Given: \(x(t) \) is a real-valued 0-mean WSS random process (RP).
With: Autocorrelation \(R_x(\tau) = E[x(t)x(t+\tau)] \) for any time \(t \),
Note: \(x(t) \) 0-mean → \(R_x(\tau) = K_x(\tau) \)=covariance func. & lag \(\tau \).
WSS: \(E[x(t)x(s)] = R_x(t-s) \); not function of \(t \) and \(s \) separately.

DEF: Power spectral density (PSD) \(S_x(\omega) \) is defined as:
\[
S_x(\omega) = \mathcal{F}\{R_x(\tau)\} = \int_{-\infty}^{\infty} R_x(\tau)e^{-j\omega \tau}d\tau = 2\int_{0}^{\infty} R_x(\tau)\cos(\omega \tau)d\tau.
\]
\[
R_x(\tau) = \mathcal{F}^{-1}\{S_x(\omega)\} = \int_{-\infty}^{\infty} S_x(\omega)e^{j\omega \tau}d\omega = \int_{0}^{\infty} S_x(\omega)\cos(\omega \tau)\frac{d\omega}{\pi}.
\]
Assume: \(x(t) \) is 2nd-order process: \(E[x(t)^2] < \infty \) (except: white).

Properties of Power Spectral Density
1. \(x(t) \) real → \(R_x(\tau) = R_x(-\tau) \) → \(S_x(\omega) = S_x(-\omega) \) is real:
\[
\mathcal{F}\{\text{real, even function}\} = \text{real, even function} \rightarrow \text{cosine xform}.
\]
2. \(R_x(\tau) \) is positive semidefinite \(\Leftrightarrow S_x(\omega) \geq 0 \):
\[
\sigma_y^2 = \int \int f(t)x(t)dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)R_x(t-s)f^*(s)ds dt \geq 0.
\]

Proof: \(\Rightarrow \): Suppose \(\exists \omega_o \) so that \(S_x(\omega_o) < 0 \). Let \(f(t) = e^{j\omega_0 t} \).
Then: \(\sigma_y^2 = \int \int e^{j\omega_0 t}R_x(t-s)e^{-j\omega_0 s}dt ds = S_x(\omega_o) \cdot \infty < 0 \).

Proof: \(\Leftarrow \): For any real \(f(t) \), write \(f(t) = \int F(\omega)e^{j\omega t}d\omega \).
Then: \(\sigma_y^2 = \int |F(\omega)|^2S_x(\omega)d\omega \geq 0 \) using Parseval twice.

Note: Much simpler in the frequency domain! (just nonnegative)
4. Average power = \(E[x(t)^2] = \sigma_x^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_x(\omega)d\omega \).

Note: “Power” is the tendency of random \(|x(t)| \) to be large:
Larger variance → broader pdf → RV tends to be larger.
EX: Let \(v(t) \)=random voltage across a resistor \(R = 1\Omega \).
Average power = \(E[v(t)^2] \); large despite \(E[v(t)] = 0 \).
1. LTI system; impulse response \(h(t) : \delta(t) \rightarrow |h(t)| \rightarrow h(t) \)

2. LTI system has transfer function \(H(\omega) = \mathcal{F}\{h(t)\} \):
 \[
 \cos(\omega t) \rightarrow |h(t)| \rightarrow |H(\omega)| \cos(\omega t + \text{ARG}[H(\omega)])
 \]

3. WSS random processes: \(x(t) \rightarrow |h(t)| \rightarrow y(t) \)

4. IMPORTANT FORMULA: \(S_y(\omega) = |H(\omega)|^2 S_x(\omega) \).

From: Take \(\mathcal{F} \) of \(R_y(\tau) = \int \int h(u)h(v)R_x(\tau - u + v)du \, dv \).

Note: Compare to random vectors: \(y = Ax \rightarrow K_y = AK_xA^T \).

EX: \(x(t) \rightarrow |dy/dt + ay(t) = x(t)| \rightarrow y(t), \quad a > 0 \) so stable.

\(x(t) \) is a 0-mean uncorrelated WSS RP. What is \(S_y(\omega) \)?

1. 0-mean WSS uncorrelated \(\rightarrow R_x(\tau) = \delta(\tau) \rightarrow S_x(\omega) = 1. \) (Assume WLOG that the area under impulse is unity.)

2a. Impulse response: \(h(t) = e^{-at} \) for \(t \geq 0 \); 0 otherwise.

