ASSIGNED: October 30, 1997 DUE DATE: November 6, 1997

Read Sections 3.5, 3.6, 4.7, 6.3 (all short) of V&K (mostly 2-D wavelets). Also skim Chapter 7 of V&K (mostly on image coding, but good background). This week's theme: Computation of continuous-time wavelet bases and transforms.

- 1. Another way to derive wavelet scaling functions based on splines: Start with the linear spline function $s_1(t) = 1 - |t|, |t| < 1; 0, |t| > 1$.
 - a. Compute the sampled autocorrelation $s_3(n)$ of $s_1(t)$ (note $s_3(t) = s_1(t) * s_1(t)$). This consists of exactly three nonzero numbers.
 - b. Compute the spectral factorization $S_3(z) = R(z)R(z^{-1})$ of $S_3(z)$. HINT: Use the quadratic formula and write $S_3(z) = c^2(1 - bz^{-1})(1 - bz)$.
 - c. Write $\Phi(\omega) = \frac{S_1(e^{j\omega})}{R(e^{-j\omega})}$. NOTE: $\sqrt{3} = 1.732$. Explain why $\phi(t)$ is orthogonal to its translations
 - Explain why $\phi(t)$ is orthogonal to its translations. d. Write $\phi(t) = \sum_{n=0}^{\infty} a_n s_1(t-n)$. Find a_n . What kind of function is $\phi(t)$? HINT: Use $\frac{1}{1-bz^{-1}} = \sum_{n=0}^{\infty} b^n z^{-n}$, |b| < 1 and set $z = e^{j\omega}$.

NOTE: This is NOT the Battle-Lemarie $\phi(t)$!

- 2. Let $x(t) = \begin{cases} e^{-t}, & \text{if } t > 0 \\ 0, & \text{if } t < 0. \end{cases}$
 - a. Compute the continuous time Haar wavelet transform of x(t).
 - b. Compute the continuous time Haar scaling transform of x(t).
 - c. Write out Mallat's fast wavelet algorithm in the general case.
 - d. Insert your answers to (a) and (b) in (c) and confirm the algebra works out. NOTE: Make sure you use the correct $h_0(n)$ for Haar (see text p.101). While either $h_0(n)$ or its time reversal can be used in discrete time, consistency with the continuous time Haar requires the right choice.
- 3. Detection of fractal signals in noise using wavelets: Let x(n) be the discrete-time deterministic fractal signal from Problem Set #5.

Download the MATLAB program from http://www.eecs.umich.edu/aey/eecs551.html. Let $y(n) = x(n) + 50^{*} rand(size(n))^{"}$ (note this is a LOT of noise!)

- Let z(n) be generated using "-25+100*rand(size(n))" (pure noise signal).
- The numbers are chosen to make y(n) and z(n) have roughly the same size.
 - a. PLOT y(n) and z(n) for $1 \le n \le 32$. Can you tell which is which?
 - b. Run the Haar-filter subband coder on both y(n) and z(n). Look at various outputs and compare them. NOW can you tell which is which? HINT: Compare low-frequency outputs at various scales (rows of y0 and z0) among themselves for $129 \le n \le 160$. y0 resemble each other more than z0.

[&]quot;Mr. Lawyer, what is your fee for answering three questions?" "\$1000." "Isn't that steep?" "Yes. What is your final question?"