PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Open book; SHOW ALL OF YOUR WORK!

SIGN YOUR NAME HERE:

- (40) 1. We observe $y(n) = c(-1)^n + v(n)$ where $c \sim N(0,1)$ and $E[c \cdot v(n)] = 0.E[w^2(n)] = 1$. v(n) is a 1st-order AR process: $v(n) = \frac{1}{2}v(n-1) + w(n)$ where w(n) is 0-mean WGN. The problem is to recursively estimate c from observations $\{y(0), y(1) \dots\}$.
 - (10) a. Formulate this as a Kalman filtering problem (specify matrices A, B, H, Q, R).
 - (10) b. Let P(n) be the error covariance matrix. EXPLAIN the following:
 - (i) Why P(n) converges to some matrix P_{ss} ; (ii) Why P_{ss} is not positive definite;
 - (iii) Why (ii) *seems* to be a good thing, but is actually a bad thing.
 - (10) c. Write out the matrix equation for P_{ss} and solve it.

HINT: From (b) you know $P_{ss} = \begin{bmatrix} 0 & 0 \\ 0 & p \end{bmatrix}$ for some p.

(10) d. Now suppose we observe $y(n) = c(-1)^n + w(n)$; recall w(n) is WGN. Write out *and solve* the Kalman filtering equations. HINT: lecture notes.

WRITE ANSWERS HERE:

(a):	$\mathbf{A} =$	B=	H=	$\mathbf{Q} =$	R=
(b):	(i)				
(b):	(ii)				
(b):	(iii)				
(c):	$P_{ss} =$	P_{ss} equation:			
(d):	A=	B=	H=	Q=	R=
(d):	$\hat{x}(n n-1) =$		P(n n-1)	=	

(20) 2. Continuous-time information Kalman filter:

(10) a. Derive the information form of the continuous-time Kalman-Bucy filter. Do not use a limiting $(\Delta \to 0)$ argument; derive directly from Kalman-Bucy equations. It should propagate $S(t) = P(t)^{-1}$ and $\hat{n}(t) = S(t)\hat{x}(t)$. HINTS: (1) $\frac{d}{dt}P^{-1}(t) = -P^{-1}\frac{dP}{dt}P^{-1}$; (2) Derive Riccati equation first.

We observe y(t) = x + v(t) where v(t) is 0-mean WGN with $S_v(\omega) = 1$ and E[xv(t)] = 0. x is an unknown constant. We want to estimate x from $\{y(s), 0 < s < t\}$.

- (5) b. Formulate this as a Kalman filtering problem (specify matrices A, B, H, Q, R).
- (5) c. Write out and *solve* the *information* Kalman-Bucy filter equations.

HINT: This is *much* easier than solving the regular Kalman filter equations.

WRITE ANSWERS HERE:

(a): Information Equations:

(b): A=	B=	H=	$\mathbf{Q} =$	$\mathbf{R} =$
(c): $s(t) =$		$\hat{n}(t) =$	$\hat{x}(t) =$	

#1:

#2:

#3:

 \sum :

(40) 3. We observe y(t) = x(t) + v(t) where $K_x(t) = e^{-|t|}, K_v(t) = \delta(t) + 3e^{-|t|}, K_{xv}(t) = 0.$

- (5) a. Compute the infinite smoothing filter for $\hat{x}(t|\{y(s), -\infty < s < \infty\})$.
- (5) b. Compute the minimum-phase spectral factor $S_y^+(s)$ of $S_y(s)$.
- (10) c. Compute the causal Wiener filter for $\hat{x}(t | \{y(s), -\infty < s < t\})$.
- (5) d. Let \hat{x} be the LLSE of x. Prove $E[\hat{x}^2] = E[x\hat{x}]$. (5) e. Let $e = x \hat{x}$. Prove $E[e^2] = E[x^2] E[\hat{x}^2]$. Interpret this using the Pythagoras theorem. Be specific.
- (5) f. Use these to prove $E[e^2(t)] = E[x^2(t)] \int h(t)K_{xy}(t)dt$, where h(t) is the impulse response of the filter in (a) or (c).
- (5) g. Use (f) to compute $E[e^2(t)]$ for your answer to (a).
- (5) h. Use (f) to compute $E[e^2(t)]$ for your answer to (c).

WRITE ANSWERS HERE:

(a): $H(\omega) =$	(b): $S_y^+(s) =$	(c): $H(s) =$
(g): $E[e^2(t)] =$	(h): $E[e^2(t)] =$	