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1. SIGNAL REP. USING ORTHONORMAL BASES

1.1 Definitions

DEF: The (L2) inner product of x1(t) and x2(t) is

< x1(t), x2(t) >=
∫ ∞

−∞
x1(t)x∗2(t)dt

DEF: The (L2) norm of x(t) is

||x(t)|| =
√

< x(t), x(t) > =

√∫ ∞

−∞
x(t)x∗(t)dt

DEF: x(t) ∈ L2 if ||x(t)|| < ∞
DEF: xi(t) and xj(t) are orthonormal if

< xi(t), xj(t) >= δi−j =
{

1, if i = j;
0, if i 6= j

DEF: The space spanned by basis funcs {φi(t)}
SPAN{φi(t)} = {∑i ciφi(t)} for any constants ci

DEF: A set of basis functions is complete if any L2

function can be represented as a linear combination
of the basis functions.
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1.1 Properties

Let {φi(t)} be a complete orthonormal basis set.
Then for any L2 signal x(t) we have:

x(t) =
∞∑

i=−∞
xiφi(t) expansion

xi =
∫ ∞

−∞
x(t)φ∗i (t)dt orthonormal

xN (t) =
N∑

i=−N

xiφi(t) →

lim
N→∞

||x(t)− xN (t)|| = 0 complete

1. Instead of processing the uncountably infinite
x(t), we may process the countably infinite xi;

2. We may process the FINITE {xi, |i| ≤ N} with
arbitrarily small error if N sufficiently large;

3. xN (t) is the best approximation to x(t) using
only 2N + 1 xi;

4. Each xi carries different information about x(t)–
no redundancy.

5. Easy to compute xi and update xN (t).
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1.2 Example: Fourier Series

Let x(t) be defined for 0 < t < P (periodic?)

Then x(t) has the orthonormal expansion

x(t) =
∞∑

n=−∞
xnej2πnt/P

xn =
1
P

∫ P

0

x(t)e−j2πnt/P

1. Convergence in L2 norm; Gibbs phenomenon at
discontinuities;

2. Note basis functions orthogonal in SCALE.

Approximation of square wave using N = 15:
(uncountably infinite → 15)
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1.3 Example: Bandlimited Signals

Let x(t) be bandlimited to |ω| < B.
Then x(t) has the orthonormal expansion

x(t) =
∞∑

n=−∞
xn

sinB(t− n∆)
B(t− n∆)

, ∆ =
π

B

xn =
∫ ∞

−∞
x(t)

sinB(t− n∆)
B(t− n∆)

1
∆

dt = x(t = n∆)

1. Since x(t) and sinc(t) are both bandlimited
x(t)∗sinc(t) = x(t); sinc(t)∗sinc(t) = sinc(t)
Then sample;

2. Here xn happen to be sampled values of x(t);
3. Basis functions orthogonal in TRANSLATION:

∫ ∞

−∞

sin B(t− i∆)
B(t− i∆)

sin B(t− j∆)
B(t− j∆)

dt = ∆δi−j
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1.4 Example: Wavelet Transform

Let x(t) ∈ L2.

Then x(t) has the orthonormal expansion

x(t) =
∞∑

i=−∞

∞∑

j=−∞
xi

j2
−i/2ψ(2−it− j)

xi
j =

∫ ∞

−∞
x(t)2−i/2ψ(2−it− j)

1. Note double-indexed xi
j ;

2. Basis functions areorthogonal in both
SCALE AND TRANSLATION;

3. Therefore localized in time and frequency;
4. Note scale-dependent shift in t: 2ij
5. Need 2−i/2 to make ||2−i/2ψ(2−it− j)|| = 1.

How do we find such basis functions?
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2. MULTIRESOLUTION ANALYSIS

2.1 Multiresolution Subspaces

DEF: A multiresolution analysis is a sequence
of closed subspaces Vi such that:

1. {0} ⊂ . . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ . . . ⊂ L2

2. x(t) ∈ Vi ⇔ x(2it) ∈ V0

3. x(t) ∈ V0 ⇔ x(t− j) ∈ V0

4. ∃orthonormal basis so V0 = SPAN{φ(t− j)}
Latter implies Vi = SPAN{2−i/2φ(2−it− j)}

Example: Piecewise constant functions

1. Approximate function by piecewise constant steps
2. Smaller steps → more accurate approximation
3. Step size 2i → project onto Vi (want small i)
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2.2 Wavelet Scaling Functions

Vi = SPAN{2−i/2φ(2−it− j)}
φ(t) is the wavelet scaling function.

