- (50) 1. Go through all of the wavelet equations for $h_0(n) = \delta(n)$:
 - (5) a. Show $\{h_0(n-j), j \in integers\}$ spans the space of square-summable functions.
 - (5) b. Write the Smith-Barnwell condition; show this $h_0(n)$ satisfies it.
 - (5) c. Compute the filters $h_1(n), q_0(n), q_1(n)$.
 - (5) d. Draw a two-stage-deep subband coder. Specify all filters.
 - (5) e. Input to (d) is $\{3, 1, 4, 1, 5, 9, 2, 6\}$. Specify signal at each point in the coder.
 - (5) f. Explain why the time shift in (c) is needed for perfect reconstruction.
 - (5) g. Starting with $\phi(t) = \begin{cases} 1, & \text{if } 0 < t < 1 \\ 0, & \text{otherwise} \end{cases}$ what *exactly* is the k^{th} iteration of the 2-scale equation?

- (5) h. Why doesn't the 2-scale equation converge for this $h_0(n)$?
- (10) i. The 2-scale equation almost converges to $\phi(t) = \delta(t)$. Show $\delta(t)$ defines a multiresolution analysis $\cdots V_0 \subset V_{-1} \subset \cdots \neq L^2$ Specify V_0 and give typical nontrivial members of V_0 and V_{-1} .
- (30) 2. Let's design the discrete-time D2 Daubechies basis function without performing a spectral factorization (hooray!) Start by writing $H_0(z) = (1+z)^2(z+b)c$ for some constants b, c.
 - (5) a. Compute $h_0(n)$ for all n in terms of b, c.
 - (5) b. Write the Smith-Barnwell condition in the *time domain*.
 - (5) c. Use (b) to obtain a quadratic equation for b.
 - (5) d. Solve (c). Explain why you chose the root you chose.
 - (5) e. Compute $h_0(n)$, leaving c undetermined. Show that it's right!
 - (5) f. Compute $h_1(n)$ from (e).
- (20) 3. We wish to approximate $\sqrt{|t|}$ over -1 < t < 1 using Legendre polynomials $\phi_i(t)$. Start by writing $\sqrt{|t|} = c_0 \phi_0(t) + c_1 \phi_1(t) + c_2 \phi_2(t).$
 - (10) a. Compute c_0, c_1, c_2 . NOTE: $\int_{-1}^1 \sqrt{|t|} t^n dt = \begin{cases} \frac{4}{3}, & \text{if } n = 0\\ 0, & \text{if } n = 1\\ \frac{4}{7}, & \text{if } n = 2. \end{cases}$
 - (10) b. Compute a_0, a_1, a_2 minimizing $\int_{-1}^{1} [\sqrt{|t|} (a_2t^2 + a_1t + a_0)]^2 dt$. Set $\frac{\partial}{\partial a_i}$ [above integral]=0 to get 3 linear equations in 3 unknowns. Show your answers to (a) and (b) agree. Which way is easier?

DON'T FORGET TO WRITE OUT AND SIGN THE HONOR PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violation of the honor code."