vibrate creates the music. So let us examine the basic physics of a horizontal

vibrating string. This requires basic differential calculus that you should have seen by now in Math 115.

Let x be horizontal position along a string of length L, t ≥ 0 be time, y(x, t) be vertical displacement of

the string at position x and time t, and T be the tension in the string, which is almost horizontal. T does

not vary with x since the change of length of the string is negligible when it is plucked or vibrating.

Recall that the slope of a function y(x) at position x is dy
dx . The vertical component of force at position x

is T sin(θ(x)) ≈ T tan(θ(x)) = T dy
dx and the vertical component of force at position x+∆ is T dy

dx +
d
dx [T

dy
dx ]∆

in the opposite direction. The net force is the difference T d2y
dx2∆, since T is assumed not to vary with x.

This force acts on a mass ρ∆, where ρ is the linear density (mass per unit length) of the string. Newton’s

law of motion F = ma in the vertical direction then gives

ma = (ρ∆)
d2y

dt2
= F = T

d2y

dx2
∆→ d2y

dt2
= a2 d2y

dx2
. UNITS :T : mass

length
time2

; ρ :
mass
length

; a2 =
T

ρ
:
length2

time2
(5)

where a2 = T
ρ depends only on the string material itself. The derivatives here should really be partial

derivatives ∂2y
∂t2 and

∂2y
∂x2 ; this just means that the other variable is treated as a constant in each case.

Since the ends of the string are fixed at both ends x = 0 and x = L, the equation and its solution are

d2y

dt2
= a2 d2y

dx2
; y(x = 0, t) = y(x = L, t) = 0→ y(x, t) =

M∑
k=1

Ek sin(kπx/L) cos(akπt/L − θk) (6)

In fact all solutions have the form, although you need a course in partial differential equations to show this.

What does (??) look like? If we took a snapshot of the vibrating string at fixed time t = to we would see

y(x, to) =
M∑

k=1

[Ek cos(akπto/L − θk)] sin(kπx/L), (7)

This is a weighted sum of functions that look like (note that the endpoints are always fixed)

These are called modes of vibration. Guitar players create a mode by fingering strings.

What does (??) sound like? Sound is generated by the time variation

y(xo, t) =
M∑

k=1

[Ek sin(kπxo/L)] cos(kπat/L − θk). (8)



8

VII. APPENDIX B: SAMPLING THEOREM

x(t) is real-valued with period=T seconds and maximum frequency M
T Hertz (note that the maximum

frequency must have this form for some integer M). Then x(t) can be expanded as (??). This means that

x(t) is completely specified by 2M+1 constants {Ak, Bk} or equivalently {Ck, θk}. If we can compute those
2M+1 constants, we know x(t) for all t. Now sample x(t) at N=2M+1 SAMPLE

SECOND , so we obtain the samples

x[n] = x(t = n∆) = x(t = nT/N), n = 1, 2 . . .N. (9)

Setting t = nT
N , n = 1, 2 . . .N=2M+1 yields N linear equations in N unknowns {A0, Ak, Bk, k = 1 . . .M}:

x[n] = x(nT/N) = A0 +
M∑

k=1

Ak cos[(2πk/T )(nT/N)] +Bk sin[(2πk/T )(nT/N)], n = 1 . . .N (10)

We can solve these equations to obtain {A0, Ak, Bk, k = 1 . . .M} from samples {x(nT/N), k = 1 . . .N}.
So we can reconstruct x(t) exactly from its samples x(nT/N). Note that we need to sample x(t) at a rate
N
T

SAMPLE
SECOND , more than double the maximum frequency M

T Hertz. The doubling is because we need pairs of

constants {A0, Ak, Bk, k = 1 . . .M}. This was discovered by Claude Shannon, a UM alumnus. That’s his

bust outside the EECS building (on the left side as you enter) on the North Campus diag.

A. Small Illustrative Numerical Example

Let x(t) be periodic with period T = 0.001 and have maximum frequency 1000 Hertz.

x(t) is sampled at 4000 SAMPLE
SECOND . The goal is to reconstruct a formula for the signal.