φ(t) ∈ V0 ⊂ V−1 → φ(t) ∈ V−1

→ φ(t) =
∞∑

n=−∞
gn21/2φ(2t− n)

Taking Fourier transform and G(ejω) = DTFT [gn] →
(for MEs: set backshift q = ejω)

Φ(ω) =
1√
2
G(ejω/2)Φ(ω/2)

Orthonormality of {φ(t− j)} →

||G(ejω)||2 + ||G(ej(ω+π))||2 = 2

Suggests gn should be lowpass filter.
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2.3 Wavelet Basis Functions

Define {Wi} as orthogonal complements of {Vi}:
1. Wi=orthogonal complement of Vi in Vi−1

2. Vi−1 = Vi

⊕
Wi,

⊕
=direct sum

. . .
⊕

W1

⊕
W0

⊕
W−1

⊕
. . . = L2

1. Still have x(t) ∈ Wi ⇔ x(2it) ∈ W0

2. Need basis ψ(t) so W0 = SPAN{ψ(t− j)}
3. Compare the above to V0 = SPAN{φ(t− j)}

ψ(t) ∈ W0 ⊂ V−1 → ψ(t) ∈ V−1

→ ψ(t) =
∞∑

n=−∞
hn21/2φ(2t− n)

Taking Fourier transform and H(ejω) = DTFT [hn] →

Ψ(ω) =
1√
2
H(ejω/2)Φ(ω/2)

ψ(t) ∈ W0 ⊥ V0 → ψ(t) ⊥ {φ(t− j)} →

H(ejω)G∗(ejω) + H(ej(ω+π))G∗(ej(ω+π)) = 0
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2.3 Wavelet Basis Functions, continued

This leads to hn = g1−n(−1)n

1. Now have ψ(t) in terms of φ(t)
2. Wi = SPAN{2−i/2ψ(2−it− j)}
3. But {Wi} (unlike {Vi}) are orthogonal spaces
4. So {2−i/2ψ(2−it−j)} is a complete orthonormal

basis for L2.

Note that gn is a lowpass filter while

hn = g1−n(−1)n → H(ejω) = −e−jωG∗(ej(ω+π))

is a bandpass filter.

This shows the distinction between
1. wavelet scaling (φ(t)) and
2. wavelet basis (ψ(t)) functions:

Scaled ψ(t) sweep out different frequency bands.
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2.4 Summary of Wavelet Design

1. Find scaling function φ(t),
often by iterating 2-scale eqn

φ(t) =
∞∑

n=−∞
gn21/2φ(2t− n)

a. Start with φ(t)=LPF
b. Repeatedly convolve and upsample by 2
c. Converges if gn regular filter:∏∞

k=1 G(ejω/2k

) converges
d. φ(t)=cont. limit discrete filter gn:

upsampling spreads spectrum so that it is
periodic with 2kπ, k=iteration #

2. Find wavelet function ψ(t):

ψ(t) =
∞∑

n=−∞
hn21/2φ(2t− n)

Ψ(ω) =
1√
2
H(ejω/2)Φ(ω/2)

H(ejω) = −e−jωG∗(ej(ω+π))
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3. WAVELET TRANSFORMS

3.1 Haar Function→Haar Transform

1. Vi = {piecewise constant functions}
2. x(t) changes levels at t = j2i

3. SMALLER i → better resolution

Consider DECREASE in resolution:

In going from Vi to coarser Vi+1 ⊂ Vi:
1. Replace x(t) over the two intervals

[2ij, 2i(j + 1)] and [2i(j + 1), 2i(j + 2)]
2. with x(t) over interval [2i+1(j/2), 2i+1(j/2+1)]
3. Note that [2i+1(j/2), 2i+1(j/2 + 1)]

= [2ij, 2i(j + 1)]
⋃

[2i(j + 1), 2i(j + 2)]

How do we do this?

Replace x(t) with its average
(which is its projection onto Vi+1)

and with its difference
(which is its projection onto Wi+1)

over the longer interval.
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3.1 Haar Function→Haar Transform: Example

x(t) = sin(t)

Projection onto Vi:

xi(t) =
{

sin(2ij), if 2ij < t < 2i(j + 1);
sin(2i(j + 1)), if 2i(j + 1) < t < 2i(j + 2);

Projection onto Vi+1:
xi+1(t) = [sin(2ij) + sin(2i(j + 1))]/2,
if 2i+1(j/2) < t < 2i+1(j/2 + 1)
Same interval; replace 2 values with average.

