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OUTLINE

• Review of Important concepts

Concepts from Chapter 4

1. Discrete Time Fourier series (DTFS)

(a) For a discrete time periodic signal with period N , we have

ck =
1
N

N−1∑
n=0

x(n)e−j2π
kn
N , x(n) =

N−1∑
k=0

cke
j2π kn

N

where ck is also periodic with period N

(b) If x(n) is real and periodic, we have ck = c∗−k (i.e. ck = c∗N−k )
(c) Parseval’s relations yields

Average Power =
1
N

N−1∑
n=0

|x(n)|2 =
N−1∑
k=0

|ck|2

where |ck|2 is the Power spectrum density.

2. Discrete Time Fourier Transform (DTFT)

(a) For a discrete time aperiodic signal, we have

X(ω) =
∞∑

n=−∞
x(n)e−jωn, x(n) =

1
2π

∫
2π
X(ω)ejωndω

where X(ω) is periodic with period 2π
(b) If x(n) is real and aperiodic , we have X(ω) = X∗(−ω)
(c) Parseval’s relation yields

Average Energy =
∞∑

n=−∞
|x(n)|2 =

1
2π

∫ π

−π
|X(ω)|2dω

where |X(ω)|2 is the Energy density spectrum
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3. Symmetry properties: For a discrete signal x(n) with Fourier transform X(ω)

(a) If x(n) is real, X(ω) is conjugate symmetric i.e. X∗(ω) = X(−ω)

(b) If x(n) is real and even, X(ω) is real and even

(c) If x(n) is real and odd, X(ω) is imaginary and odd

(d) If x(n) is imaginary and even, X(ω) is imaginary and even

(e) If x(n) is imaginary and odd, X(ω) is real and odd

These symmetry properties hold for DTFS and DFT as well

4. Properties of DTFT: Many follow from the fact X(ω) = X(z)|z=ejω

(a) Linearity: a1x1(n) + a2x2(n) DTFT↔ a1X1(ω) + a2X2(ω)

(b) Time shifting: x(n− k) DTFT↔ e−jωkX(ω)

(c) Time Reversal: x(−n) DTFT↔ X(−ω)

(d) Frequency shifting: ejω0nx(n) DTFT↔ X(ω − ω0)

(e) Convolution: x1(n) ∗ x2(n) DTFT↔ X1(ω)X2(ω)

(f) Multiplication: x1(n)x2(n) DTFT↔ 1
2π

∫ π
−πX1(ω)X2(ω − λ)dλ

(g) Differentiation in the frequency domain: nx(n) DTFT↔ j dX(ω)
dω

(h) Conjugation: x∗(n) DTFT↔ X∗(−ω)

Concepts from Chapter 5

1. Linear phase response is defined as Θ(ω) = n0ω, where n0 is an integer. The linear phase
results in a pure delay that is often desired in filter design

2. Pole zero placement and magnitude response: Assuming ROC includes the unit circle, i.e.
system is BIBO stable,

(a) when ejω is close to a zero, |H(ω)| is small

(b) when ejω is close to a pole, |H(ω)| is large

3. Digital filter design

(a) For a causal system - Number of poles ≥ Number of zeros

(b) For a stable system - All poles should be within the unit circle

(c) For a real filter - All poles and zeros should occur in conjugate pairs

(d) For a low pass filter - Place poles near low frequencies and zeros near high frequencies

(e) For a high pass filter - Place poles near high frequencies and zeros near low frequencies

(f) For a band pass filter - Place pairs of conjugate poles near the unit circle at the frequen-
cies we wish to pass. The peak of the magnitude response of the filter becomes sharper
as the poles approach the unit circle
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(g) For a notch filter - Place pairs of complex conjugate zeros on the unit circle at the
frequencies we wish to stop

(h) For an all pass filter - Place a pole at 1
z∗0

if a zero is present at z0 and vice versa

(i) For a linear phase filter - Place a pole at 1
z0

if a pole is present at z0 and vice versa

(j) For a minimum phase filter - All poles and zeros should be within the unit circle

4. Inverse systems

(a) A system T is said to be invertible iff each possible output signal is the response to only
one input signal

(b) If T is LTI and invertible, then T −1 is also LTI and invertible

(c) If T is LTI, causal and stable, then T −1 is causal iff # of poles of T = # of zeros of T
(d) If T is LTI, causal and stable, then T −1 is stable iff all zeros of T are strictly inside the

unit circle

(e) A system with a minimum phase has a stable inverse that is also minimum phase

Concepts from Chapter 7

1. For a time limited signal x(n) of length N , the N -point DFT is defined by

X(k) =
N−1∑
n=0

x(n)e−j
2πk
N
n

where k = 0, · · · , N − 1 and the inverse DFT formula is given by

x(n) =
1
N

N−1∑
k=0

X(k)ej
2πn
N
k

where n = 0, · · · , N − 1

(a) Note that the indices range from 0 to N − 1 for x(n) and X(k)

(b) The DFT is efficiently implemented by the Fast Fourier transform (FFT)

2. Relationship to other transformations

(a) If xp(n) is the N -periodic superposition of x(n) (a time-limited signal of length N), then
the DTFS of xp(n) is obtained by

ck =
1
N

N−1∑
n=0

xp(n)e−j
2πk
N
n,

thus leading to X(k) = Nck
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(b) The DFT of x(n) has the following relationship with X(ω) (DTFT) and X(z) (z-
transformation)

X(k) = X(ω)|ω= 2πk
N
, X(k) = X(z)|

z=ej
2πk
N

where x(n) is a time-limited N -point signal.

3. Circular Symmetries

(a) N -point circular even is defined by x(N − n) = x(n) for 1 ≤ n ≤ N − 1

(b) N -point circular odd is defined by x(N − n) = −x(n) for 1 ≤ n ≤ N − 1

(c) If x(n) is real, we have X(k) = X∗((−k) mod N) (circular Hermitian symmetry)

4. Properties of the DFT (Suppose x(n) N−DFT←→ X(k))

(a) Linearity: a1x1(n) + a2x2(n) N−DFT←→ a1X1(k) + a2X2(k)

(b) Circular time shift: x((n− l) mod N) N−DFT←→ e−j2πlk/NX(k)

(c) Time reversal: x((−n) mod N) N−DFT←→ X((−k) mod N)

(d) Circular frequency shift: x(n)ej2πk0n/N N−DFT←→ X((k − k0) mod N)

(e) Complex conjugate: x∗(n) N−DFT←→ X∗((−k) mod N) and x∗((−n) mod N) N−DFT←→
X∗(k)

(f) Convolution: x1(n) N© x2(n) N−DFT←→ X1(k)X2(k)

(g) Multiplication: x1(n)x2(n) N−DFT←→ 1
NX1(k) N© X2(k), where N© denotes N -point circular

convolution

(h) Parseval’s theorem:
∑N−1

n=0 |x(n)|2 = 1
N

∑N−1
k=0 |X(k)|2

ALL THE BEST
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