2b. Transfer function: \(H(\omega) = \mathcal{F}\{h(t)\} = 1/(j\omega + a) \).

3. \(S_y(\omega) = |1/(j\omega + a)|^2 \cdot 1 = 1/(\omega^2 + a^2) \).

4. \(R_y(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\omega^2 + a^2} e^{j\omega \tau} d\omega = \frac{1}{2a} e^{-a|\tau|} \).

5. \(\sigma_y^2(t) = E[y(t)^2] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\omega^2 + a^2} d\omega = R_y(0) = \frac{1}{2a} \).

6. \(x(t) \) Gaussian \(\rightarrow y(t) \) Gaussian \(\rightarrow f_{y(t)}(Y) \sim N(0, \frac{1}{2a}) \).

7. See p. 487 of Stark and Woods for more details.

EX: \(x(t) \) Gaussian; \(a = 5 \).

\(Pr[1 < x(5) < 2 & 3 < x(6) < 4] = ? \)

Soln: \(Pr = \int_1^2 \int_3^4 \frac{1}{2\pi} \frac{1}{\sqrt{\det[K]}} e^{-\frac{1}{2} [X_5, X_6]K^{-1}[X_5, X_6]' dX_6 dX_5 \}

where: \(K = \frac{1}{10} \begin{bmatrix} 1 & e^{-5} \\ e^{-5} & 1 \end{bmatrix} \rightarrow \det[K] = 0.01(1 - e^{-10}) \).
Def: A 0-mean WSS RP $x(t)$ is a white process if $S_x(\omega) = \sigma^2$ for some positive constant $\sigma^2 > 0$.

Comments on White Processes:

1. All frequencies ω equally represented \rightarrow ”white” process: Red+orange+yellow+green+blue+violet+others=white if all colors (even not listed) present in equal strengths.

2. $R_x(\tau) = \sigma^2 \delta(\tau)$; $x(t)$ is an uncorrelated process.

3. Power $= R_x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sigma^2 d\omega \to \infty!$ (impulse at $\tau = 0$).
 a. Infinite power \rightarrow white process cannot exist physically!
 b. NOT a 2nd-order process. Still: often used in models.

4. Implications of continuous-time uncorrelated RP:
 a. Knowledge of $x(7)$ does not help you predict $x(7.000001)$;
 b. Typical sample function (realization) of a white RP: \sim scatter plot (dust sprinkled on figure with t axis).
 c. Takes infinite power to be able to move from $x(7)$ to different value $x(7.000001)$ in almost-zero time.

So What Good are White RPs If They Don’t Exist?

1a. In modelling: Usually pass white $x(t)$ through LTI system.
1b. Real-life systems have finite bandwidth: $\lim_{\omega \to \infty} |H(\omega)| = 0$.
1c. So $S_x(\omega)$ doesn’t matter for large ω: gets filtered anyway.
 White input and bandlimited white input \rightarrow same output.

2. A 2nd-order 0-mean WSS RP $x(t)$ can be modelled as:
 white RP \rightarrow $|H(\omega) = \sqrt{S_x(\omega)}| \to x(t)$. OR: $H(\omega)$ causal.

$$H(s) = \prod \frac{(s+z_i)(s+z_i^*)}{(s+p_i)(s+p_i^*)} \rightarrow S_x(\omega) = \prod \frac{(\omega^2+z_i^2)(\omega^2+z_i^{*2})}{(\omega^2+p_i^2)(\omega^2+p_i^{*2})} = \prod \frac{|\omega^2+z_i^2|^2}{|\omega^2+p_i^2|^2}.$$

using: $(j\omega+z)(-j\omega+z)(j\omega+z^*)(-j\omega+z^*) = (\omega^2+z^2)(\omega^2+z^{*2})$.

$$\prod \frac{(\omega^2+z_i^2)(\omega^2+z_i^{*2})}{(\omega^2+p_i^2)(\omega^2+p_i^{*2})}.$$
1. \(x(t) \rightarrow |H(\omega)| \rightarrow y(t) \), \(H(\omega) = \begin{cases} 1, & \text{if } 3 \leq |\omega| \leq 3.001; \\ 0, & \text{otherwise.} \end{cases} \)

2. Then \(S_y(\omega) = \begin{cases} S_x(\omega) \approx S_x(3), & \text{if } 3 \leq |\omega| \leq 3.001; \\ 0, & \text{otherwise.} \end{cases} \)