Projection onto Wi+1:
x′i+1(t) = [sin(2ij) + sin(2i(j + 1))]/2,
if 2i+1(j/2) < t < 2i+1(j/2 + 1)
Replace 2 values with difference.
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3.1 Haar Function→Haar Transform: Bases

φ(t) =
{

1, if 0 < t < 1;
0, otherwise.

φ(t) = φ(2t) + φ(2t− 1) → g0 = g1 = 1

hn = g1−n(−1)n → h0 = 1, h1 = −1 →

ψ(t) = φ(2t)− φ(2t− 1) =





1, if 0 < t < 1/2;
−1, if 1/2 < t < 1;
0, otherwise.

Scaling function φ(t) Basis function ψ(t)
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3.2 Sinc Function→LP Wavelet

1. V0 = {functions bandlimited to [−π, π]
2. V−i = {functions bandlimited to [−2iπ, 2iπ]
3. W−i = {functions bandlimited to

[−2i+1π,−2iπ]
⋃

[2iπ, 2i+1π]

Note Vi=space of lowpass signals
while Wi=space of bandpass signals

φ(t) = sin(πt)
πt (lowpass)

ψ(t) = sin(πt/2)
πt/2 cos(3πt/2) (bandpass)

G(ejω) =
{√

2, if |ω| < π
2 ;

0, if otherwise.

H(ejω) =
{
−√2e−jω, if π

2 < |ω| < π;
0, if otherwise.

Scaling function φ(t) Basis function ψ(t)

16



3.2 Sinc Function→LP Wavelet, continued

1. LP=Littlewood-Paley wavelet
2. Octave-band decomposition
3. Constant-Q filtering
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3.3 Splines→Battle-Lemarie

DEF: Splines are polynomials over finite inter-
vals with continuous derivatives at interval ends.

DEF: V k
i = {piecewise polynomial functions

of degree k with boundaries at t = 2ij and k − 1
continuous derivatives at those boundaries}.

DEF: B-Splines are convolutions of Haar scal-
ing function with itself. They and their translations
are (non-orthogonal) bases for V k

0 .

1. Since B-splines not orthogonal, Gram-Schmidt
2. Go through 2-scale equation, get:
3. Battle-Lemarie wavelet basis function
4. limk→∞ φ(t) = sinc →L-P wavelet

limk→0 φ(t) = Haar →Haar wavelet

Thus Battle-Lemarie wavelet becomes Haar and
L-P wavelets in extreme cases.

Scaling function φ(t) Basis function ψ(t)
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3.4 General Properties of Wavelets

1. φ(t) is lowpass filter
ψ(t) is bandpass filter
Sometimes need BOTH (e.g., DC for L-P)

2. Localized in both time and frequency:
a. xi

j has information about x(t) for
t ≈ 2ij or j ≈ 2−it

b. Since ψ(t) is bandpass, xi
j has information

about X(ω) for ω ≈ 2−icenter frequency
3. Sampling rate is scale-dependent:

4. Ψ(0) = 0 always; often also zero moments:

∫ ∞

−∞
tkψ(t)dt =

dkΨ
dωk

|ω=0 = 0

Battle-Lemarie: based on kth-order spline.
→ first k + 1 moments zero.
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3.5 2-D Wavelet Transform

Just perform wavelet transform in both variables:

f(x, y) =
∑ ∑

f i,m
j,n 2−i/2ψ(2−ix−j)2−m/2ψ(2−my−n)

f i,m
j,n =

∫ ∫
f(x, y)2−i/2ψ(2−ix−j)2−m/2ψ(2−my−n)dx dy

There is another decomposition that is more useful:

x(t) =
∞∑

i=−∞

∞∑

j=−∞
xi

j2
−i/2ψ(2−it− j) =

∞∑

j=−∞
cN
j 2−N/2φ(2−N t−j)+

N∑

i=−∞

∞∑

j=−∞
xi

j2
−i/2ψ(2−it−j)

where
xi

j =
∫ ∞

−∞
x(t)2−i/2ψ(2−it− j)

cN
j =

∫ ∞

−∞
x(t)2−N/2φ(2−N t− j)

The scaling function at scale N replaces the
effects of all basis functions at scales coarser
(larger) than N .
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3.5 2-D Wavelet Transform, continued

In 2-D this becomes

f(x, y) =
∞∑

j=−∞

∞∑
n=−∞

fN
j,n2−Nφ(2−Nx−j)φ(2−Ny−n)

+
N∑

i=−∞

∞∑

j=−∞

∞∑
n=−∞

f
i,(1)
j,n 2−iψ(2−ix− j)φ(2−iy − n)

