Course Notes for
Engineering 100
Music Signal Processing
Revised March 2013
College of Engineering
The University of Michgan

Professor Andrew E. Yagle
Dept. of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, MI 48109-2122

(©2011 by Andrew E. Yagle. All rights reserved.



Chapter 1

Introduction to Musical Signals and

to Engineering 100

1.1 Introduction to the Course

These are a set of course notes for the freshman
engineering course Engineering 100 (Music Sig-
nal Processing) at the University of Michigan,
Ann Arbor. No prior knowledge of calculus is
assumed; the highest level of mathematics used
consists of logarithms and the cosine addition
formula. However, some very basic familiarity
with Matlab is assumed (the required level of
familiarity is provided in Lab #1). No program-
ming skill is needed or provided; the entire course
can be completed without using a programming
loop or a conditional statement.

The goal of this course is to provide students
with the engineering background necessary to
analyze and synthesize simple musical signals.
In the first half of the course, three labs teach
students the necessary skills. These labs are:

1. Basic Matlab skills (mostly plotting)
2. Determining musical frequencies:

e Using a simple digital signal processing
(DSP) algorithm to compute frequen-
cies present in a tonal version of “The

Technical Material

Victors” (the Michigan fight song);

e Interpreting the computed frequencies
using log-log and semi-log plots;

e Inferring the existence of accidental
notes (sharps and flats) from these log-
log and semi-log plots.

3. Fourier series, spectrogram and spectra:
e Computing the spectra of various sig-
nals using the FFT;
e Filtering out noise using the FFT;

e Visualizing “The Victors” plus some
interference using a spectrogram;

e Using this spectrogram and the FFT

to remove the interference.

Also during the first half of the course, students
complete two one-week projects:

1. Tone synthesizer and transcriber:

e Programming in Matlab a simple tone
synthesizer that generates tonal music
from an on-screen keyboard;



1.2. MUSICAL SIGNALS

e Programming in Matlab a simple tone
transcriber that accepts a tonal music
signal from the synthesizer and out-
puts a pseudo-musical notation using
Matlab’s stem command.

2. Reverse-engineer touch-tone phone signals:

e Computing the spectra of touch-tone
phone signals using the FFT;

e Programming in Matlab a touch-tone
synthesizer that generates touch tones
from an on-screen keyboard;

e Programming in Matlab a touch-tone
transcriber that accepts a touch-tone
signal and outputs the phone number;

e Analyzes the performance (error rate
vs. SNR) of the transcriber in noise.

During the second half of the course, students
program in Matlab a simple music synthesizer
that outputs any of four instruments (guitar,
trumpet, clarinet, and one generated by the stu-
dents using additive synthesis) playing whole,
half, or quarter notes in a one-octave range, from
an on-screen keyboard. Reverb for the trumpet
signal is also included. Students also program
in Matlab a music transcriber that accepts mu-
sical signals from the synthesizer and outputs
a pseudo-musical notation using Matlab’s stem
command. Performance of the transcriber, with
noise, as measured by error rate, is evaluated.

It should be noted that technical communica-
tion and working in teams constitute half of the
course grade, and are prominent in grading the
final project. Ethical issues involved in copy-
righting and sampling digital music are also ad-
dressed. Important as they are, these notes fo-
cus on only the technical material of the course.
Technical communication is covered in a
separate textbook.

1.2 Musical Signals

A signal is a function of time that carries infor-
mation. A musical signal is a function of time
that represents the output of a musical instru-
ment playing musical notes. Polyphonic music
and vocals are beyond the scope of this course.
What one hears with their ears can be considered
an auditory signal, consisting of time-varying
changes of air pressure. However, we shall as-
sume that the music has been played into a mi-
crophone and converted into an electrical signal.

e [ will use this font for Matlab commands;
o [ will give the Matlab code used for all plots;

e You can copy Matlab programs directly
from the .pdf file of these notes to the Mat-
lab command window, to save retyping.

1.2.1 Tonal Signals

The simplest type of musical signal is a pure
tone, or tonal signal. This is simply a sinu-
soidal signal; when listened to, it is perceived as
a simple tone. A tonal signal of note B looks like

1

15 2 2.5 3 35 4 45 5
sec «10°

Figure 1.1: Tonal note B signal

It is easy to see that this is a sinusoid with a
period of about 0.0020 seconds (2.0 ms), so that



4CHAPTER 1. INTRODUCTION TO MUSICAL SIGNALS AND TO ENGINEERING 100 TECHNICAL MA

L__500 Hertz. We will

its frequency is about 55555

This signal is clearly much more complicated

discover in Lab #2 that the actual frequency of than the pure tonal signal, but one feature

a tonal note B is 494 Hertz.
This plot was generated in Matlab using

T=linspace(0,0.005,1000) ;
X=cos (2%pi*494*T) ;
subplot (211),plot(T,X)

To listen to a tonal B signal, run Matlab and
type in the following at the Matlab prompt >>
(you will need earphones in a CAEN lab):

T=linspace(0,1,10000);
X=cos (2*pi*494xT) ; soundsc (X,10000)

Tonal music isn’t very interesting, although it
is easy to analyze. We will use this fact in Chap-
ter 2 to compute the frequencies of the musical
tones in a tonal version of “The Victors.” When
analyzing a phenomenon, such as music, it is
usually a good idea to start with the simplest
possible form of the phenomenon, gain some un-
derstanding of it, and then proceed to more com-
plicated forms of the phenomenon.

1.2.2 Trumpet Signal

The musical signal of a trumpet playing note B:

Figure 1.2: Trumpet playing note B

stands out: it is clearly periodic with a period
of about 0.0020 seconds (2.0 msec), just like the
pure tone signal. The period of the signal speci-
fies the note played, whatever the instrument.
This plot was generated in Matlab using

load trumpet.mat;
T=1linspace(0,32767/44100,32768) ;
subplot(211),plot(T(1:200),X(1:200))

To listen to the trumpet, run Matlab, down-
load the file trumpet.mat from the course web
site, copy it to the working directory and type

load trumpet.mat;soundsc(X,44100)

Although the trumpet signal looks compli-
cated, we will see in Chapter 3 that it is actually
well-approximated by the sum of nine sinusoids
at frequencies that are multiples of 494 Hertz.
This makes it easy to analyze and to synthesize.

1.3 Sinusoidal Signals

It is already clear that sinusoids will play a cen-
tral role in the study of musical signals. The
basic form of a sinusoidal signal is

x(t) = Acos(2m ft + 0) (1.1)
where we define the following constants:
e A=amplitude=the maximum value of z(t);
e f=frequency in Hertz of z(t);
e O=phase (shift) in radians of x(¢);

o P= %:period in seconds of z(t);

o 2(t) = z(t + P) for all times .



1.4. SAMPLING SIGNALS

The period of any signal is the amount of time
P before it repeats. If the signal is not periodic,
then the period P — oco. The musical signal
generated by a musical instrument playing
a single note indefinitely is periodic.

The sinusoid z(t) is periodic with the period
P = % since (using fP =1)
Acos(2m

c(t+T) = f(t+P) +6)

(
Acos(2rft + 6+ 2nfP)
Acos(2mft + 6 + 2m)
= Acos2nft+0) = z(t). (1.2)

This is why we need the 27 multiplying f.
The phase shift 8 can be interpreted as a time
delay (shift to the right) of —% since

Acos(2mft + 0) = Acos (27rf [t + %})
However, we will not spend any more time on
phase shifts since a sinusoid delayed by a small
amount of time sounds just like the same sinu-
soid without the delay. Phase shift is important
when adding sinusoids at the same frequency,
but not when adding sinusoids at different fre-
quencies. Phase shift affects x(t) greatly, but
not how the human ear perceives it, as you will
discover in Chapter 3 (some music scientists dis-
agree; they think humans can “hear phase”).

1.4 Sampling Signals

Musical signals are inherently functions x(t) of
continuous time ¢, where t is a member of the
set of real numbers. This makes them unsuit-
able for processing on digital computers (analog
computers are hard to find outside museums).
So it is necessary to convert musical signals into

sequences of numbers that can be stored and pro-
cessed on computers. This is done by sampling.
To sample a signal x(t), we simply take its
values at times ¢ that are integer multiples g, of
where S is the sampling
rate in gg‘g{% and n is an integer. The result
is a sequence of numbers, which we label x[n].
This sequence of numbers x[n] is what we store
and process on a digital computer.
You can think of the physical act of sampling
a continuous-time voltage signal z(t) as closing
a switch for an instant every % seconds, or at
a rate of S times per second, and storing those
values of z(t). Or you can think of the physical
act of sampling as multiplying z(¢) by a train of
very narrow pulses separated by % seconds. The
pulse at time ¢ = ¢ is multiplied by z(%g). All
other values of z(t) are multiplied by zero. The
result of this multiplication is a train of pulses
of separated by % seconds, where the height of
the n'" pulse is z(%) = z[n).
Let the sinusoid z(t) = cos(271000¢) be sam-
pled at 8000 gégg{fg The result is

zln] = = (t: ﬁ)

n
COS< T 0008000)

B (2 1000)
— COS 7T7’L8000

= cos([r/4]n).

The sequence of numbers x[n] is

some small number %,

(1.3)

n |...]0] 1 [2] 3 [4
Xm] | (1710|711

The act of sampling this sinusoidal signal is
illustrated in Figure 1.3. The heights of the cir-
cles indicate the values of z[n], and the stems
connect them to the times ¢ = 5 at which they
are sampled. Only heights and times are known.



6CHAPTER 1. INTRODUCTION TO MUSICAL SIGNALS AND TO ENGINEERING 100 TECHNICAL MA

Figure 1.3: Sampling a sinusoidal signal

This plot was generated in Matlab using

T1=linspace(0,0.005,1000);
X1=cos (2%pi*1000%T1) ;
subplot(211) ,plot(T1,X1)
hold on %0verlay two plots
T2=1inspace(0,0.005,41);
X2=cos (2%pi*1000%T2) ;
subplot(211),stem(T2,X2)

The number of points to use was computed
as (8000 gégg&g)(o.o% sec.)=40 samples. Since
both 0 and 0.005 seconds were plotted, we used
404+1=41 samples (try counting them yourself).

1.5 Reconstruction of Signals
from Their Samples

A major issue is how to reconstruct the
continuous-time signal z(t) from its samples
z[n]. How can we go from the sequence of num-
bers z[n] = {...1,.71,0,—.71,—1...} back to
x(t) = cos(2w1000¢)? We can try “connecting
the dots” with straight lines; see Figure 1.4.
This operation is called linear interpolation.
That does not look very much like a sinusoid!
This plot was generated in Matlab using

Figure 1.4: Linear interpolation of a 1000 Hertz

sinusoid sampled at 8000%.

T=linspace(0,0.005,41);
X=cos(2*pi*1000%T) ;
subplot(211),plot(T,X)

Matlab’s plot “connects the dots” with
straight lines, i.e., performs linear interpolation.

If we sample the sinusoid faster, at
40000 gég/g{;g, then linear interpolation gives

Figure 1.5: Linear interpolation of a 1000 Hertz

: : SAMPLE
sinusoid sampled at 40000 35E0ND -

Figure 1.5 does look more like a sinusoid.

The number of points to use was computed as
(40000S8MELE ) (0.005 sec.)=200 samples. Since
both 0 and 0.005 seconds were plotted, we used
2004-1=201 samples, making a smooth curve.



1.6. TWO USEFUL TRIG IDENTITIES

In fact, in Chapter 3 we will derive a re-
markable theorem called the sampling theorem.
This theorem states that if the sampling rate
S gg‘g{&\%g exceeds double the maximum fre-
quency of the signal z(t) (which we will define
in Chapter 3), then z(t) can be reconstructed
exactly from its samples z[n]|! Here, as long as
we know that the maximum frequency of the si-
nusoid is 1000 Hertz, then sampling faster than
just 2000 gég&%g allows z(t) to be reconstructed
from its samples x[n]. This will not be done by

“connecting the dots” with straight lines!