3. Then the average power \(E[y(t)^2] \) in output \(y(t) \) is:

\[
E[y(t)^2] = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_y(\omega)d\omega = \frac{2}{2\pi} \int_{3}^{3.001} S_x(\omega)d\omega \approx \frac{0.001}{\pi} S_x(3).
\]

4. **Interpretation:** \(S_x(3) \) is the average power per unit bilateral bandwidth in \(x(t) \) at \(\omega = 3 \):

 a. **Bilateral:** components at both \(\omega = 3 \) and \(\omega = -3 \);
 b. \(\frac{2\Delta}{2\pi} S_x(\omega_o) \) is the average power in random process \(x(t) \) in the frequency band of width \(\Delta \): \(\omega_o \leq \omega \leq \omega_o + \Delta \).
 c. **Units:** \(x(t) \) volts \(\rightarrow \frac{1}{2\pi} S_x(\omega) \frac{\text{volts}^2}{\text{rad/sec}}; \ S_x(f) \frac{\text{volts}^2}{\text{Hertz}}. \)

5. \(S_x(\omega) \) must be multiplied by frequency to get power in a frequency band; it is a power spectral **density**:

 a. \(\bullet \ S_x(\omega_o)\frac{2\Delta}{2\pi} = \text{Power in } [\omega_o \leq \omega \leq \omega_o + \Delta]. \)
 b. \(\bullet \ S_x(f_o)2\Delta = \text{Power in } [f_o \leq f \leq f_o + \Delta]. \)
 c. **Compare:** \(f_x(X)\Delta = Pr[X \leq x \leq X + \Delta]. \)

6. This interpretation makes the following evident:

 a. \(S_x(\omega) \geq 0 \): otherwise power in some frequency band would be negative! **Compare to:** \(f_x(X) \geq 0. \)
 b. Total average power=\(E[x(t)^2] = \int_{-\infty}^{\infty} S_x(f)df. \)

 Compare to: Total probability=\(\int_{-\infty}^{\infty} f_x(X)dX = 1. \)
1. Recall we can *decorrelate* a random N-vector \(x \) as follows:
 a. Covariance matrix \(K_x \) has \(N \) eigenvalues \(\lambda_i \) and eigenvectors \(\phi_i, \) \(i = 1 \ldots N \), where \(K_x \phi_i = \lambda_i \phi_i \).
 b. Let \(A = [\phi_1 \ldots \phi_N]^T \) (don’t forget transpose!) and \(y = Ax \). Then: \(y_i = \phi_i^T x = \phi_i \cdot x = \sum_{j=1}^{N} (\phi_i)_j x_j \).
 c. Then \(K_y = AK_xA^T = \text{DIAG}[\lambda_1 \ldots \lambda_N] \) and then \(E[y_i y_j] = \lambda_i \delta(i-j) \) \(\rightarrow \{y_i\} \) have been decorrelated.
 d. \(y = Ax \rightarrow x = A^T y \rightarrow x = \sum_{i=1}^{N} y_i \phi_i \): \(x \) = sum of uncorrelated RVs \(\times \) eigenvectors.

2. Now try this for 2nd-order 0-mean WSS processes:
 a. Eigenfunctions of LTI systems: \(\phi(t) = e^{j\omega t} \): Means \(e^{j\omega t} \rightarrow |H(\omega)| \rightarrow H(\omega)e^{j\omega t} = |H(\omega)|e^{(j\omega t + \text{ARG}[H(\omega)])} \).

3. \(x(t) \) is a real-valued 2nd-order 0-mean WSS process.
 a. Define RVs \(X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} \), for all \(\omega \).
 b. Then \(\{X(\omega)\} \) are uncorrelated random variables:
 \[E[X(\omega_1)X^*(\omega_2)] = 2\pi S_x(\omega_1)\delta(\omega_1 - \omega_2). \]

4. Spectral interpretation of 2nd-order WSS RPs:
 \(x(t) = \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} \frac{d\omega}{2\pi} : \int \) uncorrelated RVs \(\times \) eigenfunctions.