We observe: x(1/4000)=4; x(2/4000)=1; x(3/4000)=2; x(4/4000)=5. Since the signal is periodic,

x(t) = a0 + a1 cos(2πt/0.001) + a2 cos(4πt/0.001) + . . .+ b1 sin(2πt/0.001) + b2 sin(4πt/0.001) + . . . (11)

Since the signal has maximum frequency 1000 Hertz, x(t) = a0 + a1 cos(2πt/0.001) + b1 sin(2πt/0.001).

So the signal is completely determined by three constants: {a0, a1, b1}. t = n/4000 for n = 1, 2, 3, 4 gives

4 = x(1/4000) = a0 + a1 cos(2π
1

0.001
1
4000

) + b1 sin(2π
1

0.001
1
4000

) = a0 + a1 cos(
1π
2
) + b1 sin(

1π
2
) = a0 + b1 = 4

1 = x(2/4000) = a0 + a1 cos(2π
1

0.001
2
4000

) + b1 sin(2π
1

0.001
2
4000

) = a0 + a1 cos(
2π
2
) + b1 sin(

2π
2
) = a0 − a1 = 1

2 = x(3/4000) = a0 + a1 cos(2π
1

0.001
3
4000

) + b1 sin(2π
1

0.001
3
4000

) = a0 + a1 cos(
3π
2
) + b1 sin(

3π
2
) = a0 − b1 = 2

5 = x(4/4000) = a0 + a1 cos(2π
1

0.001
4
4000

) + b1 sin(2π
1

0.001
4
4000

) = a0 + a1 cos(
4π
2
) + b1 sin(

4π
2
) = a0 + a1 = 5

Solving these four linear equations in three unknowns gives a0 = 3; a1 = 2; b1 = 1. So

x(t) = 3+2 cos(2π1000t)+1 sin(2π1000t) = 3+
√
5 cos(2π1000t−tan−1(1/2)) = 3+2.236 cos(2π1000t−26.6o).



9

VIII. APPENDIX C: DIRECT COMPUTATION OF FOURIER SERIES COEFFICIENTS

Solving N linear equations in N unknowns is very time-consuming if N is large. Fortunately, we can avoid

this by using formulae we now derive. WARNING: Grab a mug of non-decaf coffee or tea before reading!

First, recall the sine and cosine addition formulae

sin(x ± y) = sin(x) cos(y)± cos(x) sin(y)
cos(x ± y) = cos(x) cos(y)∓ sin(x) sin(y). (12)

Adding and subtracting these gives

2 cos(x) cos(y) = cos(x − y) + cos(x+ y)

2 sin(x) sin(y) = cos(x − y)− cos(x+ y)

2 sin(x) cos(y) = sin(x − y) + sin(x+ y). (13)

Second, note that since sin(2πk
N n) is periodic in n with period N and sin(−x) = − sin(x) we have

N∑
n=1

sin(
2πk

N
n) =

N/2∑
n=1

sin(
2πk

N
n) +

−N/2∑
n=−1

sin(
2πk

N
n) =

N/2∑
n=1

[sin(
2πk

N
n)− sin(2πk

N
n)] = 0, (14)

where N/2 means N−1
2 if N is odd (note that sin(2πk

N
N
2 )=0 if N is even). Then

2 sin(
2πk

N
)

N∑
n=1

cos(
2πk

N
n) =

N∑
n=1

2 sin(
2πk

N
) cos(

2πk

N
n) =

N∑
n=1

[sin(
2πk

N
(n+ 1))− sin(2πk

N
(n − 1))]

=
N∑

n=1

sin(
2πk

N
(n+ 1))−

N∑
n=1

sin(
2πk

N
(n − 1)) = 0− 0 = 0→

N∑
n=1

cos(
2πk

N
n) = 0, 1 ≤ k ≤ N − 1 (15)

after dividing by 2 sin(2πk
N ) �= 0 if 1 ≤ k ≤ N − 1 and k �= N/2. If k = N/2 then (since N is even)

N∑
n=1

cos(
2πk

N
n) =

N∑
n=1

cos(πn) =
N∑

n=1

(−1)n = 0. (16)