1.6 Two Useful Trig Identities

Finally, we derive two trig identities that we will
use over and over in this course. These are the
only trig identities we will need!

Recall cosine addition and subtraction laws

cos(X +Y) = cos(X)cos(Y) — sin(X)sin(Y)

cos(X —=Y) = cos(X)cos(Y) + sin(X)sin(Y).

Adding these gives

cos(X +Y) 4+ cos(X —Y) =2cos(X) cos(Y).
(1.4)
This identity allows us to convert the product of
two cosines into the sum of two cosines. We will
use this formula extensively.

The other trig identity is obtained by setting
X =2nf and Y = 0 in the cosine subtraction
formula and then multiplying by A. This gives
Acos(2mft —6) = Acos(2nft)cos(d) (1.5)

+  Asin(27 ft)sin(6)
= Ccos(2nft) + Bsin(2rw ft)
where B and C' are defined as
B = Asin(0)
C = Acos(6). (1.6)

From the following picture, it is clear that
A = VB2+(C?

f = arctan[B/C]. (1.7)

“Arctan” is the arctangent or inverse tangent.

A f B = Asin(6)

C = Acos(0)

As an example, this identity states that
5cos(2m ft)+12sin(27 ft) = 13 cos(2m ft—arctan[2.4]).

since v/52 + 122 = 13 and % = 2.4. Note the
sign of the phase is negative. Also note that if
C < 0 add 180° to the phase, since the output
of the arctan function is restricted to 8] < 90°.

To see why we need this, this formula gives
—cos(27 ft) = cos(2m ft 4+ 0) unless we add 180°
to the phase since C' = —1 < 0.

This formula shows that a cosine with a phase
shift is equal to the sum of a pure sine and a
pure cosine, all at the same frequencies. It will
prove useful in Chapter 3.



Chapter 2

Computing and Interpreting the
Frequencies of a Sampled Sinusoid

2.1 Overview

In this chapter we lay the groundwork necessary
to compute and interpret the frequencies present
in the sampled tonal version of “The Victors.”
This includes both computation of frequencies,
and interpretation of the frequencies computed.

1. We will derive a simple digital signal pro-
cessing (DSP) algorithm for computing the
frequency of a sinusoid from three consecu-
tive samples of the sampled sinusoid;

2. We will examine the issues in the implemen-
tation of this simple algorithm (formula);

3. We will derive the concepts of log-log and
semi-log plots for interpretation of data.
These will be useful in many fields of en-
gineering, not just music signal processing;

4. We will see how missing data values can be
discerned and computed. This will allow us
to infer the existence of accidental (sharp
and flat) notes, even though they are not
present in “The Victors.”

2.2 Computing Frequency of a
Sinusoid from its Samples

2.2.1 Derivation of the Formula

We are given samples z[n] = z(t = %) of a

continuous-time sinusoid sampled at S g%gg{;g
We do not know the frequency, amplitude, or

phase of the sinusoid. All we know is:

e z(t) is a sinusoid; and

e Its frequency f < gzhalf sampling rate.

The latter condition is the sampling theorem
requirement that we sample faster than twice
the maximum (here, the only) frequency of z(t).
Here we will get a first glimpse of where that
condition comes from, and why we need it.

Since z(t) is a sinusoid, we know that its sam-
ples z[n] are the sequence of numbers

(-3

= Acos <27rf +¢9)

z[n] =

= Acos <27r n+ 9) (2.1)



2.2. COMPUTING FREQUENCY OF A SINUSOID FROM ITS SAMPLES 9

Replacing n with n + 1 throughout gives

xz[n + 1]

A cos <27T£(n +1)+ 9)

A cos 27Tin + 6+ 27ri

S S
—— =

X Y
Acos(X +Y).

Replacing n with n — 1 throughout gives

x[n — 1]

A cos <27T£(n -1)+ 9)

A cos 277%71 + 60— 27ri

%/_/\E

X Y
Acos(X —Y).

(2.2)

(2.3)

Now substitute the expressions defined above:

o X =

27rén +fandY = 27%

into the trig identity (1.4) from Chapter 1

2cos(X)cos(Y) =cos(X +Y) +cos(X —Y).

and then

_|_

Looking at each term, we see this becomes

multiply by A. This gives

24 cos (27 Ln + ) cos (274
Acos (2mh(n +1) +0)
Acos (2f(n —1) +0).

2x[n] cos <27ri> =z[n+ 1]+ z[n — 1]

S

which can be rearranged into the formula

f

= %arecos [73”[”%}5%[”_”}

(2.4)

(2.5)

(2.6)

where “arccos” is the arccosine or inverse cosine.

This is clearly a formula for computing the fre-
quency of a sinusoid from any three consecutive
samples {x[n—1], z[n], z[n+1]} and the sampling

SAMPLE .
rate S3pconp used to obtain those samples.

2.2.2 Example Use of the Formula

Let us use this formula on the sampled sinusoid
in Chapter 1. Recall that sampling a sinusoid at
S = 8000SAMPLE ogylted in

SECOND
n |...]0] 1 [2] 3 [4
xm] | (1710|711

Setting n = 1 in the formula gives

1+1 1-1
f = ——arccos [:):[ S ]]
27 221
= o 2(0.71)
= 8oooarccos[0.71]
™
8000
— 22T 1000 Hertz. (2.7)
2 4

which was the frequency of the sinusoid.

You will use this formula in Lab #2 to com-
pute the frequencies of the tones in a tonal ver-
sion of “The Victors.”

2.2.3 Problems with the Formula

One obvious problem arises if we set n = 2 in
the formula. This gives

B :c[2+1]+:c[2—1]]
f = 5, ATCCOS [ 22
71 —.71
= %arccos [%} (2.8)
We obtain the indeterminate form %! In real

life we would seldom be so unlucky as to sample



10CHAPTER 2. COMPUTING AND INTERPRETING THE FREQUENCIES OF A SAMPLED SINUSOID

the sinusoid at a time at which it is identically
zero. However, if {z[n — 1], z[n], z[n + 1]} are all
very small, numerical issues (roundoff) can cause
problems in computing the arccosine.

Of course, in real life we would have far more
than three samples available. Then we use the
formula on each triplet {z[n — 1], z[n|, z[n + 1]}
of samples. Most of the computed frequencies
will be identical; the few that are different due
to roundoff error can be discarded. Of course, we
should ensure that roundoff error is the cause of
the different values, called outliers.

Another issue arises if the sampling rate S
is too small, specifically, if S < 2f. To see
why this is a problem, suppose we sample the
7000 Hertz sinusoid y(t)=cos(277000¢) at the
rate S :8000%. The samples are sequence

(1= 00
Y\"~ %000

n
p— 2 [
cos ( W?OOOSOOO)
= cos (27m@)
N 8000

= cos([Tm/4]n).

yln| =

(2.9)

The sequence of numbers y[n] is

n .10 1 (2 3 4
yio] | ... 1].71]0]|-71]-1

But these are the same numbers as in the pre-
vious example for f=1000 Hertz! Indeed,

x(t) = cos(2m1000t) # y(t) = cos(2w7000¢)
z[n] = cos([r/4]n) = y[n] = cos([7m/4]n)
since sampled signal y[n| can be rewritten as
yln] = cos([7m/4]n)
= cos([87/4]n — [7/4]n)
= cos(—[n/4]n) = cos([r/4]n)
]

= z[n

(2.10)

since cos(X) is periodic with period 27 and even.

So a 7000 Hertz cosine and a 1000 Hertz cosine
are identical after sampling at 8000%. The
formula assumes that the actual cosine is at 1000
Hertz, the frequency which is less than half the
sampling rate. So it will give the wrong answer
if this isn’t true, ie., f > S/2.

A more subtle issue occurs if the sampling rate
is too large! Then z[n| is slowly varying, so that
z[n —1] = z[n] =~ z[n + 1] and %ﬂ”_” ~ 1.
The formula requires computation of[ the arcco-
sine of a number near one, and again roundoff
error can cause problems. To see why, examine

a zoom of cos(X) for tiny X:

1

0.9998 -

0.9996

0.9994

0.9992 -

0.999

0.9988

0.0986 L L L L L L L L L
o 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Figure 2.1: cos(X) for tiny values of X

Computing the arccosine of 0.999 requires
solving cos(X)=0.999. It can be seen that a
small change in 0.999 will cause a big change in
X=arccos(0.999), and therefore in the computed
frequency f. A smaller sampling rate avoids this.

Finally, the formula was derived under the as-
sumption that z(t) is a pure sinusoid. If there is
any noise added to x(t), this is no longer true,
and the formula breaks down (in fact, it breaks
down quite badly!). In Chapter 3 we will learn
a much better way than using this formula to
compute frequencies from samples of signals.



2.4. INTERPRETING DATA 11

2.3 Tuning a Piano This suggests a procedure for tuning a piano,
if we have a tuning fork or sinewave generator

As an aside, we note that trig identity (1.4) that generates a tone at the desired frequency:
shows how to tune a piano.

Suppose we desire to tune a specific piano key
to note A (440 Hertz). The piano key is actually key simultaneously;
tuned to 442 Hertz. How can we correct the
piano key to 440 Hertz if we don’t know any of:

e Strike the tuning fork and mistuned piano

e The result will sound like a tone with a
slowly-varying amplitude;

e What note A sounds like (we are tone-deaf); . ) ,
e Tighten or loosen the piano string so that

e We want to tune the piano to 440 Hertz; the variation gets slower;

e The piano is actually tuned to 442 Hertz; e When the variation has stopped, the piano

. i 1 .
e What “Hertz” even means or what trig is. is correctly tuned

We can derive a solution to this as follows. o Try yoursel-f: T=linspace(0,5., 100000) ;
Set X=2m441t and Y =2rt in (1.4). This gives X=cos (2+pi*440+T)+cos (2+pi*442+T) ;
soundsc (X,20000)

cos(2m440t)+cos(2m442t)=2 cos(2nt) cos(2m441t).
e You can do this even if you are tone-deaf!

The left side is the sum of the desired signal
(the correctly tuned piano) and the actual signal “You can Tune a Piano, But You Can’t Tuna
(the actual mistuned piano). The right side is a Fish” (an early REO Speedwagon album).
sinusoid at the frequency halfway between the

desired and actual frequencies, multiplied by the 9 4 Interpreting Data
slowly-time-varying amplitude 2 cos(2mt):

2.4.1 Problem Statement

Suppose we have run an experiment and we ob-
tained the following data:

n |[1[2]3]4]5
x[n] |24 |8|16 |32

Our goal is to interpret this data-what rule
or formula is generating it? (Likely you already
know the answer, but this is a deliberately simple
example, so that you can follow it easily.)

Figure 2.2: cos(2w440t) + cos(2mw442t). The first thing to do is plot the data, since
the human mind interprets pictures well, finding

The variation of 441 Hertz shows up as solid patterns in them. Drawing a picture is a good
black since the plot lines are all squeezed to- first step in many mathematical, scientific or en-
gether. But the amplitude is varying slowly. gineering problems. The result is Figure 2.3.

0 02 04 06 08 1 12 14 16 18 2



12CHAPTER 2.

40

COMPUTING AND INTERPRETING THE FREQUENCIES OF A SAMPLED SINUSOID

30

20F

10f i

+

15r

05

0” | | | | | | |
1 15 2 2.5 3 35 4 45 5

Figure 2.3: Plot of x[n] vs. n.