5. We have for *finite but large* \(T \) and interval \([-T/2, T/2] \):
 \[\textbf{K-L:} \ x(t) = \sum_{n=-\infty}^{\infty} x_n \frac{1}{\sqrt{T}} e^{j2\pi nt/T}, \ |t| \leq T/2 \rightarrow \infty, \]
 where: \(x_n = \int_{-T/2}^{T/2} x(t) \frac{1}{\sqrt{T}} e^{-j2\pi nt/T} dt \) for integers \(n \).
 Then: \(E[x_i x_j] = S_x(2\pi i/T)\delta(i-j) \rightarrow \{x_n\} \) uncorrelated.
 \[\textbf{DEF:} \ \text{This is Karhunen-Loeve expansion for WSS processes.} \]
 \[\textbf{Works:} \ S_x(\omega) \approx 0 \ for \ |\omega| > B \rightarrow \text{need} \ TB >> 1. \]
1. \(E[X(\omega_1)X^*(\omega_2)] = E[\int x(t)e^{-j\omega_1 t}dt \int x(s)e^{j\omega_2 s}ds] = \int \int E[x(t)x(s)]e^{-j(\omega_1 t-\omega_2 s)}dt ds. \) \(E[x(t)x(s)] = R_x(t-s). \)

2. Change variables: \(t, s \rightarrow \tau = t - s, z = t + s : |J| = 2. \)

\[
E[X(\omega_1)X^*(\omega_2)] = \int \int R_x(\tau)e^{-j[\omega_1(\tau+z)+\omega_2(\tau-z)]/2} \frac{d\tau dz}{2}
\]

\[
= \int R_x(\tau)e^{-j\frac{\omega_1+\omega_2}{2}\tau} d\tau \int e^{-j\frac{\omega_1-\omega_2}{2}z} \left(\frac{dz}{2} \right) [\mathcal{F}\{1\} = 2\pi \delta(\omega)]
\]

\[
= 2\pi S_x \left(\frac{\omega_1+\omega_2}{2} \right) \delta(\omega_1 - \omega_2) = 2\pi S_x(\omega_1)\delta(\omega_1 - \omega_2). \quad \text{QED.}
\]

Gaussian RPs and The Distribution of \(X(\omega) \)

1. Let \(x(t) \) be Gaussian RP \(\rightarrow X(\omega) \) Gaussian RVs:
 a. \(\text{Re}[X(\omega)] \) and \(\text{Im}[X(\omega)] \) are Gaussian RVs;
 b. \(|X(\omega)| \) Rayleigh RVs; \(\text{ARG}[X(\omega)] \) uniform RVs.

 Rayleigh pdf: \(f_z(Z) = \frac{Z}{\sigma^2} e^{-Z^2/(2\sigma^2)}, Z \geq 0. \) p. 138.

2a. **Physical** Let \(H(\omega) = \delta(\omega - \omega_o) + \delta(\omega + \omega_o): \)

 interpretation: \(H(\omega) \) passes ONLY frequency \(\omega_o. \)

 b. \(x(t) \rightarrow |H(\omega)| \rightarrow y(t); \) \(H(\omega) \) narrowband.

3. All possible sample functions of RP \(x(t) \) are filtered.
 a. \(y(t) = A \cos(\omega_o t) + B \sin(\omega_o t) \) for RVs \(A, B. \)
 b. Jointly Gaussian RVs \(A, B \sim N(0, S_x(\omega_o)\pi \infty). \)

REF: Papoulis, 3\(^{rd}\) ed. (1991), pp. 416-418.
Let: \(x(t)\) and \(y(t)\) be real-valued 0-mean jointly WSS RPs.

with: Cross-correlation \(R_{xy}(\tau) = E[x(t)y(t - \tau)]\) for any \(t\).

Means: \(E[x(t)y(s)] = R_{xy}(t - s)\); jointly WSS \(\rightarrow\) not \(t, s\) separately.

Def: The Cross-Spectral Density \(S_{xy}(\omega)\) is defined as:

\[
S_{xy}(\omega) = \mathcal{F}\{R_{xy}(\tau)\}; \quad R_{xy}(\tau) = \mathcal{F}^{-1}\{S_{xy}(\omega)\}.
\]

Properties of The Cross-Spectral Density

1. \(R_{yx}(\tau) = R_{xy}(-\tau) \rightarrow S_{yx}(\omega) = S_{xy}(-\omega) = S_{xy}^*(\omega)\).
2. \(S_{xy}(\omega)\), unlike \(S_x(\omega)\), is not a real or even function.
3. WSS random processes: \(x(t) \rightarrow |H(\omega)| \rightarrow y(t)\)

FORMULA: \(S_{yx}(\omega) = H(\omega)S_x(\omega)\) (note \(S_{yx}\), not \(S_{xy}\)):

Take \(\mathcal{F}\) of \(R_{yx}(\tau) = \int h(u)R_x(\tau - u)du\).

