EECS 501

POWER SPECTRAL DENSITY Fall 2000

Given:
With:
Note:
WSS:

x(t) is a real-valued 0-mean WSS random process (RP).
Autocorrelation R, (7) = E|x(t)x(t + 7)] for any time t,
z(t) 0-mean— R, (7) = K, (7)=covariance func. & lag 7.
Elx(t)x(s)] = R.(t—s); not function of ¢ and s separately.

DEF:
Sz (W)
R.(7)

Assume:

Power spectral density (PSD) S, (w) is deﬁned as:

= F{R,(1)} = [T Ru(T)e 7“"dr = 2f0 )cos(wT)dT.
= FHSu(w)} = [, Sulw = Jo Sal =
x(t) is 2nd-order process: E[az( )? ] < 00 (except. white).

)elwT d“" ) cos(wT)

. x(t) real— R, (T)

Properties of Power Spectral Density
Ry(—7) = Sp(w) = S (—w) is real:

F{real, even function }=real,even function—cosine xform.

R, (7) is positive semidefinite < S, (w) > O:

2 — o0 o0 . * >
Uy(t):ff(t)m(t)dt f_oo f_oo f(&)R.(t — s)f*(s)dtds > 0.

Proof:
Then:

Proof:
Then:
Note:

:> Suppose Jw, so that S, (w,) < 0. Let f(t) = e?«°?.
o = [ [P Ry (t — s)e™7¥°%dt ds = Sy (w,) - 00 < 0.

«<: For any real f(t), write f(t) = [ F(w)e’*!dw.
o; = [ |F(w)|*Se(w)dw > 0 using Parseval twice.
Much simpler in the frequency domain! (just nonnegative)

. See table of properties on p.471 of Stark and Woods.

Average power = E[z(t)?] = ax(t) = [T Sa(

Note:

EX:

“Power” is the tendency of random |z(%)| to be large:
Larger variance—broader pdf—RV tends to be larger.
Let v(t)=random voltage across a resistor R = 1€).
Average power=E[v(t)?]; large despite E[v(t)] = 0.



EECS 501 PSD OF LINEAR TIME-INVARIANT Fall 2000
(LTT) SYSTEM OUTPUT WITH WSS PROCESS INPUT

1. LTT system; impulse response h(t):6(t) — |h(t)| — h(t)
2. LTI system has transfer function H(w) = F{h(t)}:
cos(wt) — |h(t)| — |H(w)| cos(wt + ARG[H (w)])
3. WSS random processes: x(t) — |h(t)| — y(t)
4. IMPORTANT FORMULA S (W) = [H(w)[2S, ().
From: Take F of R,(7) = [ [ h(u)h(v)Ry(T — u + v)du dv.

Note: Compare to random vectors y = Ar — K, = AK, A",

EX: z(t) — \Z—?j +ay(t) = z(t)| — y(t), a > 0 so stable.
z(t) is a O-mean uncorrelated WSS RP. What is S, (w)?

1. 0-mean WSS uncorrelated— R, (7) = d(7) — Sz (w) =
(Assume WLOG that the area under impulse is unity.)

2a. Impulse response: h(t) = e~ for t > 0; 0 otherwise.
2b. Transfer function: H(w) = F{h(t)} = 1/(jw + a).

3. S,(w) = [1/(jw +a)* - 1 = 1/(w? + a?).

_ 1 (® _ 1 _jwrg _ 1 _—alr|
Ry(T)—27T oo 7aTC dw = 5-€ .

y(t) o E[ ( ) ] = 217r oooo w2—|—a2dw — Ry(o) - %

z(t) Gaussian— y(t) Gaussian— f,;)(Y) ~ N(0, 5-).

See p. 487 of Stark and Woods for more details.
EX: z(t) Gaussian; a = 5. Pr[l < z(5) < 2&3 < z(6) < 4]=

Soln: Pr =[] [} %We—%[X5,X6]K—1[X5,x6rdX6 e

-5
where: K = [615 61 ] — det[K] = 0.01(1 — e~ 10).

.\1.@.@‘ a




EECS 501 WHITE PROCESSES Fall 2000

Def: A 0-mean WSS RP z(t) is a white process if
S, (w) = o2 for some positive constant o2 > 0.

Comments on White Processes:

1. All frequencies w equally represented—”white” process:
Red+orange+yellow+green-+blue+violet+others=white
if all colors (even not listed) present in equal strengths.

2. R.(7) =026(7); z(t) is an uncorrelated process.

3. Power=R,(0) = 5= [~ o0%dw — oo! (impulse at 7 = 0).

a. Infinite power— white process cannot exist physically!
b. NOT a 2nd-order process. Still: often used in models.