This plot was generated in Matlab using

X=[2 4 8 16 32];
subplot(211),plot(X,’+’),grid on

This looks like a parabolic or exponential
curve, but which is it? Is it a quadratic, cu-
bic, or something in between? Is the base of the
exponential two, three, or something else? How
can we answer all of these questions quickly?

2.4.2 Semi-Log Plots

Suppose the formula is exponential, so that
x[n] = ba™ for some constants a and b. Taking
the logarithm (base 10) of this equation gives

ba" (2.11)
nlogg(a) 4 logyo(b)-

zln] =
logig(z[n]) =

This means that if we plot log;y(x[n]) vs. n, we
will get a straight line with slope log;y(a) and
y-intercept (where the line crosses the vertical
n = 0 axis) log;y(b). So plotting log,q(z[n]) vs.
n is a quick way to see whether the formula is
exponential, and if it is to find the values of a
and b. This is called a semi-log plot since we
only take the logarithm of x[n], not of n.
Figure 2.4 is a plot of log,o(z[n]) vs. n:

0 1 1 1 1 1 1 1
1 15 2 25 3 35 4 45 5

Figure 2.4: Semi-log plot of x[n] vs n.

This plot was generated in Matlab using

X=[2 4 8 16 32];
plot(logl10(X),’+’),grid on

e This is clearly a straight line, so the formula
is exponential;

e The slope is %:O.S.

e Hence log;y(a) = 0.3 — a = 10°3 = 2.

e Note the y-intercept is mnot 0.3, since
0.3=log;(z[1]), not log;o(x[0]). Extend the
line to n=0. Then the y-intercept is zero.

e Since we know the formula is z[n] = 2", it
is easier to skip the y-intercept and simply
pluginb:%zl.

e The formula is therefore z[n] = 1(2)".

2.4.3 Log-Log Plots

Suppose we run a different experiment and we
obtain the following data:

n [1|2(3]4]5
yin] | 1419|1625




2.4. INTERPRETING DATA 13

A plot of y[n] vs n looks very much like Fig. e The y-intercept is 0.0 (n=0 is in the plot);
2.3, so it is not shown. But a semi-log plot of
y[n] vs. n isn’t a straight line! What do we do? o Hence 0.0 = logyg(b), and b =10%7 = 1;
Suppose the formula is polynomial, so that
y[n] = bn® for some constants a and b. Taking
the logarithm (base 10) of this equation gives

e The formula is therefore y[n] = 1(n)*°.

2.4.4 Semi-Log and Log-Log Scales

yln] = bn? (212) We can save the trouble of computing and inter-
logi(y[n]) = alogig(n)+logiy(b). preting logarithms by plotting the data directly
using semi-log and log-log axis scales. Before cal-
culators were invented, it was a big time-saver to
be able to plot the data directly, without looking
up logarithms in a table (as I remember well).

This means that if we plot log;y(y[n]) vs.
logi(n) (not n), we will get a straight line with
slope a (not log;(a)) and y-intercept log;q(b).
So plotting logy(y[n]) vs. log;y(n) is a quick way
to see whether the formula is polynomial, and if
it is to find the values of a and b. This is called ¢
a log-log plot, since we take the logarithms of
both y[n] and n (two logarithms, not one).

Figure 2.5 is a plot of log;((y[n]) vs. logig(n): 10’

15 ]
]
lOD Il Il Il Il Il Il Il
+ 1 15 2 25 3 35 4 45 5

1 ¥
o5l + | Figure 2.6: Plot of x[n] vs n on Semi-Log Scale.
O 1 1 1 1 1 1

0 01 02 03 04 05 0.6 0.7 10°

Figure 2.5: Log-log plot of y[n] vs n.
10k

This plot was generated in Matlab using
N=[1:5];Y=[1 4 9 16 25]; 0

10

plot(logl0(N),logl0(Y),’+’),grid on 10’ 10!

e This is clearly a straight line, so the formula )
is polynomial, not exponential, in form; Figure 2.7: Plot of y[n] vs n on Log-Log Scale.

e The slope is (1):‘;:8:8:2.0. Hence a = 2.0; These plots were generated in Matlab using



14CHAPTER 2. COMPUTING AND INTERPRETING THE FREQUENCIES OF A SAMPLED SINUSOID

X=[2 4 8 16 32];

N=[1:5];Y=[1 4 9 16 25];
subplot(211),semilogy(X,’+’),grid on
subplot(211) ,loglog(N,Y),grid on

A straight line is used for the log-log plot since
it is too hard to see the crosses otherwise.
2.4.5 Missing Single Value

Now we run still another experiment and obtain
the following data:

[ xn] [2]4[8]32]64]128]

Note we do not specify the values of n. The
reason is that we don’t know them! All we
know is that the six values of n are a subset of
the seven values {1,2,3,4,5,6,7}, but we don’t
know which values! In other words, there is
a missing x[n], but we don’t know the missing
value or where it belongs! What can we do?

A semi-log plot of x[n] is illuminating:

25

15} S +

05r

Figure 2.8: Semi-Log Plot of x[n].

This plot was generated in Matlab using

X=[2 4 8 32 64 128];
plot(logl0(X),’+’),grid on

Note the following about this plot:

e The first three points lie on a straight line

with slopezo'g:?'?’ =0.3;

e The third and fourth points lie on a straight

: : _15-09 _ qa.
line with slope=-j=25= = 0.6;

e The last three points lie on a straight line

with slope= 2'(13:}1'5 =0.3;

e The second slope is exactly twice the first
and third slopes.

Of course, any two points lie on a straight line,
but the slope values cannot be coincidence.

If there were a missing value between the third
and fourth points, they would be twice as far
apart, and the slope of the line connecting them
would match the other two slopes. That is,

25

Z,

+

15} : 1

1r ¥
05} 1

0 | | | | |

1 2 3 4 5 6 7

Figure 2.9: Semi-Log Plot with Missing Value.

This plot was generated in Matlab using

X=[2 4 8 32 64 128];
N=[12 35 6 7];
plot(N,logl0(X),’+’),grid on

Figure 2.9 makes it clear that:
e The missing value is indeed at n = 4;
e The missing value is about log;o(z[4]) = 1.2;

e The missing value is then z[4] = 1012 = 16;



2.4. INTERPRETING DATA

e The formula is therefore z[n] = 1(2)".

We have discerned the existence, location, and
value of a missing data point!

2.4.6 Missing Multiple Values

Now we run one last experiment and obtain the
following data:

|yl [1]4]16]32] 128512 |

A semi-log plot of y[n] is illuminating:

Figure 2.10: Semi-Log Plot of y[n].

This plot was generated in Matlab using

Y=[1 4 16 32 128 512];
plot(logl10(Y),’+’),grid on

Note the following about this plot:

e The first three points lie on a straight line
with slope:% = 0.6;

e The third and fourth points lie on a straight

. . _15-12 _ qq.
line with slope=-3=2= = 0.3;

e The last three points lie on a straight line

: _27-15 _ ¢
with slope==¢=r2 = 0.6;

e The second slope is exactly half the first
and third slopes.

15

This is like the previous example, except that the
middle slope is half, not double, the first and
third slopes. This means that the only place
where there isn’t a missing value is between 16
and 32! Inserting gaps between all other pairs
of points except 16 and 32 gives Figure 2.11:

0 I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Figure 2.11: Semi-Log Plot with Missing Values.

This plot was generated in Matlab using

Y=[1 4 16 32 128 512];
N=[1 3 5 6 8 10];
plot(N,logl0(Y),’+’),grid on

The formula is y[n] = 2(2)". We have dis-
cerned the existence, locations, and values of
many missing data points!

In Lab #2 you will use this concept to infer the
existence of accidental notes (sharps and flats),
although they are not present in “The Victors.”



Chapter 3

Fourier Series and Musical Signals

3.1 Overview

In this chapter we introduce the concept of the
Fourier series expansion of a periodic signal. Any
real-world periodic signal can be written as a
sum of sinusoids whose frequencies (in Hertz) are
integer multiples of the reciprocal of the period
(in seconds). The amplitudes and phases of the
sinusoids are all that is needed to specify the
Fourier series expansion.

Musical signals are a natural application of
Fourier series, since musical signals (specifically,
an instrument playing a specific note) are peri-
odic. The sinusoid with the same period as the
music signal is called the fundamental; it is the
pure tone that sounds most like the signal.

To obtain the richer sound of an instrument
playing a note, we add in harmonics (musicians
call them owvertones). Harmonics are sinusoids
at frequencies double, triple, etc. the frequency
of the fundamental. The amplitudes of the har-
monics determine the timbre (sound) of the in-
strument playing the note. The reason a violin
playing note B sounds different from a trumpet
playing note B is that the amplitudes of the har-
monics are different in the trumpet from the vi-
olin.

Why should you care about Fourier series?

1. The Fourier series representation of a musi-
cal signal is specified by only a few numbers
(the amplitudes and phases of the harmon-
ics, and the note);

2. Fourier series show that a continuous-time
signal can be reconstructed from its sam-
ples, provided the sampling rate exceeds
double the maximum frequency of the har-
monics (the sampling theorem);

3. Fourier series show how a noisy signal can
be filtered to remove almost all of the noise,
even if the noise drowns out the signal.

3.2 Fourier Series

We will make no attempt to prove the existence
of Fourier series. This topic is properly handled
in a graduate-level math course. There is quite
a history, as well as a lot of math, behind this
topic. But if we are willing to accept the ex-
istence of a Fourier series expansion of musical
signals, we can derive everything else we need.

3.2.1 Basics of Fourier Series

Let x(t) be a periodic real-world continuous-time
signal with period P, so that z(t) = z(t+ P) for

16



3.2. FOURIER SERIES

all times ¢t. Then z(t) can be written as a (usu-
ally infinite) sum of sinusoids with frequencies
that are integer multiples of % Hertz. This is
called a Fourier series. We can write

k
2r—t — .
(ﬂpt (9)

There are periodic functions z(t) that cannot be
so expanded, but they have bizarre properties
and are of interest only to mathematicians.

In practice, the infinite series is truncated to
a finite number K of terms, giving a finite
Fourier series. Finite Fourier series still give
good approximations to most periodic signals.
The larger K is, the better the approximation.

A simple example of a finite Fourier series is

x(t) = i Ck, Cos (3.1)

k=0

o) = cos(2;r[1]t) N cos(2§[3]t) cos(227;[5]t)
cos(2m[7]t)  cos(27m[9]t)
+ 19 + 31 . (3.2)

0 02

04 06

Figure 3.1: Finite Fourier Series Approximation
of a Triangle Wave with Period=1 second.
This plot was generated in Matlab using

T=linspace(0,2,1000);
X=zeros(1,1000) ;for K=1:2:9;

17

X=X+cos (2*pi*K*T) /K/K;end
subplot(211),plot(T,X)

x(t) is clearly a good approximation to a tri-
angle wave with period=1, except for the slight
rounding at the corners of the triangles. Note
that including more terms in the Fourier series
would sharpen these rounded corners.

To compute Fourier series coefficients such as

%, %, %, 4%, % ...} analytically, you must take a
course in Fourier analysis such as EECS 216. To
compute them numerically, read on. ..

3.2.2 Fourier Series of a Trumpet

Since instruments playing musical notes create
periodic signals, musical signals have Fourier se-
ries expansions. The Fourier series can be trun-
cated to a finite number of terms and still do a
good job of representing the musical signal. For
example, recall the trumpet signal in Chapter 1:

Figure 3.2: Actual Trumpet Signal.

