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Introduction to EECS 451

+ TOPICS FOR TODAY’S LECTURE:

1. Go over features of the course web site at
www.eecs.umich.edu/~aey/eecs451.html
Includes: Copies of lecture presentations;
Condensed versions of lecture presents;
Longer (14 pages) notes on several subjects

2. Introduction to some applications of DSP
3. Periods of discrete-time sinusoids (nontrivial)

So what can you DO with DSP?
1. You can filter noisy data:
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Plotted below is a signal-plus-noise.
Can you figure out what the signal is?

This is the signal without noise.

So what can you DO with DSP?
2. You can compute spectra:
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Example: Spectrum of periodic signal
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Period=0.2 second (5 complete periods occur in 1 second).
Other than that, all you can say is that this looks weird. But:

x(t)=15cos(10mnt)+5cos(30mt)+3cos(50mt)+2cos(70mt), 0<t<lI.
So the spectrum of this signal is actually quite simple:
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Great! But, given this waveform, how do I compute that formula?
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So what can you DO with DSP?
3. You can compress signals:
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So what can you DO with DSP?
4. You can detect signals in noise:
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So what can yvou DO with DSP?
5. You can design various filters:
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Continuous-time sinusoids
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Formulae for this: Amplitude=2
xX(t)=2cos(10nt—n/5) | | Frequency=5 Hertz
x(t)=2cos(10n(t—0.02)) | Period=0.2 seconds

Sampled Sinusoid
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x(t) =2cos(10mnt-n/5). Substitute t=n/50=0.02n:
x[n]=2cos(0.2nn-n/5). Sampling rate=50 Hertz

x[n] | x[0]=1.62 x[1]=2.00 x[2]=1.62 x[3]=0.62

x[n] | 2co0s(0.2n0-7/5) | 2cos(0.2n1-7/5) | 2c0s(0.2n2-n/5) | 2c0s(0.2n3-7/5)

Periods of sinusoids [1/4]

x(t)=2co0s(0.3xt+1): Period=27/(0.31)=20/3.
x[n]=2co0s(0.37n+1): Period=2x/(0.37)=20/3.

« What’s wrong with this picture?

* Period of discrete-time signals must be integer!

+ Smallest integer N such that x[n]=x[n+N] is 20.

* X[n+20]=2co0s(0.37(n+20))=2cos(0.3nn+6m7).




Periods of sinusoids [2/4]

Period of the discrete-time sinusoid
x[n]=Acos(wn+0) is computed as follows:

Write 2nt/w=rational number=N/D where

N and D are relatively prime. In other words:

N/D has been reduced to lowest terms.
Then period=N=numerator of fraction N/D.

If o#(rational number)n, then the sinusoid
x[n] NOT periodic! Unlike continuous time.
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Periods of sinusoids [3/4]

 Suppose: Acos(on+0)=Acos(w(n+N)+0) .

* Recall: cos(8)=cos(2nD+8) for any integer D
and for any 0 (precludes sin(n/3)=sin(27/3)).

* Need: (o(n+N)+0)-(on+0)=@N=27D, which
becomes 21/0=N/D. Want smallest N and D.

* Then: Acos(o(n+N)+0)=Acos(ont27D+0).

Periods of sinusoids [4/4]

EXAMPLES:

. X[n]=2co0s(0.3nn+1): Period=2n/(0.37)=20/3
already reduced to lowest terms. Period=20.
. X[n]=2co0s(0.12ntn+1): Period=2w/(0.127)=
100/6=50/3 after lowest terms. Period=50.

. X[n]=2co0s(0.3n+1): x[n] is NOT periodic!

Period of Sum of Discrete Sinusoids

x[n]=A,cos(®;n+6,)+...+Aycos(oyntoy)

For x[n] to be periodic, need the following:

All o; must have forms 2nN,/D; (lowest terms).
ith term then has period=D; (before: 2n/w=N/D).
x[n] has period=least common multiple of D;.

Least common multiple of set of numbers=
(their product)/(their greatest common divisor).




