EECS 501

ESTIMATION: MLE, MAP, LS Fall 2001

Model:
Data:

Goal:
Example:
Model:

A known model of system or process with unknown parameter a.

An observation R of a random variable r whose pdf depends on a.
Model— f,,(R|A): If knew a = A, would know pdf of observation r.
Estimate a from R and conditional pdf f, ,(R|A): Compute a(R).
Flip coin 10 times. Data: #heads in 10 independent flips.

Binomial pmf for . Unknown parameter: a=Pr[heads].

1.

Given:

Soln:
MLE:

Non-Bayesian: a is an unknown constant (do not know f,(A)).
fria(R|A) from model; observation (data) R of rv r; nothing more.
Advantage: Need very little; no (possibly wrong) prior information.
Mazximum Likelihood Estimator: max likelihood of what happened:r=R.
apvre(R) = "0 fra(R]A)]. Compute: a%[log fria(RIA)] = 0.

BLUE:

Best (minimum variance) Linear Unbiased Estimator of constant x
from y = Hx +v,E[v] =0is 2(Y) = (H'H)"'H'Y. Proof: p. 290.

. Bayesian: a is itself random with known a priori pdf f,(A).
: fria(R|A) from model; f,(A)=a priori info; observation R of r.

Advantage: Incorporate a priori in estimate, but this better be right!

: min F[c(e)] where e = a — a(r)=error and c¢(-)=cost=MEP or LSE:

: Min Error Prob: c(e) = {

0 if |e| < ¢
1 if |e| > e
=1— [ dR [3{  dA fr o (R A) = 1—2¢ [% fra(R,a(R))dR.

This is mlmmlzed When fr.a(R,a(R)) maximized for each R.

“close only counts in horseshoes”
“amissis as good as a mile”

MAP:
Compute:

Maz A Posteriori: apap(R) = """ [fro(R|A) fu(A)] (compare MLE).
%[log fria(R|A) +1og fo(A)] = 0. MEP criterion—MAP solution.

2b. LSE:
LSE:

Proof:

Least Squares Estimation criterion: c(e) = e2. Penalize big errors.

[ Afria(RIA)fa(A)dA  Denominator just f;(R) :
= FEla|lr = R] =

f fria(RIA) fa(A)dA” o effect on argmax of A

Page 298. Moment of inertia minimized around center of mass.

ars(R)

Bias:
DEF:
Ela(r)] =
MSE:

Let a be an unknown constant A, so that f,(A) = (A — Aget).
a(R) is unbiased if Ela(r)] = Aget < Ele] = 0. How to compute:
— ff fr|a R|A> (A Aact)deA f fr|a(R‘Aact)dR

a(R) unbiased— E[(a(r) — Aget)?] = az(r) —MSE =variance of a(R).



EECS 501 ESTIMATION EXAMPLES Fall 2001

Given: Flip coin with Pr[heads|]=a. Data: #heads in 10 independent flips.
Model: pmf p,,(R|A) = (7) AR(1—- AR R=0,1...10,0< A< 1.
Goal: Estimate a=Pr[heads| from r=#heads in 10 flips and a priori f,(A).

MLE: Z[log (%)) + Rlog A+ (10 — R)log(1 — A)] = & — 1=k — ¢

— apyre(R) = 1—%. Easy to interpret! Note: No a priori pdf for a.

Bias: Elayip(r)] = B[] = %t = A, — appp(r) unbiased.

MSE: E[(amre(r) — Aaet)?] = 021% (since unbiased) = 10A“Ct1%O_A“Ct).

EX2: Now suppose have f,(A) =1 for 0 < A <1 (Bayesian problem).

MAP: log f,(A) = 0 —same algebra— ayap(R) = anre(R) = &.

Have: Uniform a priori pdf a ~ N(0,02 — 00) — ayap(R) = apre(R).

EX3: Now suppose have f,(A) =2A for 0 < A <1 (Bayesian problem).
MAP: %[log (15) + Rlog A+ (10 — R)log(1 — A) + log 2 + log A]

— % _ 110_—f + % =0— apap(R) = %. A slanted estimator!

EX4: Now suppose have f,(A) =1 for 0 < A <1 (Bayesian problem).
fol A(R2)AR(1-4)10" RqA _ R4
Jo (CR)ara-ayo-raa — 12

Ref: Schaum’s Outline Math. Handbook, (15.24) on p. 95. ars(5) = 3.

Note: Even with a uniform a prior: distribution for a, arg still slanted!

LSE: a;s(R) = Ela|r = R] =

LLSE: min E[(a — a(r))?] such that a(R) = cR + b for some constants b, c.
Soln: 2 E[(a—cr—1b)?=0— arrsp(R) = Ela] + é—‘?(R — E[r]).
& L.E[(a—cr —b)?] = 0. This is Linear Least Squares Estimator.

: . . r Elr] o7 Ara
ws: 7.0 jonty Gaussion— [ 7] ~ v ([ 1], [ 2]

— ars(R) = Elalr = R] = Ea] + 2% (R — E[r]) = arrsp(R)!
Fact: Two very different problems have the same solution!

Norm: Normalized form: (a(R) — Elal)/o, = paTQ(R — E[r]))/o,.
MSE: E[(a—a(r)?] =02 — 2% - E [(ﬁ) ] —1—p2,.
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