The trumpet is playing note B. The signal is
clearly periodic with a period of about 0.0020
seconds. In fact, we know from Lab #2 that
note B has a frequency of 494 Hertz, so the pe-
riod of note B is P = ﬁ seconds. Therefore,
the trumpet signal can be expanded as a Fourier



18 CHAPTER 3. FOURIER SERIES AND MUSICAL SIGNALS

series which is a sum of sinusoids at frequencies C=[.1155 .3417 .1789 .1232 .0678];

of {494,2(494),3(494) ...} Hertz. Using values C=[C .0473 .0260 .0045 .0020];

TH=[-2.13 1.67 -2.545 .661 -2.039];

TH=[TH 2.16 -1.0467 1.858 -2.39];

X=Cx*cos (2%pi*F*[1:9] >*T-TH’*ones (1,44100)) ;
subplot(211) ,plot(T(1:200),X(1:200))

axis tight,grid on,soundsc(X,44100)

co = 0.0000 | 8y = +0.0000 radians
c1 = 0.1155 | 017 = —2.1299 radians
co = 0.3417 | 05 = +1.6727 radians
c3 = 0.1789 | 3 = —2.5454 radians
¢y = 0.1232 | 4 = +0.6607 radians

cs = 0.0678 | 05 = —2.0390 radians e The plots of the actual and synthetic trum-
ce = 0.0473 | 05 = +2.1597 radians pet signals are quite similar to each other;
cr = 0.0260 | #7 = —1.0467 radians
cs = 0.0045 | fs = +1.8581 radians e The actual and synthetic trumpet signals
co = 0.0020 | B9 = —2.3925 radians sound almost (but not exactly) the same;
the nine-term finite Fourier series approximation e There is no DC (zero frequency) term.
to the trumpet signal is plotted in Figure 3.3: This makes sense: no one could hear it!
z(t) = ¢y +c1cos(2m(1)494t — 6,) e The timbre (sound) of the trumpet is pro-
ot ONDANTENTAL duced by the amplitudes {c;}. The funda-
+ cocos(2m(2)494t — f) + . .. mental alone would be just a pure 494 Hertz

tone; the overtones (harmonics) create the

HARMONIC .
richer sound of the trumpet;

9
- ch cos(2m(k)494t — Or).  (3.3) e The synthetic trumpet signal has no har-
k=0 monics at 4940 Hertz or above, since these
We will compute ¢ and 6y in Section 3.4.2. are very small in the actual trumpet signal;

e If the trumpet were playing a different note,
494 would be replaced by the appropriate
frequency (in Hertz) given in the following
table. In a different octave, all of these fre-
quencies would be multiplied or divided by
a power of two, depending on the octave.

e If we want to store the synthetic trumpet
signal, we can store 44100 samples (num-
bers) for every second of trumpet sound, or
we can store the 18 values of ¢; and 6, and
generate the trumpet signal at any desired
note by plugging in the frequency from the
following table. Which method will allow

T=linspace(0,1,44100) ;F=494; you to store more tunes on your iPod?

Figure 3.3: Synthetic Trumpet Signal with 6.

This plot was generated in Matlab using



3.3. SAMPLING THEOREM

Note: | A |A# | B C |[C#| D

Hertz: | 440 | 466 | 494 | 523 | 554 | 587
Note: | D# | E F |F# | G | G#
Hertz: | 622 | 659 | 698 | 740 | 784 | 830

In fact, we may omit the phases 0 in the syn-
thetic trumpet signal without affecting its sound,
although the plot of the signal looks quite differ-
ent. Using 6 = 0 in the Fourier series gives

08 1

06 4

04k : : : : : J

0.2 .

-0.2r A\ : A .
| | | | |

25 3 35 4 4.

x10°

o

0 05 1 15 2 5

Figure 3.4: Synthetic Trumpet Signal: 6;,=0.

But the synthetic trumpet with ;=0 sounds
just like the one with 6 # 0 (try it yourself).

3.2.3 Line Spectrum

Listing the ¢; in a table is not a good way to
specify the Fourier series. As noted in Chapter
2, humans think visually. So it makes sense to
make a bar graph of the ¢, against frequency %
This is called the line spectrum of the signal.

The line spectrum of the synthetic trumpet
signal is in Figure 3.5. Note that the amplitudes
¢, can be read off of the heights of the lines.

We will obtain this plot in Section 3.4.3. A
separate phase spectrum plot of the 6y vs. %
Hertz can also be made. However, since phase
cannot be heard, we will omit phase spectrum
plots in these notes.

19

035
03
0.25F
02r
0.15F
01r
0.05F

4000 4500 5000

0 500 1000 1500 2000 2500 3000 3500

0
Figure 3.5: Synthetic Trumpet Line Spectrum.

3.2.4 Another Form of Fourier Series

The above depiction of the Fourier series uses
cosines with phase shifts. Using the trig identity
(1.5), we can rewrite this using sines and cosines:

> k
xz(t)=co + Z cy, COS (27rﬁt — 0)

k=1
> k
xz(t) =ap + Z ay, cos (27rﬁt>
k=1
+ i by, sin (27r£t> (3.4)
k=1 P

where the coefficients are related by

ar = cpcos(fx)

by = cpsin(fy)

0 = arctan[by/ag] + 0 if ax >0

0 = arctan[by/ag] + 7 if ar <0 (3.5)

3.3 Sampling Theorem

We prove this remarkable result for periodic sig-
nals, but the period can be arbitrarily large, so
in practice it also applies to non-periodic signals.



20 CHAPTER 3.

This theorem was proved (using a different argu-
ment) by Claude Shannon (UM Class of 1936).
A bust of his head is on the left side of the Uni-
versity of Michigan North Campus Diag entrance
to the EECS Building.

3.3.1 Sampling Theorem: Derivation

e Let z(t) be a real-valued continuous-time
signal bandlimited to B Hertz. This
means that its largest frequency is B Hertz;

e Let z(t=%) be the sequence of numbers ob-
tained by sampling z(t) at a sampling rate

SAMPLE i 1 ‘
of Sspconn, that is, every < seconds;

e Then z(t) can be uniquely reconstructed

from its samples z (%) if

The minimum sampling rate 2B is called the
Nyquist sampling rate. Although the actual
units are 2B géggﬁg , this is usually abbreviated
to 2B “Hertz,” which has the same dimensions.

All of digital signal processing exists because
of this theorem. It means that we can replace
analog signal processing, which requires induc-
tors, resistor and capacitors, with digital pro-
cessing on computers and microprocessors.

Why is there any reason to think a signal can
be reconstructed from its samples? Let x(t) be

a real-valued continuous-time signal that is

e Periodic with period P seconds;

e Bandlimited to B = % Hertz;

L SAMPLE
P SECOND "

e Sampled at S =

Since z(t) is periodic, it can be written as a sum
of sinusoids at frequencies k/P for k =0,1,2....
Since z(t) is bandlimited, it has a maximum fre-
quency which must be K/P for some integer K.

FOURIER SERIES AND MUSICAL SIGNALS

So the Fourier series expansion of z(t) is finite:

K
kt . kt
x(t) = ao+z {ak cos (2775) + by, sin (27TF>]

k=1
(3.6)
So z(t) is completely characterized by 2K+1
numbers {ag,a ...ax,b1...bx}. Now if we can
somehow obtain these 2K+1 numbers, we know
x(t) for all ¢, since we have a formula for x(t).
But how can we obtain them?
An idea: sample the signal! Sampling the

signal at L%%RR/IIPOLI? is the same as sampling it

L SAMPLE /P SECOND __ L SAMPLE =S SAMPLE
PERIOD PERIOD = P SECOND ™~ *~ SECOND"

Setting t = 5 where n = 0,1... L-1 gives the
L linear equations in 2K+1 unknowns

K
x (%) = a0+k2::1 [ak cos <27T]]z—7‘;> + by, sin (277112—7;

(3.7)
Note that PS is dimensionless. This system of
linear equations has a unique solution if L > 2K:

L>2K — L/P>2K/P—S8>2B. (38)

That is, the sampling rate must exceed the band-
width. But note that the period P has cancelled,
so this result is valid for any P. We can set
P = 10'9 geconds and the result still holds!
This shows why exact recovery of a bandlimited
signal from its samples is possible.

3.3.2 Sampling Theorem: Example

A periodic signal z(t) with period=0.1 second
is bandlimited to 20 Hertz. It is sampled at

50%{;‘8{%, i.e., every %:.02 seconds, resulting
in the following samples:

t | .00 .02 .04 .06 .08

x| 11. | 4.014 | 4.739 | 3.115 | -2.868




3.4. FORMULAE FOR Ax AND Bk

Since xz(t) has period=0.1 seconds, we have
z(.10) = x(.00), z(.12) = x(.02), etc. The goal
is to reconstruct z(t) from its samples.

SOLUTION:

e Since the period=0.1 second, the harmonics
have frequencies %lek Hertz.

e Since the maximum frequency is 20 Hertz,
there are only two (K = 2) harmonics.

The Fourier series expansion of x(t) is
x(t) = bysin(2w10t) + by sin(2720¢)
+ap + ajcos(2mw10t) + ag cos(2720t)(3.9)

Setting t = {.00,.02, .04, .06, .08} gives five linear
equations in five unknowns {ag, a1, ag, b1, bz }:

x(.00) = by sin(27(.0)) + by sin(27(.0))
+ap + ajcos(2m(.0)) + ag cos(2m(.0)).
x(.02) = bysin(27(.2)) + by sin(27(.4))
+ap + ajcos(2m(.2)) + ag cos(2mw(.4)).
x(.04) = bysin(2w(.4)) + by sin(27(.8))
+ap + ajcos(2m(.4)) + ag cos(2m(.8)).
z(.06) = bysin(27(.6)) + besin(27(1.2))
+ag + ajcos(2m(.6)) + ag cos(27(1.2)).
z(.08) = bysin(27(.8)) + besin(27(1.6))
+ag + ajcos(2m(.8)) + ag cos(27(1.6)).

Setting t=.10 gives the same equation as t=.00.

Inserting the samples of z(t) and computing
the various sines and cosines gives the five linear
equations in five unknowns

11. = ap + a1 + as. (3.10)

21
4014 = (.9511)b; + (.5878)by

+ag + (.3090)a; — (.8090)as. (3.11)
4739 = +(.5878)b; — (.9511)by

+ag + —(.8090)as + (0.3090)as.(3.12)
3.115 = —(.5878)by + (.9511)by

tag + —(.8090)a; + (.3090)asy. (3.13)
—2.868 = —(.9511)b; — (.5878)by

tag + +(.3090)a; — (.8090)ay.(3.14)

Note how the same four numbers keep appearing.
To solve five linear equations in five unknowns,
we run the following Matlab program:

B=[11.,4.014,4.739,3.115,-2.868];
d=.3090;e=.5878;£=.8090;g=.9511;
A=[0 011 1;gel1d-£f];

A=[A;e -g 1 -f d;-e g 1 -f d];
A=[A;-g -e 1 d -f];A\B’

The answer is 3,1,4,2,5 which are
{b1,b2,a0,a1,a2} in that order. So the unique

x(t) satisfying all the conditions given above is:

xz(t) = 3sin(2710t) + sin(2720¢)
+4 + 2cos(2710t) + 5cos(2m20t)(3.15)

This was a lot of computation! Isn’t there an
easier way to do this? Read on...

3.4 Formulae for a; and b,

Even apart from the trouble of setting up the
linear system of equations, solving them figures
to be time-consuming. Fortunately, we can solve
them in closed form (i.e., there are explicit for-
mulae for the solution, into which we can plug).



22

3.4.1 Formulae for g, and b,
Let z(t) have the following properties:

e Periodic with period=P seconds;

Sampled at S gg‘g{% so that

e N = PS is an integer, resulting in

Samples z[n] = x(n/S) forn =0,1... N—1.

Note z[N]=2(&)=2(L£2)=2(P)=2(0)=z[0]
so x[n] is periodic with period=N.