4. Implications of continuous-time uncorrelated RP:

a. Knowledge of 2(7) does not help you predict x(7.000001);

b. Typical sample function (realization) of a white RP:
~scatter plot (dust sprinkled on figure with ¢ axis).

c. Takes infinite power to be able to move from x(7)

to different value z(7.000001) in almost-zero time.

So What Good are White RPs If They Don’t Exist?

la. In modelling: Usually pass white z(¢) through LTI system.
1b. Real-life systems have finite bandwidth: wimoo |H(w)| = 0.
lc. So Sy (w) doesn’t matter for large w: gets filtered anyway.

White input and bandlimited white input—same output.
2. A 2nd-order 0-mean WSS RP z(t) can be modelled as:

white RP— |H(w) = /S;(w)| — x(t). OR: H(w) causal.

_ TG+ (s+2)) _ w2 (@22 [ Iw? 4271
H) = ermaern %) = [fomerm® = [[vete
using: (jw+2)(—jw+2)(jw+z*)(—jw+z*) = (W?+22)(Ww? +2*2).




EECS 501 INTERPRETATION OF PSD Fall 2000

1, if 3 <|w| < 3.001;
0, otherwise.

L a(t) — TH@)] — y(t), Hw) = {

Se(w) = S5;(3), if 3 < |w| <3.001;
0, otherwise.
2] in output y(t) is

2. Then Sy (w) = {
3. Then the average power E|y(t)
Ely)?] = o= [2 Sy (w)dw = 2 [ S (w)dw =~ 201G (3).
4. Interpretation: S, (3 ) is the average power
per unit bilateral bandwidth in x(t) at w = 3:

a. Bilateral: components at both w = 3 and w = —3;
b. %Sm (wo) is the average power in random process x(t)

in the frequency band of width A: w, < w < w, + A.
c. Units: z(t) volts— 5= S (w) volts” . S (f) volts

rad/sec’ Hertz*

5. Sz (w) must be multiplied by frequency to get power
in a frequency band; it is a power spectral density:

a. e Sx(wo)% = Powerin [w, < w < w, + Al.

b. e S.(fo)2A = Powerin [f, < f < f,+ Al

c. Compare: f,(X)A=Pr(X <z < X+ A

6. This interpretation makes the following evident:
a. Sy(w) > 0: otherwise power in some frequency band
would be negative! Compare to: f:,;( ) > O
b. Total average power=FE|x = [ Su(

Compare to: Total probablhty f_oo fx )dX = 1.



EECS 501 SPECTRAL INTERPRETATION Fall 2000

1. Recall we can decorrelate a random N-vector x as follows:
a. Covariance matrix K, has N eigenvalues \; and
eigenvectors ¢;,1 = 1... N, where K,.¢; = \;¢;.
b. Let A= [¢;1...0n]T (don’t forget transpose!) and
y = Ax. Then: y; = ¢} v = ¢; o = Z;\le(qbz)jx]
c. Then K, = AK, A" = DIAG[\; ... \n] and then
Elyiy;] = Xid (¢ — j) — {y;} have been decorrelated.
d. y:AxHx:ATyﬁx:Z,filyigbi:
x=sum of uncorrelated RVsxeigenvectors.

2. Now try this for 2nd-order 0-mean WSS processes:
a. Eigenfunctions of LTI systems: ¢(t) = ¢/“t: Means

b. elwt ‘H( )’—>H( )ejwt ‘H( )]e(JWt+ARG[H(w)]).

3. x(t) is a real-valued 2nd-order 0-mean WSS process.
a. Define RVs X (w) = [*__z(t)e 7+, for all w.
b. Then {X (w)} are uncorrelated random variables:

E[X(w1)X*(w2)] =278, (w1)d(w1 — wa).
4, Spectral interpretation of 2nd-order WSS RPs:

= [T X(w)elvtge v . ["uncorrelated RVsxeigenfunctions.

5. We have for finite but large T and interval [—Z, Z]:
K-L: z(t) =", }eﬂm/T, t| < T/2 — oo,
where: z, = [~ Tﬁz Vil 2mnt/T gt for integers n.

Then: E[zczxj] = x(27m/T)5(i — j) — {z,} uncorrelated.
DEF: This is Karhunen-Loeve expansion for WSS processes.
Works: S, (w) =~ 0 for |w| > B — need TB >> 1.



EECS 501 SPECTRAL INTERPRETATION Fall 2000

1. E[X(wl)X*(wg)] E[[ z(t)e7«rtdt [ x(s)el“25ds] =
[ | Elx( YeIwit=w2s)qt ds. Elx(t)x ( )] = R.(t —s).

2. Change ’UCLTZCLblBS' t,s > 1=t—s,z=t+s:|J| =2
E[X(wl X* w2 ffR 6 —jlwi (74+2)Fwa(T—2)]/2 dT2dZ
= [ Ro(m)e 72 dr [ IR (§)[F (1) = 2m(w)
= 2715, (L92) §(wy — wo) = 275, (w1)d (w1 — wa). QED.