+f
i,(2)
j,n φ(2−ix−j)ψ(2−iy−n)+f

i,(3)
j,n ψ(2−ix−j)ψ(2−iy−n)

where

fN
j,n =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)2−Nφ(2−Nx−j)φ(2−Ny−n)

f
i,(1)
j,n =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)2−iψ(2−ix−j)φ(2−iy−n)dx dy

f
i,(2)
j,n =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)2−iφ(2−ix−j)ψ(2−iy−n)dx dy

f
i,(3)
j,n =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)2−iψ(2−ix−j)ψ(2−iy−n)dx dy

Note products of scaling and basis functions are
1. bandpass×lowpass
2. lowpass×bandpass
3. bandpass×bandpass

21



4. APPLICATIONS OF WAVELETS

4.1 Sparsification of Operators

Problem: Solve the integral equation

g(x) =
∫ b

a

h(x, y)u(y)dy, a < x < b

Examples of Applications:
1. Deconvolution
2. kernel=electromagnetic Green’s function
3. Laplace equation in free space:

h(x, y) = h(|x− y|) = h(r)
a. 2-D: = − 1

2π log r
b. 3-D: = 1

4πr

Galerkin’s method (project onto bases)→

gi
j =

∑
m

∑
n

hi,m
j,n um

n

FACT: Using Battle-Lemarie wavelets makes the
block matrix hi,m

j,n sparse:
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4.1 Sparsification of Operators, continued

Why does this happen?
h(x, y) is Calderon-Zygmund operator if

| ∂k

∂xk
h(x, y)|+ | ∂k

∂yk
h(x, y)| < Ck

|x− y|k+1

Many Green’s functions are Calderon-Zygmund.

1. If use wavelets as Galerkin basis function
2. and if first k moments of basis function=0

(e.g., Battle-Lemarie wavelets)
3. Then for |j − n| > 2k we have

|hi,(1)
j,n |+ |hi,(2)

j,n |+ |hi,(3)
j,n | < Ck

1 + |j − n|k+1

1. Dropoff from main diagonal as |j − n|−(k+1)

2. Faster than discretization→ |j − n|−1

3. Matrix sparse → faster iterative algorithms.

Why does this happen?

1. First k moments zero→ Ψ(ω) ≈ ωk

2. So wavelet transform≈ kth derivative.
3. Wavelet basis function≈differentiatiors.

h(x, y) Calderon-Zygmund→
kth derivative drops off as |x− y|k+1.
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4.2 Compression of Signals

IDEA: Represent signals using fewer numbers

1. Simplifies processing
(e.g., operator sparsification)

2. Greatly reduces storage
(especially important for images)

What advantages to using wavelets?

1. Signals have slow-varying parts (regions) and
fast-varying parts (edges)

2. Fast-varying part ANYWHERE in signal
→high Fourier frequencies EVERYWHERE
→sample finely everywhere→many numbers

3. Fast-varying parts using local bases and
slow-varying parts using global bases

4. Use many numbers for fast-varying parts,
BUT ONLY LOCALLY.
Use few numbers for slow-varying parts.
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4.3 Localized Denoising

1. Can perform ”localized lowpass filtering”:
a. Where signal is LOCALLY smooth,

filter→reduce noise
b. Where signal is LOCALLY rapidly

changing (edges), accept noise
c. Threshold wavelet coefficients
d. Very attractive for images

2. Contrast to Wiener filtering:
a. Fourier→spatially invariant
b. Must do same filtering everywhere
c. Trade off denoising & smoothing edges

3. Localized lowpass filtering:
a. ≈Wiener filtering in space and scale
b. If edge present, high-resolution coeff6= 0
c. If edge absent, high-resolution coeff= 0

4. Use threshold (1-bit Wiener filter):
a. If above threshold, keep coefficient
b. If below threshold, set coefficient to zero.
c. Eliminates noise.
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4.4 Tomography under Wavelet Constraints

B. Sahiner and A.E. Yagle

Since wavelets are basis functions,
can incorporate localized LPF
INTO the reconstruction procedure:

Problem: Reconstruct image µ(x, y)
from projections p(r, θ)

p(r, θ) =
∫ ∫

µ(x, y)δ(r − x cos θ − y sin θ)dx dy

Interested in high-resolution features (such as edges,
calcifications) which are localized.

Don’t want them smoothed.

Procedure:

1. Reconstruct noisy WT{µ(x, y)}
2. Threshold WT{µ(x, y)}
3. Impose constraints: some WT{µ(x, y)} = 0
4. Solve constrained problem

Advantage: Improves reconstruction OUTSIDE
constrained region!

Reason: R not unitary operator.
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