Then we have these formulae:

1 V-1
apg = — x[n
N2 ]
g N-1
ar = — x[n] cos(2mnk/N)
N n=0
2 N-1
by = — x[n]sin(2rnk/N). (3.16)
N n=0

These formulae are derived in an Appendix of
Lab #3. You are not responsible for this deriva-
tion! But do try working through it, with a cup
of non-decaf coffee. It’s not as bad as it looks.

Note that all the Fourier series coefficients
{ag, by, ci } are at frequency (in Hertz)
k kS

f==

5= (3.17)

Sampling N times in a period P makes the sam-
pling rate S :%, equivalent to N=PS.

3.4.2 Formulae for a; and b,: Example

Applying these to the example we just did gives

4(3.18)

CHAPTER 3.

FOURIER SERIES AND MUSICAL SIGNALS

M=

ay = % z[n]cos(2m(1n)/5) = 2.
n=0
9 4
az = ¢ Z x[n]cos(2m(2n)/5) = 5.
n=0
9 A
by = A Z z[n]sin(27(1)n/5) = 3.
n=0
9 A
a1 = ¢ Z z[n]sin(27(2)n/5) = 1.
n=0

That is certainly a lot easier than setting up and

solving the previous linear system of equations!
An even easier way to compute the {a;} and

{br} is to use Matlab’s £ft, which computes

N—
££t(X) = Y wfnle PRk =0,1... N - 1.
=0

[y

3

(3.19)
because this quantity can be computed very
quickly using the Fast Fourier Transform (FFT)
algorithm. You will learn about the FFT if you
take a DSP course in your junior or senior year.

To go from the output of £ft to {ax} and {by}
requires some attention. Proceed as follows:

e Form X=[x[0],x[1]...x[N-1]].
e Compute >>F=fft(X); in Matlab.
e qp=F(1)/N
e qp=2*real (F(k+1))/N for k > 1.
o bp=-2*imag(F(k+1))/N
o cp=2*abs(F(k+1))/N
e Op=angle(F(k+1))
For the example we just did, use:

X=[11. 4.014 4.739 3.115 -2.868];



3.5. NOISY PERIODIC SIGNALS
F=fft(X) ;A=2*real(F)/5;
B=-2*ximag(F)/5;C=2*abs (F)/5;
The result of this program is:

A=[8 2 5 5 2]
B=[0 3 1 -1 -3]
C=[8 3.6 5.1 5.1 3.6]

I used this to get the ¢; and 6 values in the
table for the trumpet signal. Note the following:

e A(1) is double ag, so aO:%: .
e A(2) and A(3) are a;=2 and as=>.
e B(1) is zero, as it should (bp=0 always).

e B(2) and B(3) are b;=3 and by=1.

e The second halves of A,B,C are the mirror
images of the first halves of A,B,C.

e IGNORE THE SECOND HALF OF
THE OUTPUT OF f£ft!

e For music signals, ag = 0 anyway, so don’t
worry about A(1) being double ag.

Note there is an issue of indexing;:

Indexing of {ay, by, cx} starts at k=0.

Indexing of Matlab’s A,B,C starts at k=1.

So ap=2*real (F(k+1)) /N, etc.

e To compute the frequency f corresponding
to a peak in abs(fft (X)) at Matlab index

f=&-1%|

K, use

23

3.4.3 Computing Line Spectra

To compute the line spectrum of a signal
using fft, proceed as follows:

The signal has been sampled at Sgg‘g%,
resulting in samples stored in Matlab vector
X={z[n],n=0... N — 1}. Now do this:

N=length(X) ;F=[0:N-1]1*S/N;
FX=2*xabs (fft (X)) /N;
plot (F(1:N/2) ,FX(1:N/2))

I used this to plot the line spectrum of the
synthetic trumpet signal shown in Figure 3.5:

%Generate synthetic trumpet:
T=linspace(0,1,44100) ;F=494;
C=[.1155 .3417 .1789 .1232 .0678];
C=[C .0473 .0260 .0045 .0020];
X=Cxcos (2*pixF*[1:9] *%T);
%Compute its line spectrum:
F=[0:43999]%44100/44100;
FX=2*abs (fft (X)) /44100;

plot (F(1:5000) ,FX(1:5000))

3.5 Noisy Periodic Signals

Consider the noisy trumpet signal formed by
adding noise to the synthetic trumpet signal:

Figure 3.6: Noisy Synthetic Trumpet Signal.



24 CHAPTER 3.

It is hard to tell from the plot that there is
anything but noise! Listen to the signal: the
trumpet is only faintly audible over the noise.

Now look at the spectrum of the noisy signal:

035
03 b
0.25F b
02r b
0.15f b
01r b

005 b

L i

2500 3000 3500

0 500 1000 1500 2000 4000 4500 5000

Figure 3.7: Line Spectrum of Noisy Trumpet.

The trumpet harmonics stick up over the
noise spectrum like dandelions sticking up over
a grassy lawn. It is clear that we can elimi-
nate most of the noise by simply setting all of
the spectrum values that are not trumpet signal
harmonics to zero. An easy way to do this is to
threshold the spectrum values by setting them
to zero unless they are large; see Figure 3.8.

035
03 b
0.25F b
02r b
0.15f b
01r b
005

2500 3000 3500 4000 4500

0 I !
0 500 1000 1500 2000

5000
Figure 3.8: Cleaned-Up Line Spectrum.

Note we have not completely eliminated the
noise, since harmonics themselves have noise

FOURIER SERIES AND MUSICAL SIGNALS

added to them. Also, the smallest two harmonics
were thresholded to zero, since they are smaller
than most of the noise and are now drowned in
noise. There is nothing we can do about that.

But most of the noise has been eliminated, us-
ing the fact that the synthetic trumpet spectrum
is zero except at the frequencies kP Hertz.

We could read off the ¢ and 6, from the out-
put of £ft and plug them into the Fourier series.
However, it is easier to use Matlab’s ifft, as
shown below. The result is Figure 3.9:

08

06

04r

02r

2 4 60 80 10 10 140 160 180 20
Figure 3.9: Cleaned-Up Noisy Trumpet.

We have eliminated most of the noise. And
listening to the cleaned-up signal, almost all of
the noise is gone! This is a simple example of
filtering a noisy signal: We allow only certain
frequencies to go through the filter, and we elim-
inate (filter out) all of the other frequencies.

These plots were all generated using this:

%Generate synthetic trumpet:
T=linspace(0,1,44100) ;F=494;
C=[.1155 .3417 .1789 .1232 .0678];
C=[C .0473 .0260 .0045 .0020];
X=Cx*cos (2*pixF*[1:9] *%T) ;

%Add noise to it:
Y=X+0.8*randn(1,44100);

%Compute spectra:



3.6. LOW-PASS FILTERING

F=[0:43999]*%44100/44100;

FY=2*xabs (fft(Y))/44100;
figure,plot(T(1:200),Y(1:200))
figure,plot(F(1:5000) ,FY(1:5000))
%Threshold noisy spectrum:

%#Use 0.025 since it works.
FZ=FY;FZ(abs(FZ)<0.025)=0;
Z=44100/2*real (ifft(FZ));
figure,plot(T(1:200),Z(1:200))
figure,plot(F(1:5000) ,FZ(1:5000))

3.6 Low-Pass Filtering

3.6.1 Basic Concept of Filtering

A more general form of filtering to reduce noise
is low-pass filtering. The idea behind low-pass
filtering is that many real-world signals consist
primarily of low frequencies, while noise consists
of low and high frequencies. So if we simply
eliminate the high frequencies in a noisy signal,
we will be eliminating mostly noise. Keeping or
passing the low frequencies will preserve most of
the signal, while also keeping some of the noise.

Low-pass filtering shows where the term “fil-
tering” came from: passing small particles (fre-
quencies) while stopping large particles (frequen-
cies) is what a paper filter does. It does not work
as well as filtering periodic signals, since now we
know much less about the signal, and so we need
to pass all of the low frequencies, not just the fre-
quencies of the individual harmonics.

The following example shows how to eliminate
frequencies above a cutoff frequency F' Hertz:

3.6.2 Low-Pass Filtering Example

e A one-Hertz sinusoid has noise added to it.

= 1000 SAMPLE

e It is sampled at S SECOND -

25

e The snippet of noisy signal is 1 second long.

e Use a low-pass filter with cutoff F'=2 Hertz.

0 0.1 02 03 04 05 06 07 08 09

Figure 3.10: Noisy Sinusoidal Signal.

05F : — 1

_0‘5 [ 4

0 01 02 03 04 05 06 07 08 09

Figure 3.11: Low-Pass Filtered Sinusoid.

T=linspace(0,0.999,1000);

Y=cos (2*pi*T)+randn(1,1000) ;F=2;
S=1000;N=1length(Y) ;K=1+N*F/S;
plot(T,Y) %From F=(K-1)S/N
FY=fft (Y) ;FY(K:1002-K)=0;

Z=real (ifft (FY)) ;plot(T,Z)

This is an extreme example; we filter all fre-
quencies above one very-low-frequency sinusoid.
But the results are quite dramatic!



Chapter 4

Spectrogram: Time-Varying Spectra

4.1 Spectrogram: Overview

In Chapter 3 we assumed that the signal z(t)
was periodic, so that x(t) = z(t + P) for some P
and for all time ¢. That is:

e A signal is periodic only if it is periodic for
all time —o0 < t < o0.

e A signal is sinusoidal only if it is a sinusoid
for all time —oo < t < o0.

Of course, no signal, musical or otherwise, can
be known to have these properties (how can we
know what will happen in the infinite future?).

Musical signals (an instrument playing music)
actually have the form

> k
ZAk-lCOS (27‘('?154-91) g <t < Ty
1

k=1

> k
ZAkQCOS (27T—t+92> S <t < Ty
k=1 P

> k
ZAkg,COS (27T—t+93> o <t <Tj
k=1 L

(4.1)

That is, the line spectrum of z(t) changes ev-
ery so often. The study of signals whose spectra
changes with time is time-frequency analysis.

Fortunately, for music signal processing, we
have three huge advantages:

1. The durations T;11-T; are known. All
whole notes have the same duration; all half
notes have half the duration of whole notes,
etc. So we do not have the problem of seg-
menting the signal into different intervals;

2. The frequencies % can only take on twelve

different values in an octave. So we are only
choosing from several possible frequencies;

3. The phases can be assumed to be zero for
both musical synthesis and for the musical
transcription from the synthesizer output.

This section introduces the lowest-level form of
the spectrogram, which is a way of visualizing
the time-varying line spectrum of a signal. The
spectrogram, like log-log and semi-log plots, is a
means of interpreting data.

4.2 Spectrogram: Motivation

For example, we are given the signal in the file
victorstone.mat. All we know about it is that
it was sampled at 8192%. We wish to in-
tepret this signal-what’s going on in it?

26



4.3. SPECTROGRAM: EXAMPLE 27

035 load victorstone.mat

03t 1 LX=length(X) ;L=26;N=LX/L;
025} : : 1 XX=reshape (X’ ,N,L);

02k , FXX=abs(fft(XX));

FXX=FXX(5*N/6:N, :) ;
’ ’ subplot (211) ,imagesc (FXX)
oL “l | colormap(gray) ,axis off

J\‘ L

0151 b

0 1 | ) s s
0 100 200 300 400 500 600 700 800 900 4.3.2 Spectrogram: Discussion

e The height of each line is the frequency kP;

Figure 4.1: Line Spectrum of Unknown Signal.
in Hertz of that time segment of the signal,

Fig. 4.1 is its line spectrum-not much help! e The length of each line is the duration
This plot was generated in Matlab using T;+1-T; in seconds of that time segment;
load victorstone.mat e The brightness of each line is the ampli-
N=length(X) ;5=8192; tude Ag; of that time segment of the signal.
FX=2/N*abs (fft (X)) ;

F=[0:N-1]*S/N; The line heights are at the frequency values used
plot (F(1:8000) ,FX(1:8000)) by musical notes. The notes change as time pro-

gresses from left to right. You can now recognize
this as “The Victors.” Indeed, the spectrogram
can function as a crude type of musical notation,
indicating the pitch and duration of notes played
in succession. It could also function like a player
Fig. 4.2 is its spectrogram-more useful! piano roll, moving from right to left.