Gaussian RPs and The Distribution of X (w)
1. Let z(t) be Gaussian RP— X (w) Gaussian RVs:
a. Re[X(w)] and Im[X(w)] are Gaussian RVs;
b. | X (w)| Rayleigh RVs; ARG[X (w)] uniform RVs.
Rayleigh pdf: f.(Z) = Ze 7 /(7") 7 > 0. p. 138.
2a. Physical Let H(w) = d(w — w,) + d(w + wy):
interpretation: H(w) passes ONLY frequency w,.
b. z(t) — ]H( )| — y(t); H(w) narrowband.
3. All possible sample functions of RP x(t) are filtered.

a. y(t) = Acos(wot) + Bsin(w,t) for RVs A, B.
b. Jointly Gaussian RVs A, B ~ N (0, S, (w,)mo0).

REF: Papoulis, 379 ed. (1991), pp. 416-418.



EECS 501 CROSS-SPECTRAL DENSITY Fall 2000

Let:
with:
Means:

Def:

x(t) and y(t) be real-valued 0-mean jointly WSS RPs.
Cross-correlation R, (1) = E|x(t)y(t — 7)] for any ¢.
Elz(t)y(s)] = Rzy(t—s); jointly WSS—not ¢, s separately.
The Cross-Spectral Density Sy, (w) is defined as:

Soy(w) = F{Ray(1)}; Ray(1) = F~H{Say(w)}-

5. Exchange x(t),y(t) and replace H(w) with

Properties of The Cross-Spectral Density

- Rya (1) = Ry (=7) = Sya(w) = Sy (—w) = 55, (w).

Szy(w), unlike S;(w), is not a real or even function.
WSS random processes: x(t) — |H(w)| — y(t)

FORMULA: Syx( ) = H(w)Sm (w) (note Sy, not Syy):
Take F of Ry, (1) = [ h(u)Ry (T — u)du.

From #1 and #3 we have Sxy( )= H*"(w)S, (w)

oy
Sye(w) = 775y (W) = Sy(w) = [H(w)[* S, (w)!

N

Example of Cross-Spectral Density
Let z(t) — [F(w)] — y(t) and 2(t) — |[G(w)] — z(t)

Compute the cross-spectral density S, (w). Solution:

a:(t), y(t), z(t) are real-valued 0- mean jointly WSS RPs.
y(t ff t—uduandz = [g(v)z(s —v)dv —
Ely t fff (t—u)aj(s—v)]dudv —

R (t — s) = fff(u)g(v)Rx(t —s—u+v)dudv —
Syz(w) = F(w)G*(w)Sz(w). Neat formula! (I think so)
Passbands of F(w) and G(w) don’t overlap— R,,.(7) = 0.
y(t) and z(t) (different frequency components of x(t))
are uncorrelated—spectral interpretation of WSS RPs.
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Infinite Smoothing Filter for Signal in Noise:
1. y(t),z(t),v(t) are 2nd-order 0-mean jointly WSS RPs.
a. Observe y(t) = x(t) + v(t) where E[z(t)v(s)] = 0.
b. z(t)=signal, v(t)=noise, y(t)=noisy data.

2. We have the following (cross)covariance functions:
a. Ryy = Elz(t)y(s)] = Elx(t)(x(s) +v(s))] = Ry.
b. Ry, = E[(z(t) +v(t))(x(s) +v(s))] = Rz + R,.
3. GOAL: Compute LLSE of z(¢) from {y(s), —0o < s < co}.
NOTE: z(t),v(t) jointly Gaussian RPs— Zpr55 = Z15s.

4. LEMMA: 0-mean uncorrelated {z(i)} and {v(i)}.
Observe y(n) = x(n) + v(n) where E{z(i)v(j)] = 0.
Then LLSE of z(i) from {y(j), —00 < j < o0} is
T = Ka:yKy_ly — Kx<K:c =+ Kv)_ly

— DIAG[ag(i)]DIAG[Ji(Z-) + ag(i)]_ly

2
2 O-x(i)2
Oy T0 )

— z(1) = y(i) where y=vector of {y(j)}.

Problem decouples since the {y(j)} are uncorrelated.

5. Write z(t) = [*_ X (w)e“ 2 write y(t), v(¢) similarly.

2m)

Apply LEMMA to RVs X (w), Y (w), V(w). Solution:

y(t) = |somd | — (1),
6. Comments:
a. More insightful than Recitation derivation!
b. Shows significance of decorrelation=prewhitening:
Eliminates need to compute K, * (saves much work).
c. See Stark and Woods p. 553 for more details.




