Topics for Today's Lecture

- Spectrogram: Compute time-varying spectra
- Short-Time-Fourier-Transform (STFT): Spectrogram=|STFT|²; almost always use
- <u>Data windows</u>: Applied to spectrogram

Time-varying spectral content

• "fft" is useful for analyzing periodic signals: $x(t)=c_0+c_1\cos(2\pi t/T+\theta_1)+c_2\cos(4\pi t/T+\theta_2)+...$ >>2/N*abs(fft(X,N)) computes [2c₀ c₁ c₂...].

Time-varying spectral content

- "fft" is useful for analyzing periodic signals: $x(t)=c_0+c_1\cos(2\pi t/T+\theta_1)+c_2\cos(4\pi t/T+\theta_2)+...$ >>2/N*abs(fft(X,N)) computes [2c₀ c₁ c₂...].
- <u>**BUT**</u>: Many (e.g., music) signals look like: $c_{11}cos(2\pi t/T_1+\theta_{11})+c_{21}cos(4\pi t/T_1+\theta_{21})+\dots t_0 < t < t_1 \\ c_{12}cos(2\pi t/T_2+\theta_{12})+c_{22}cos(4\pi t/T_2+\theta_{22})+\dots t_1 < t < t_2 \\ c_{13}cos(2\pi t/T_3+\theta_{13})+c_{23}cos(4\pi t/T_3+\theta_{23})+\dots t_2 < t < t_3 \\$

Example: "The Victors" spectrum

Time-varying spectral content

- **<u>IDEA</u>**: Segment (chop up) signal in time.
- **THEN**: Apply "fft" to each time segment.
- **HOW**: imagesc(abs(fft(reshape(X',N,L),N)))
- **WHERE**: L=#segments and N=length(X)/L;
- WHAT: Computes "fft" of each of L segments.
- **SHOW**: Display freq. vertical, time horizontal.

Example: "The Victors" spectrogram

- X=Tonal "The Victors" sampled 8192 Hertz.
- 26 notes of length 3000/8192 seconds each.
- Length(X)=78000=26(3000). L=26. N=3000.
- >>imagesc(abs(fft(reshape(X',3000,26)))) , colormap(gray) is shown on the next slide.
- This is called the "**spectrogram**" of X.

Example: "The Victors: spectrogram

Example: "The Victors: spectrogram

- <u>Frequency</u> actually displayed from top down, but due to "fft" also displayed from down up.
- <u>Time</u> displayed increasing from left to right.
- Vertical slices are spectra at different times.
- Horizontal <u>slices</u> are presence/absence of a specific frequency as time varies.
- Brightness indicates strength at that time-freq.

Example: chirp signal

- <u>Chirp</u>: $x(t) = cos(2\pi Ft^2)$: birds, dolphins.
- **Frequency** increases linearly with time.
- <u>Instantaneous frequency</u>=2Ft (not Ft) Hertz.
- >> $X = cos([0.8191].^2/10000);plot(X(1.1000))$
- >>imagesc(abs(fft(reshape(X',256,32))))
- >>colormap(gray) shown on next 2 slides.

Chirp signal: time waveform

Chirp signal: spectrogram

Chirp: Instantaneous frequency

- >>X=cos([0:8191].^2/10000) means this:
- $x(t)=\cos(t^2)$ sampled at t=n/100; duration=81.9
- Instantaneous frequency $(2t)/(2\pi)$ Hertz.
- Increases from 0 to $2(81.9)/(2\pi)=26.08$ Hertz.
- Interpret spectrogram: F=100; N=256; T=2.56
- Freq. in final <u>window</u>: (67-1)100/256=25.8 Hz. This is <u>average</u> of freqs in final time window.

<u>Time-Frequency Resolution Tradeoff</u>

- Previous spectrogram used 32 slices @256.
- Next slide spectrogram uses 64 slices @128.
- More resolution in time; less in frequency.
- Note vertical "smearing" in frequency bands.
- <u>Tradeoff</u>: time vs. frequency resolution by altering #windows=L and N=length(X)/L.
- Leads to next topic of lecture: <u>data windows</u>.

Windows: Interpretation of data

- <u>Data windows</u>: used to aid <u>interpretation</u> of spectra computed from real-world data.
- Deliberately distort the spectrum to aid in intepreting it—determine peak locations.
- The <u>correct</u> answer is not always <u>best</u> one: What are you attempting to determine?
- What is the problem? See following spectra:

Why broadening at the base?

- Do not have an integral number of periods.
- So periodic extension of sinusoid is NOT the same as the sinusoid—discontinuities!
- A sinusoid is only a sinusoid over $-\infty < t < \infty$!
- A truncated sinusoid is not same as sinusoid, and it does not have a single-line spectrum.

What to do: Data windows

- Window data segment to zero at each end.
- Then no discontinuities in periodic extension.
- Effect of windowing: no base, peak broader.
- Easier to interpret peaks without their bases.
- Use N=length(X);W=sin(pi*[0:N-1]/(N-1));
- Many others: (hanning, hamming, kaiser...)

Spectrum: $cos(2\pi 440.5t)$: length=1 sampled at 8192 samples/second

>>Y=cos(2*pi*440.5*[0:8191]/8192);Y=Y.*sin(pi*[0:8191]/8192);

>>F=abs(fft(Y/8192)); plot(F(1:4096)) sin window eliminates the base!

Use data window on spectrogram

- Previous high-time low-frequency resolution: X=cos([0:8191].^2/10000);colormap(gray); imagesc(abs(fft(reshape(X',128,64))))
- Now use data window on each vertical slice:
- W=ones $(64,1)*(\sin(pi*[0:127]/127));$ imagesc(abs(fft(reshape(X',128,64).*W')))
- Shown on next slide. Note less vertical smearing

Use data window on spectrogram