Details of the spectrogram for this signal:

4.3 Spectrogram: Example

4.3.1 Spectrogram: Presentation

_ SAMPLE
e X had length LX=78000. At 819255558D

this is a duration of 7881%020:9.5215 seconds.

e X was segmented into L=26 segments of
length N=3000 samples each. This is a du-

ration of %:0.3662 seconds.

e X was laid out by column in the array XX:

— X(1:3000) in the 1%¢ column of XX;
— X(3001:6000) in the 2"¢ column of XX;

Figure 4.2: Spectrogram of Unknown Signal.

This plot was generated in Matlab using — X(75001:78000) in the 26" column.



28 CHAPTER 4. SPECTROGRAM: TIME-VARYING SPECTRA

e fft when applied to an array computes the
FFT of each column of the array. So FXX
is the array of line spectra of each segment
of X, only laid out vertically, rather than
horizontally.

e Only the bottom sixth of FXX is kept. The
top half is the mirror image of the lower half,
so it should not be shown.

e imagesc displays this array as an image.
The brightness of each image pixel is FXX
at that frequency and time.

If you really want to be lazy, you can plot the
spectrogram of a signal consisting of L segments
of lengths N each, where N=length (X) /L, using

imagesc(abs (fft (reshape(X’,N,L))))
To get a 3-D plot of the spectrogram, use
waterfall (abs (fft (reshape(X’,N,L))))

This is snazzy-looking, but hard to interpret.
Matlab’s signal processing toolbox (present on
all CAEN machines, but not on some Cen-
tral Campus computer labs) has the command
specgram, which allows you to do many things
beyond the scope of this course.

How did we know to segment X into 26 seg-
ments? If we know the signal is a musical signal
consisting of whole notes with durations 0.3662
seconds, we know that the number of notes is
95215 _96 since the duration of the signal is

0.3662
9.5215 seconds.

4.4 Time-Frequency Plots:
Resolution Tradeoff

We don’t have to know how many segments the
signal actually contains. In fact, varying

e The number of segments L and
e The length N of each segment so
e LxN=LX=total length of the signal.

trades off time and frequency resolution. The
larger L is, the shorter the length N of each seg-
ment, so changes in the spectrum as it changes in
time can be tracked faster. However, fft com-
putes line spectra at frequencies f at Matlab in-
dices K, where

f= ey

(4.2)
P= % is now the duration of each interval. So
the discretization, hence the resolution, of fre-
quency is coarser.

To illustrate this, recompute the above spec-
trogram using different values of L and hence N:

1. L=13 and N=length(X) /L=6000;

2. L=104 and N=length (X) /L=T750.

Figure 4.3: Spectrogram with L=13 segments.

Each segment now contains two notes, and the
spectrogram plots both of them. If you were
playing “The Victors” from this, you would have
to guess which note to play in each segment!



4.5. CHIRP SIGNAL

Figure 4.4: Spectrogram with L=104 segments.

Each segment is only 750 samples long, and
the frequencies are smeared out. This improves
visibility, but is not so good for actually comput-
ing the frequencies.

4.5 Chirp Signal

A common test signal for time-frequency analy-
sis is the chirp, which does indeed sound like a
bird chirp (dolphin clicks are also chirps).

x(t) = Acos(2nFt?) for t > 0. (4.3)

The chirp cos(t?) is plotted in Figure 4.5:

051

] I | I | | i
0 2 4 6 8 10 12 14 16 18 20

Figure 4.5: Chirp Signal cos(t?).

29

The chirp signal looks like a sinusoid whose
frequency is steadily increasing in time.
Its spectrogram is plotted in Figure 4.6:

Figure 4.6: Spectrogram of Chirp.

This clearly indicates a signal whose frequency
is increasing linearly with time. The spectro-
gram makes interpretation of the signal easy.

These plots were generated in Matlab using

X=cos([0:8191] .*[0:8191]/10000) ;
T=linspace(0,19.99,2000);

subplot (211) ,plot(T,X(1:2000))
FXX=abs (fft (reshape (X’,256,32)));
FXX=FXX(129:256,:);
figure,subplot(211),imagesc (FXX)
axis off,colormap(gray)

4.5.1 Interpretation of Chirp

How do we interpret exactly what is going on in
the spectrogram of the chirp?

e cos(t?) is sampled at S = 1005%%%}%5. Set-
ting t = n/100 in cos(t?) gives the samples
x[n] = cos(n?/1000), stored in X.

e The length of X is 8192 samples, so its dura-

tion is £52=81.92 sec (almost 1.5 minutes!).



30

4.6 Removing Interference

To show how a spectrogram can help in removing
an interfering signal, listen to the signal:

CHAPTER 4. SPECTROGRAM: TIME-VARYING SPECTRA

e The height of the right-most line in the spec- !
trogram is index K=67. This is frequency
f=(K—-1)% = (67—1)3% = 25.8 Hertz
since each segment is 256 samples long. 08

e The instantaneous frequency of cos(2mft%) 04
is 2ft, not just ft as you might expect from ol
writing cos(2m ft?)=cos(2m(ft)t). Here, f = | l |,
! LA

1 .
==, so the instantaneous frequency at t = 0 ‘ ‘ ‘
21 qd Y 0 100 200 300 400 500 600 700 800 900 1000

81.92 is 281920 _96.1 Hertz. This is slightly
higher than the spectrogram value since  Figure 4.7: Spectrum: Victors+Interference.

the spectrogram averages over the final seg-
ment, instead of using the value at its end.

load victorstone.mat
LX=length(X) ;S=8192;
X=X+cos (2*pi*700*[1:LX]/S);
soundsc(X,S) Figure 4.8: Spectrogram: Victors+Interference.

Plot its spectrum and spectrogram using:
P P & & To eliminate this interference, run this:

F=[0:LX-1]*S/LX;
FX=2/LX*abs (fft (X)) ;

plot (F(1:9000) ,FX(1:9000))
%Now plot spectrogram:
LX=length(X) ;L=26;N=LX/L;
XX=reshape (X’ ,N,L); e K=1+round(LX*700/S) ; comes from solving
FXX=abs (fft (XX)); f=(K-1)S/LX for K;

FXX=FXX(5%N/6:N, :);
subplot(211), imagesc (FXX)
colormap(gray) ,axis off

K=1+round (LX*700/8) ;
KK=[K-100:K+100] ; FX=fft (X) ;
FX(KK)=0;FX(LX+2-KK)=0;
Y=real (ifft (FX)) ;soundsc(Y,S)

e We set not only FX(K) to zero, but also all
FX values whose indices are within 100 of K.
We also set to zero the mirror image values;

The spectrum is plotted in Figure 4.7, e Listen to Y: The interference is gonel!

The spectrogram is plotted in Figure 4.8.

th

The spectrum and spectrogram together show In Lab #3 you will use the spectrogram to re-
at the interference is a tone at 700 Hertz. move noxious interference from “The Victors.”



Chapter 5

Transcriber Approaches

5.1 Overview

This chapter presents four procedures for iden-
tifying the note played by a musical instrument,
a major part of the main project transcriber:

e Spectrogram: We have already seen that

This chapter also presents three other concepts
pertinent to the project:

e Additive synthesis creates a synthetic

musical instrument by creating and sum-
ming harmonics. The synthetic trumpet sig-
nal was generated using additive synthesis.

the spectrogram of an instrument playing
several notes in succession (i.e., of music)
depicts the frequencies and durations of the
notes, and so functions as a crude type of
musical notation. To map the spectrogram
to musical staff notation is not difficult.

Fundamental: The simplest way of identi-
fying a musical note is to compute its FFT
and see at which of 392,414,440 etc. Hertz
a large peak (the fundamental) is present.

Harmonic Product Spectrum (HPS):
Downsampling (omitting some frequencies)
the line spectrum of the note (computed us-
ing the FFT) and multiplying the resulting
spectra emphasizes the fundamental.

Autocorrelation:  The autocorrelation
(defined below) of a periodic signal is it-
self periodic, with the same period as the
original signal. The time lag at which the
autocorrelation peaks is the period.

31

Your team will create its own instrument.

e Reverb(eration) makes any sound seem
richer by adding slightly delayed copies of
itself. You will use this to make the single
trumpet sound like the trumpet section of
the University of Michigan marching band.

e Signal-to-Noise Ratio (SNR) is a mea-
sure of noise strength relative to signal
strength. You will use this to evaluate the
performance of your transcriber.

5.2 Note Identification

We present four methods for identifying a musi-
cal note played by an instrument. All of these
methods have been used for musical transcrip-
tion. In each term of Engineering 100, three of
the four has been used by at least one team.
Your team will choose one method, and will be



32

required to justify your choice (there is no single

right answer; what works best for you?).
Demo codes that demonstrates each method.

They are not sufficient for your transcriber!

5.2.1 Spectrogram

The spectrogram is an obvious choice for iden-
tifying the notes played by a single instrument.
The spectrogram of an actual solo trumpet play-
ing “The Victors” is shown in Figure 5.1:

Figure 5.1: Spectrogram of Solo Trumpet Play-
ing “The Victors.”

The Matlab code used to generate this plot:

load proj2.mat

L=26;N=length(Y)/L;
YY=reshape(Y’,N,L);

FYY=abs (fft (YY));

FYY=FYY(N-2999:N, :);
imagesc(FYY),colormap(gray) ,axis off

CHAPTER 5. TRANSCRIBER APPROACHES

Note the following about this spectrogram:

e [ used the synthesizer for the main project
to play “The Victors” on the trumpet.
proj2.mat is the synthesizer output file; it
contains variable Y;

e The lowest 3000 rows are shown;

e Look at each column separately. The har-
monics of each note are equally spaced in
the vertical direction (frequency). They get
smaller with increasing frequency (upward);

e For the trumpet, the second harmonic has
roughly triple the amplitude of the funda-
mental. Some of the fundamentals are faint;

e Some harmonics of different notes are al-
most identical. For example, the fourth har-
monic of G and third harmonic of C are at
4(392) = 1568 ~ 1569 = 3(523) Hertz.

The advantages of using the spectrogram are:
e Fundamentals and harmonics are apparent;
e Both frequencies and durations can be read.
The disadvantages of using the spectrogram are:
e The spectrogram has considerable clutter;

e A huge amount of computation is required.

5.2.2 Fundamental Identification

We have seen that the line spectrum of an in-
strument playing a single note consists of a fun-
damental frequency, and harmonic frequencies
that are integer multiples of the fundamental fre-
quency. Also, the fundamental frequency is one
of 392, 414, 440 etc. Hertz, so we only need to
choose which frequency. This suggests that we



5.2. NOTE IDENTIFICATION

compute the line spectrum at only those frequen-
cies, and see at which one the line spectrum is
large. In fact, the FFT is so fast that it is al-
most as fast to compute the entire line spectrum
as just its values at 13 frequencies.

The line spectrum of an actual trumpet note:

02

0.15f

01r

Tl

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 5.2: Line Spectrum of Actual Trumpet.