Third, we now have

2
N∑

n=1

sin(
2πi

N
n) cos(

2πj

N
n) =

N∑
n=1

[sin(
2π(i − j)

N
n) + sin(

2π(i+ j)
N

n)] = 0− 0 = 0 even if i = j. (17)

We also now have

2
N∑

n=1

sin(
2πi

N
n) sin(

2πj

N
n) =

N∑
n=1

[cos(
2π(i − j)

N
n)− cos(2π(i+ j)

N
n)] = 0− 0 = 0 unless i = j, (18)



10

2
N∑

n=1

cos(
2πi

N
n) cos(

2πj

N
n) =

N∑
n=1

[cos(
2π(i − j)

N
n) + cos(

2π(i+ j)
N

n)] = 0− 0 = 0 unless i = j. (19)

These three equations are called orthogonality conditions, since they state that the inner (“dot”) products

of {sin(2πi
N n)} for two different i are zero, and similarly for {cos(2πi

N n)}.
Finally (hooray!), setting t = nT/N in (??) gives

x[n] = x(t =
nT

N
) =

M∑
k=0

Ak cos(
2πk

N
n) +

M∑
k=1

Bk sin(
2πk

N
n). (20)

This is the Discrete-Time Fourier Series (DTFS). Multiplying (??) by sin(2πm
N n) and summing over n gives

N∑
n=1

x[n] sin(
2πm

N
n) =

N∑
n=1

[
M∑

k=0

Ak cos(
2πk

N
n)] sin(

2πm

N
n) +

N∑
n=1

[
M∑

k=1

Bk sin(
2πk

N
n)] sin(

2πm

N
n)

=
M∑

k=0

Ak

N∑
n=1

cos(
2πk

N
n) sin(

2πm

N
n) +

M∑
k=1

Bk

N∑
n=1

sin(
2πk

N
n) sin(

2πm

N
n) = NBm/2 (21)

using the orthogonality conditions. Similarly, multiplying (??) by cos(2πm
N n) and summing over n gives

N∑
n=1

x[n] cos(
2πm

N
n) =

N∑
n=1

[
M∑

k=0

Ak cos(
2πk

N
n)] cos(

2πm

N
n) +

N∑
n=1

[
M∑

k=1

Bk sin(
2πk

N
n)] cos(

2πm

N
n)

=
M∑

k=0

Ak

N∑
n=1

cos(
2πk

N
n) cos(

2πm

N
n) +

M∑
k=1

Bk

N∑
n=1

sin(
2πk

N
n) cos(

2πm

N
n) = NAm/2 (22)

using the orthogonality conditions derived above. So (bottom line) we have the formulae

Am = 2
N

∑N
n=1 x[n] cos(2πm

N n) ; Bm = 2
N

∑N
n=1 x[n] sin(2πm

N n) , m = 1, 2 . . .N

which we can plug into (??) to get an explicit formula for x(t) for all t.

We need not solve N equations in N unknowns–we can write down the solution directly, thanks to those

orthogonality conditions! These formulae compute Fourier series coefficients directly from sampled data.

A. Small Illustrative Numerical Example, Continued

Continuing the example in Appendix B, we can compute {a0, a1, b1} directly:

a0 =
1
4
[4 cos(2π

0
0.001

1
4000

) + 1 cos(2π
0

0.001
2
4000

) + 2 cos(2π
0

0.001
3
4000

) + 5 cos(2π
0

0.001
4
4000

) = 3

a1 =
1
4
[4 cos(2π

1
0.001

1
4000

) + 1 cos(2π
1

0.001
2
4000

) + 2 cos(2π
1

0.001
3
4000

) + 5 cos(2π
1

0.001
4
4000

) = 2

b1 =
1
4
[4 sin(2π

1
0.001

1
4000

) + 1 sin(2π
1

0.001
2
4000

) + 2 sin(2π
1

0.001
3
4000

) + 5 sin(2π
1

0.001
4
4000

) = 1 (23)

in agreement with Appendix B. This replaces solving the linear system of 4 equations in 3 unknowns.