4. From \#1 and \#3 we have \(S_{xy}(\omega) = H^*(\omega)S_x(\omega)\).
5. Exchange \(x(t), y(t)\) and replace \(H(\omega)\) with \(\frac{1}{H(\omega)}\):

\[
S_{yx}(\omega) = \frac{1}{H^*(\omega)}S_y(\omega) \rightarrow S_y(\omega) = |H(\omega)|^2S_x(\omega)!
\]

Example of Cross-Spectral Density

Let \(x(t) \rightarrow |F(\omega)| \rightarrow y(t)\) and \(x(t) \rightarrow |G(\omega)| \rightarrow z(t)\)

Compute the cross-spectral density \(S_{yz}(\omega)\). Solution:

1. \(x(t), y(t), z(t)\) are real-valued 0-mean jointly WSS RPs.
2. \(y(t) = \int f(u)x(t - u)du\) and \(z(s) = \int g(v)x(s - v)dv\) →
3. \(E[y(t)z(s)] = \int \int f(u)g(v)E[x(t - u)x(s - v)]du dv \rightarrow R_{yz}(t - s) = \int \int f(u)g(v)R_x(t - s - u + v)du dv \rightarrow S_{yz}(\omega) = F(\omega)G^*(\omega)S_x(\omega)\). Neat formula! (I think so)
4. Passbands of \(F(\omega)\) and \(G(\omega)\) don’t overlap \(\rightarrow R_{yz}(\tau) = 0\). \(y(t)\) and \(z(t)\) (different frequency components of \(x(t)\)) are uncorrelated \(\rightarrow\) spectral interpretation of WSS RPs.
Infinite Smoothing Filter for Signal in Noise:

1. \(y(t), x(t), v(t) \) are 2nd-order 0-mean jointly WSS RPs.
 a. Observe \(y(t) = x(t) + v(t) \) where \(E[x(t)v(s)] = 0 \).
 b. \(x(t) = \text{signal}, v(t) = \text{noise}, y(t) = \text{noisy data} \).

2. We have the following (cross)covariance functions:
 a. \(R_{xy} = E[x(t)y(s)] = E[x(t)(x(s) + v(s))] = R_x \).
 b. \(R_y = E[(x(t) + v(t))(x(s) + v(s))] = R_x + R_v \).

3. GOAL: Compute LLSE of \(x(t) \) from \(\{y(s), -\infty < s < \infty\} \).
 NOTE: \(x(t), v(t) \) jointly Gaussian RPs \(\rightarrow \hat{x}_{\text{LLSE}} = \hat{x}_{\text{LS}} \).

4. LEMMA: 0-mean uncorrelated \(\{x(i)\} \) and \(\{v(i)\} \).
 Observe \(y(n) = x(n) + v(n) \) where \(E[x(i)v(j)] = 0 \).
 Then LLSE of \(x(i) \) from \(\{y(j), -\infty < j < \infty\} \) is
 \[
 \hat{x} = K_{xy} K_y^{-1} y = K_x(K_x + K_v)^{-1} y
 = \text{DIAG}[\sigma^2_{x(i)}] \text{DIAG}[\sigma^2_{x(i)} + \sigma^2_{v(i)}]^{-1} y
 \]
 \(\rightarrow \hat{x}(i) = \frac{\sigma^2_{x(i)}}{\sigma^2_{x(i)} + \sigma^2_{v(i)}} y(i) \) where \(y = \text{vector of} \{y(j)\} \).
 Problem decouples since the \(\{y(j)\} \) are uncorrelated.

5. Write \(x(t) = \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} \frac{d\omega}{2\pi} \); write \(y(t), v(t) \) similarly.
 Apply LEMMA to RVs \(X(\omega), Y(\omega), V(\omega) \). Solution:
 \[
 y(t) \rightarrow \left| \frac{S_x(\omega)}{S_x(\omega) + S_v(\omega)} \right| \rightarrow \hat{x}(t).
 \]

6. Comments:
 a. More insightful than Recitation derivation!
 b. Shows significance of decorrelation=prewhitening: Eliminates need to compute \(K_y^{-1} \) (saves much work).
 c. See Stark and Woods p. 553 for more details.