The Matlab code used to generate this plot,
and to identify the note from the largest peak is:

load trumpet.mat;LX=length(X);

FX=2xabs (fft (X)) /LX;

F=[0:2999]%x44100/LX;

subplot(211),plot (F,FX(1:3000));

KMIN=round (LX/44100%370) ;

KMAX=round (LX/44100%850) ;

[G,K]=max (FX(KMIN:KMAX)) ;

f=(K+KMIN-2)*44100/LX;

The program looks for the largest value of FX
between frequencies 370 and 850 Hertz (Matlab
indices KMIN and KMAX). This occurs at Matlab
index K+KMIN-1. from which the frequency in
Hertz of the peak is computed to be 491 Hertz.

The advantages of using the fundamental are:

e [t is very fast, computationally;

e It works very well in additive noise.

33

The disadvantage of using the fundamental is
that it may mistake the first harmonic for the
fundamental. This will definitely happen for the
trumpet playing the low G (392 Hertz), since its
first harmonic is 2(392)=784 Hertz, which is also
the fundamental for the high G (784 Hertz). So
the low G will be identified as a high G!

This is an example of the octave problem,
which is a well-known problem in music tran-
scription. I leave it to you to figure it out.

5.2.3 Harmonic Product Spectrum

1. Compute spectrum FX=abs (fft(X));
FX has peaks at 494,2(494),3(494). . . Hertz.

2. Delete every other value of the spectrum:
FX2=FX(1:2:1length(FX));
FX2 has peaks at $(494),494,3 (494). ..

3. Delete 2 out of every 3 spectrum values:
FX3=FX(1:3:1ength(FX));
FX3 has peaks at %(494),%(494),494. .

4. Multiply these: FXH=FX.*FX2.*FX3.; Then
FXH will have a huge peak at 494 Hertz.

FXH is the Harmonic Product Spectrum (HPS).
The HPS of an actual trumpet playing note B:

x10°

10

0 ! N L ! ! !
0 200 400 600 800 1000 1200 1400

Figure 5.3: HPS of Actual Trumpet.



34

There is a single huge peak at 494 Hertz.
The Matlab code used to generate this plot
(4, not 3, harmonic spectra are used here):

load trumpet.mat;LX=length(X);
FX=abs(fft (X)) ;FX2=FX(1:2:1X);
FX3=FX(1:3:LX) ;FX4=FX(1:4:1LX);
L4=length(FX4);

FH=FX(1:L4) .*FX2(1:L4);
FH=FX3(1:L4) .*FX4(1:L4);
F=[0:999]%44100/LX;
subplot(211),plot(F,FH(1:1000))

The advantages of using HPS are:

e It eliminates the octave problem
if enough FX’s are used;

e [t is very fast, computationally;
e It works very well in additive noise.

The disadvantages of using HPS are:

e [f one harmonic is small, then FXH is also
(HPS is vulnerable to small harmonics);

e [t doesn’t work at all for pure tones, since
pure tones have no harmonics at all!

5.2.4 Autocorrelation

Unlike the other three methods, autocorrelation

doesn’t use the concept of line spectrum at all.

It computes the period P of a periodic signal.
The autocorrelation rn] of x[n] is defined as

rin) =Y alilzfi +n] =) zfilzfi —n]. (5.1)

In particular, some autocorrelation values are

r[0] = «[0]x[0] + z[1]z[1] + z[2]z[2]. ..
r[l] = =z[0z[1] + z[1]z[2] + z[2]z[3]...
r2] = =z[0]x[2] + x[1]z[3] + z[2]z[4] ...
r[3] = x[0]x[3] + z[1]z[4] + x[2]x[5]. . (5.2)

CHAPTER 5. TRANSCRIBER APPROACHES

The idea behind using autocorrelation is:
o 7[0] = 3 x[i]? is clearly very large;

e r[n| = > zfiJz[i + n] is the sum of random
products, and so it is relatively small;

e But if z[n] is periodic with period=N then:

o r[N| = > zli]z[i + N| = > z[i]z[i] = r[0] is
large, since z[i + N| = z[i].

e So r[n] has large peaks at n =0, N,2N ...
So to use autocorrelation to find the period:

1. The sampling rate used is S gg‘gg\%g.

2. Compute r[n| from z[n].
A fast algorithm for computing r[n] is
(ifft(abs(fft(X,2*length(X)) " 2))

3. Compute 7[n] = —=1.
4. Find the smallest N # 0 so 7[N] ~ 1;
5 P = % is the period in seconds.

The autocorrelation of an actual trumpet play-
ing note B is shown in Figure 5.4.

2500

2000
1500
1000

500
ok
=500

1000 ! ! h !
0 2 40 60 80 100 120 140 160 180 200

Figure 5.4: Autocorrelation of Actual Trumpet.

The Matlab code used to generate this plot:



5.2. NOTE IDENTIFICATION

load trumpet.mat;LX=length(X);
R=real (ifft(abs(fft(X,2*LX)). " 2));
subplot(211) ,plot (R(1:200))

r[0] is 2352, and r[90] is slightly less at 2336.

The sampling rate is 44100 gég/g{fg. The period

is P %im%, and the fundamental frequency is
f=5=310=490 Hertz.

Note the peaks occur at Matlab indices 1 and
91, so the interval is 90. This should not be
confused with f:(Kfl)%: we are not using the
line spectrum here! It’s Matlab indexing again.

Compare 490 Hertz with the 491 Hertz ob-
tained from fundamental frequency identifica-
tion. There is a discretization issue in the exact
peak location, so they don’t agree exactly. And
the trumpet seems to be slightly out of tune.

The peak at 7[90] (2336) is slightly less than
r[0] (2352), and the peak at r[180] is slightly
smaller still (2312). The reason this happens is
that z[n] has finite length, and as n gets larger
r[n] is computing by summing fewer terms. This
could be corrected by dividing each r[n| by the
number of terms being summed, but it is hardly
necessary if we are only interested in the first
autocorrelation peak away from n = 0.

The advantages of using autocorrelation are:

e There are no fundamental vs. harmonics
issues, unlike fundamental identification, so
the octave problem is avoided;

e Zero harmonics no problem, unlike HPS;

e It works well in noise, since the noise is con-
centrated in r[0]. In fact, the autocorrela-
tion r[n| of zero-mean white Gaussian noise
is large at n = 0 and very small elsewhere;

e Since r[N] < r[0] if there is noise added, use
the location of the peak value of r[n| away
from n = 0, not where r[N] = r[0].

35

5.2.5 Autocorrelation with Noise

To expand on the last point, now suppose that
zero-mean white noise wn] has been added to
x[n]. Zero-mean white noise is a common model
for noise. w(n] is white noise means that:

e w(i] and w[j] are statistically uncorrelated
with each other. This means that knowing
wli] tells you little about the value of wlj],
even when i—j is small (of course we do need

i # j here).

e The autocorrelation of w[n] is very large for
n = 0, and very small otherwise.

e The mean 7; SM wn] of w[n] is roughly
zero for large M.

Suppose we observe not z[n] but

= z[n] + wln].

y(n] (5.3)

The autocorrelation 7y[n] of y[n| is

ryln] = Z?/ [i +n]

— S (afi] + wlil)(ali + nlufi + n))
= 2.7l z+n+2w[z [i + 7]
= Z x[i + nj +Z:c[z [i + n]
~ m[n] + rw[n] & ra[n] + 06[n] (5.4)
Zw zli+n] =~ 0

> alijwfi+n] =~ 0
S wllwli+n] ~ 0% (5.5)

where

d[n] = 1lifn=0

dn] = 0ifn#0

02 = energy of wln]. (5.6)



36

More properly, ﬁZﬁil wln)? is the power of
win] for large M.

This analysis shows that the white noise added
to z[n] manifests itself as an increase in 7,[0]
from 7,[0] to r,[0]+0%. This means that the
value of r,[0] cannot be used as a guide for the
value of r,[N]. Often, o2 is known approxi-
mately, so it can be subtracted from r,[0].

The following three plots shows how autocor-
relation works on noisy signals. The plots are:

1. Noiseless trumpet signal;
2. Trumpet signal with noise added;

3. Autocorrelation of the noisy trumpet signal.

v : : : :
04 g
02 g

of i

-0.2F q

=04t 1 1 1 L L |

50 100 150 200 250 300

L L L L L
50 100 150 200 250 300

x 10"

3
21
1
0

L e SNt . S
50 100 150 200 250 300

The only effect of the added noise on the au-
tocorrelation is its larger value at n = 0. So the
period of the noisy trumpet signal can still be
determined to be 90 using autocorrelation. The
previous procedure must be modified since now
ry[0] > ry[N] = rz[2N] = .... But try estimat-
ing the period by examining the second plot of
the noisy trumpet signal!

5.2.6 Searching for Known Periods

In Engin 100, we have important additional in-
formation: The fundamental frequencies of mu-

sical notes are known. Instead of attempting

CHAPTER 5. TRANSCRIBER APPROACHES

to estimate the period N, we are attempting
to choose among a finite set of known values
{N1, Ny ... N3} of N. So we need only see which
of {ry(N1),7y(N2)...7y(Ni3)} is largest.

To illustrate this, suppose we have noisy obser-
vations y[n] of a signal sampled at 120055MELE
The signal has one of these three fundamental
frequencies: {100,150,200} Hertz. The period

is one of the following three values:

{ 11 1 }
P = §—,—,— sec
100" 150" 200

1200 1200 1200
N = - 12 .
{ 100 7 150 " 200 } {12,8,6)5.7)

So to determine the fundamental frequency, we
need only choose which of {ry[6],7,[8],,[12]} is
largest—comparison with (0] is unneeded.

To do this in Matlab, use

[Q Il=max(abs(R([7:13]));N=I+6

Note that if abs(R(7)) is the largest, Mat-
lab will give I=1, since R(7) is the first value of
R(7:13). So we must add to I the lower limit
6. And, as always, we must add 1 to everything,
since Matlab indexing starts at 1, not 0.

To ensure that the peak is identified, the
maximum should be taken over the com-
plete range [7:13], not just the three values
[abs (R(7)) ,abs(R(9)) ,abs(R(13))].

This same idea can be applied to fundamental
frequency identification.

5.2.7 Choosing Among Signals

Suppose we have noisy observations y[n| of one
of three possible signals {x1[n], z2[n], z3[n]}:

yln] = x1n] +wn] OR
= x3[n| +wn| OR

= x3[n] + wn). (5.8)



5.3. OTHER CONCEPTS

To determine which of the three signals is
present, compute the three correlations

> ylnjai[n]
> ylnjaa[n]
T3 = Z y[n]zs[n]

and choose the largest of {|r1],|r2],|rs|}. This
idea extends to any number of signals.

T =
T =

(5.9)

5.3 Other Concepts

5.3.1 Additive Synthesis

A synthetic instrument playing a note at fre-
quency f can be created mathematically using

K
x(t) = Z cx cos(2mk ft) (5.10)
k=1

for some choice of harmonics amplitudes {c}
that determine the timbre of the instrument.
The synthetic trumpet was created in this way.

Your team will create its own synthetic instru-
ment using additive synthesis by choosing some
{ck}. One way to do this is to find a sound you
like, compute its line spectrum using the FFT,
and read off the amplitudes of the largest lines
to get {ck}. Or you can just try different values
until you come up with a sound you like.

The (subjective) criterion here is that your
team has to agree that the sound is “cool.”

Matlab code for generating your sound:

%D=duration of note in seconds.
%F=frequency of note in Hertz.

%C=row vector of 9 amplitudes.
T=[0:1/44100:D] ;%sampling rate=44100.
X=Cxcos (2xpi*F*[1:9] ’*T) ;

37

5.3.2 Reverb(eration)

When you listen to the University of Michigan
marching band, you don’t hear just one trumpet
(unless they are playing a solo). You hear the
combined sum of many trumpets. Of course, this
makes their sound louder. But there is another
effect: reverb (short for reverberation).

Because the trumpet players do not occupy
the same exact point in space, you hear some
trumpets a fraction of a second later than others.
If the trumpet section is spread across 10 yards,
and you are sitting in an end zone, you hear some
trumpets (30 feet)/[1050522E ] = L second later
than some other trumpets in the section.

You can get a similar sound by adding slightly
delayed copies of the trumpet signal. This is the
“singing in the shower” effect, or reverb.

Matlab code for reverbing the trumpet:

load trumpet.mat

LX=length(X) ;S=44100;D=0.01;K=5;
N=round (S*D) ;for I=1:K;M=N*I;
X=X+[zeros(1,M) X(1:LX-M)]1;
end;soundsc(X,S)

Try different values of the delay D and number
of trumpets K until you find one your team likes.

5.3.3 Signal-to-Noise Ratio (SNR)

To evaluate the performance of your transcriber,
you see how much noise you can add to it before
it starts to fail a significant fraction of the time.
The obvious performance metric to use is error
rate (percent of the time your transcriber gives
the wrong answer) vs. noise level.

But noise level by itself isn’t enough; what
counts is noise level vs. signal level. If your sig-
nal is a sinusoid with amplitude 100, noise with
maximum value of one is a small amount of noise.



38

But if your signal is a sinusoid with amplitude
0.01, then that same noise is a large amount.

So it is the ratio of noise strength to signal
strength that counts. Specifically,

e The strength of signal z[n] is its power
+ SN z[n]? where N is the length of z[n).
If x[n] is periodic, then N is the period.

e The signal-to-noise ratio for a signal z[n]

1 N 2

N Zn:l ZE[TZ]

¥ 2oy vlnf?

e Signal-to-noise ratio is usually expressed in
decibels. A bel is the logarithm (base 10)
of something, so a decibel is 10log;, of it.
The Signal-to-noise ratio in decibels is

and noise v[n] is thus

1N 2
e SNR=10log;, X 2=

N 2= vl

To evaluate the performance of your transcriber,
generate a single signal (e.g., the trumpet play-
ing note B) and do the following:

1. Add some noise with fixed strength;

2. Run the transcriber; check its output;

3. If wrong, increase #errors by one;

4. Do this 100 times for different noises;

5. The error rate=#errors/100 at that SNR;
6. Do 10 times for different noise strengths.

The skeleton of a program that can be used to
evaluate the performance of your transcriber is:

[Generate note in X with synthesizer]
for S=1:10;NS=0;ER=0;

for I=1:100;%100 different noises.
N=S*5*randn(1,length(X));%noise level.

CHAPTER 5. TRANSCRIBER APPROACHES

NS=NS+sum(N.*N)/100;%Noise strength.
Y=X+N;%Add noise to synthesizer note.
[Run transcriber on noisy note Y]

if [transcriber wrong] ;ER=ER+1;end
end;E(S)=ER;%errors at noise level S.
SNR(S)=10%*1og10(sum(X.*X)/NS);
end;plot (SNR,E)

See also the demo files project3.m.



Chapter 6

Performance of a System in Noise

6.1 Signal Processing System

We consider a simple touch-tone phone system
which sends as its message a seven-digit phone
number, e.g., “8675309.” Each of the seven dig-
its of the phone number is one of the nine digits
{0,1,2...9}. There is no hyphen present.

The " of the seven digits is represented by
an integer x;. If the phone number is “8675309,”
then {1, z2, x3, 24, T5, Tg, 7} is ©1=8;22=F6; etc.

6.1.1 Synthesizer

The goal of the synthesizer is to transform a
phone number {z1,x9, 3,24, x5, ¢, 7} into a
continuous-time signal x(¢) that can be trans-
mitted along a wire or through space.

The actual signal sent by the system is a
7-second-long analog (continuous-time) signal
x(t). x(t) is defined as

z(t)=x; for 0<t<1
x(t) =mg for 1<t<2
x(t) =x3 for 2<t<3
x(t) =mz4 for 3<t<4
x(t) =x5 for 4<t<5
x(t) =z for 5<t<6
x(t) =x7 for 6<t<7

If the phone number is “8675309,” then z(t) is

10

ol

8

Figure 6.1: Signal for “8675309.”

This figure was generated using Matlab code
(ves, the extra 9 is required to make this plot)

clear;X=[8 6 753 09 9];
stairs([0:7],X),axis([0 7 -1 10])

It should be noted that actual touch-tone
phone signals consist of two sinusoids. The fre-
quencies of the pair of sinusoids specify which
digit is sent. We consider a simpler scheme here
to make things easier. We define

e x(t)=signal transmitted by synthesizer.
e y(t)=signal received by transcriber.

y(t)=xz(t). Later y(t) will be x(t) plus noise.

39



40

6.1.2 Transcriber

The goal of the transcriber is to convert
the signal y(t) received into a phone number
{z1, 9,23, 24, 5,26, x7}. The transcriber is:

1. Sample the signal so it can be processed us-
ing a computer. We use a sampling rate of

1000@%2}/[51\% The result is y[n]= 9(1000)

2. Segment (i.e., divide up or partition) the re-
ceived signal into seven segments of length
1 second=1000 samples each.

3. Transcribe each of the seven segments into a
single digit by averaging the 1000 numbers
in each segment. This gives seven averages.

The estimated first digit 1 is determined from
the average g; of the first 1000 numbers of y[n]:

999
L7 1000 Z yln
z1=0 if @1 = 0
=1 if g1 =1
T1=2 if =2
r1=3 if ;=3
if (6.1)

The estimated second digit &5 is determined from
the average 72 of the next 1000 numbers of y[n|:

1999
2 1000 §Ooy
F2=0 if Fp=0
To=1 if =
To=2 if =
To =3 if Yo =

if (6.2)

CHAPTER 6. PERFORMANCE OF A SYSTEM IN NOISE

The remaining five digits are estimated similarly.
It should be evident that this transcriber will
work perfectly if y(t)=z(t).

6.2 Performance in Noise

Once noise is added to y(t), the transcriber will
no longer work perfectly. The goal of noise anal-
ysis is to determine how noise added to the data
degrades the system performance.

6.2.1 Additive Noise

There is always noise in any real-world system.
The received signal y(t) is the transmitted signal
x(t) plus added noise v(t):

x(t) + v(t)
x[n] + v[n]

before sampling

after sampling (6.3)
A common model for noise is zero-mean white
Gaussian noise (WGN). There are good reasons
for this that you will learn in a statistics course.
Zero-mean white Gaussian noise can be gen-
erated in Matlab using randn. The signal plus
noise for “8675309” is shown in Figure 6.2:

Figure 6.2: Noisy signal for “8675309.”

This figure was generated using



6.2. PERFORMANCE IN NOISE

clear;M=[8 6 7 5 3 0 9];
XX=ones (100,1)*M;X=XX(:);
Y=X+randn(700,1);
plot([1:7001/100,Y)

6.2.2 Transcriber for Noisy Data

The transcriber given in (6.1) and (6.2) is now
modified. Instead of using the mean g; of the
1000 numbers in the i*" segment to estimate z;,

e Mean y; is rounded to the nearest integer.
o If y3=7.3, then £3=7, since 7.3 rounds to 7.

The following code implements the synthesizer
on the phone number specified in M, samples at

10005’%%/[%, and adds noise scaled by factor S:

clear;M=[8 6 7 5 3 0 9];
XX=ones (1000, 1) *M; X=XX(:);
S=1;Y=X+S*randn(7000,1);

The following code implements the transcriber
on the noisy data stored in column vector Y:

YY=reshape(Y,1000,7);
XHAT=round (mean (YY))

6.2.3 Performance Measure

How do we measure how well the transcriber is
working on noisy data? We need a performance
measure, which is a number that tells us how
well the transcriber is working (business people
call this a “metric”).

An obvious performance measure is the single-
digit error rate, which is the percent of the time
that the transcriber gets a single digit wrong at a
given noise level. For example, if the transcriber
is wrong 12% of the time at a given noise level,
the error rate is 12% at that noise level.

41

Another performance measure is the phone
number error rate, which is the percent of the
time that the transcriber gets any of the seven
digits in a phone number wrong. Since this
(and other measures) can be calculated from the
single-digit error rate, we use the single-digit er-
ror rate as our performance measure.

How do we know that the transcriber is wrong
12% of the time? A simple way to estimate the
error rate is to proceed as follows:

1. Generate the noiseless sampled synthesizer
signal z[n] for a single digit. Note that z[n]
is one second=1000 samples long.

2. Generate 100 different random noise signals,
each having the same level. Matlab can do
this using a random number generator.

3. Form 100 different noisy signals by adding
the 100 noise signals (one at a time) to the
noiseless synthesizer signal.

4. Run the transcriber on each of the 100 noisy
signals, getting 100 digit estimates.

5. Count the nuber of times e that the tran-
scriber output the wrong digit. The error
rate at that noise level is then ﬁze%.

The more noise signals we use, the more accurate
this estimate of the error rate will be. “100” is a
commonly-used figure, for reasons that you will
learn in a statistics course.

6.2.4 Signal-to-Noise Ratio (SNR)

We then run the above procedure several times,
using different noise levels. But note that what
really matters is not the actual noise level, but
the noise level relative to the signal level. A noise
level of one is high if the signal level is 0.01, but
low if the signal level is 100.



42 CHAPTER 6. PERFORMANCE OF A SYSTEM IN NOISE

We also must define noise and signal levels. This same program can be used for your music
This is usually done using the power (average transcriber. Replace the digit transcriber with
of squared values) of a signal. The power of a your music transcriber, with these changes:

sampled signal x[n] having a length of 1000 is ] _
e Use your music synthesizer to generate a
1 9% single musical note (instead of a digit).
Power of z[n] = —— Y x[n]% (6.4)
1000 ~= e Use your music transcriber to generate an

estimated musical note (instead of a digit).
The signal-to-noise ratio (SNR) is then the ra-

tio of signal power to noise power, expressed in ~ ® You don’t need the MIDI-to-staff musical
decibels (dB) by taking the common (base=10) notation step of your transcriber. Just use
log (“bels”) and multiplying by 10 (“decibels”): the MIDI representation of your note.
15099 2[n)? e Make sure that your transcriber now accepts
SNR = 10log;, 192 =t : (6.5) as input Y instead of X (check your code).
1000 £«n=0 U[HP

. e Make sure your program doesn’t use N twice,
The factors 1555 cancel, so they can be omitted. to represent both #signals and the noise.

Figure 6.3 is a typical result. Note that run-
ning the above program several times will pro-
The following Matlab program computes and duce plots similar, but not identical, to this.
plots single-digit error rate vs. SNR for ten dif-
ferent SNR’s, using 100 trials to generate each
of ten points on the graph.

6.2.5 System Performance

80

70+ -

60 -

%Synthesizer for digit M: 1
clear;M=7;X=ones (1,1000) *M; ,
%Noise performance program: i
for S=1:10;NS=0;ER=0;%10 noise levels i
for I=1:100;%100 noise signals 1

N=S*5*randn(1,length(X));%scale noise
NS=NS+sum(N.*N)/100;%avg. noise power

L L L L
-20 -15 -10 -5 o 5

Y=X+N;%add noise to signal Figure 6.3: Transcriber Performance
%Transcriber:

XHAT=round (mean(Y)) ; Any customer of your engineering product
%Noise performance program, cont.: (phone or music transcriber) will want to see this
if (XHAT==M) ; ER=ER+0;else ER=ER+1;end plot. The customer must provide specs for noise
end;E(S)=ER;%error rate@noise level level and acceptable error rate. For example, if
SNR.(S)=10%1og10 (sum(X.*X)/NS) ; a 2% error rate is acceptable, how high a noise

end;plot (SNR,E) level can your transcriber handle?



