
MATLAB AND MATHSCRIPT: A
SHORT INTRODUCTION FOR USE
IN SIGNALS AND SYSTEMS

BACKGROUND:

“A computer will always do exactly what you
tell it to do. But that may not be what you had
in mind”–a quote from the 1950’s.
This Appendix is a short introduction to

MATLAB and Mathscript for this book. It is
not comprehensive; only commands directly ap-
plicable to signals and systems are covered. No
commands in any of MATLAB’s Toolboxes are
included, since these commands are not included
in basic MATLAB or Mathscript. Programming
concepts and techniques are not included, since
they are not used anywhere in this book.

MATLAB:

MATLAB is a computer program developed
and sold by the Mathworks, Inc. It is the most
commonly used program in signal processing,
but it is used in all fields of engineering.
“MATLAB” is an abbreviation of MATrix

LABoratory. It was originally based on a set
of numerical linear algebra programs, written
in FORTRAN, called LINPACK. So MATLAB
tends to formulate problems in terms of vectors
and arrays of numbers, and often solves problems
by formulating them as linear algebra problems.
For example, MATLAB computes the roots of

a polynomial by computing the eigenvalues of the
companion matrix formed from the polynomial
coefficients. When using MATLAB, one usually
formulates a problem in terms of arrays or vec-
tors of numbers, which are defined below.

Mathscript:

Mathscript is a computer program developed
and sold by National Instruments, as a module in
LabView. The basic commands used by MAT-
LAB also work in Mathscript, but higher-level
MATLAB commands, and those in Toolboxes,
usually do not work in Mathscript. Unless oth-
erwise noted, all MATLAB commands used in
this book and CD also work in Mathscript.

A student version of Mathscript is included on
this CD. Access to MATLAB is not required to
use this book. In the sequel, we use “M/M” to
designate “MATLAB or Mathscript.”

Getting Started:

To install the student version of Mathscript
included on this CD, follow the instructions.
When you run M/M, a prompt >> will ap-

pear when it is ready. Then you can type com-
mands. Your first command should be >>cd
mydirectory, to change directory to your work-
ing directory, which we call “mydirectory” here.
We will use this font to represent typed

commands and generated output. You can get
help for any command, such as plot, by typing
at the prompt help plot.
Some basic things to know about M/M:

• Putting a semicolon “;” at the end of
a command suppresses output; without it
M/M will type the results of the computa-
tion. This is harmless, but it is irritating to
have numbers flying by on your screen.

• Putting ellipses “...” at the end of a com-
mand means it is continued on the next line.
This is useful for long commands.

• Putting “%” at the beginning of a line
makes the line a comment; it will not be
executed. Comments are used to explain
what the program is doing at that point.

• clear eliminates all present variables.
Programs should start with a clear.

• whos shows all variables and their sizes.

• M/M variables are case-sensitive: t and T
are different variables.

• save myfile X,Y saves the variables X and
Y in the file myfile.mat for use in another
session of M/M at another time.

• load myfile loads all variables saved in
myfile.mat, so they can now be used in the
present session of M/M.

• quit ends the present session of M/M.

1

.m Files:

An M/M program is a list of commands ex-
ecuted in succession. Programs are called “m-
files” since their extension is “.m,” or “scripts.”
To write an .m file, at the upper left, click:
File→New→m-file
This opens a window with a text editor.
Type in your commands and then do this:
File→Save as→myname.m
Make sure you save it with an .m extension.

Then you can run the file by typing its name
at the prompt: >> myname. Make sure the file
name is not the same as a Matlab command!
Using your own name is a good idea.
You can access previously-typed commands

using uparrow and downarrow on your keyboard.
To download a file from a web site or the CD,

right-click on it, select save target as, and use
the menu to select the proper file type (specified
by its file extension).

BASIC COMPUTATION:

Basic Arithmetic:

• Addition: 3+2 gives ans=5

• Subtraction: 3-2 gives ans=1

• Multiplication: 2*3 gives ans=6

• Division: 6/2 gives ans=3

• Powers: 2̂ 3 gives ans=8

• Others: sin,cos,tan,exp,log,log10

• Square root: sqrt(49) gives ans=7

• Conjugate: conj(3+2j) gives ans=3-2i

Both i or j represent
√−1; answers use i.

pi represents π. e does not represent 2.71828.

Entering Vectors and Arrays:

To enter row vector [1 2 3] and store it in A
type at the prompt A=[1 2 3]; or A=[1,2,3];
To enter the same numbers as a column vec-

tor and store it in A, type at the prompt either

A=[1;2;3]; or A=[1 2 3];A=A’; Note A=A’ re-
places A with its transpose. “Transpose” means
“convert rows to columns, and vice-versa.”
To enter a vector of consecutive or equally-

spaced numbers, follow these examples:

• [2:6] gives ans=2 3 4 5 6

• [3:2:9] gives ans=3 5 7 9

• [4:-1:1] gives ans=4 3 2 1

To enter an array or matrix of numbers,
type, for example, B=[3 1 4;1 5 9;2 6 5];
This gives the array B and its transpose B’

B =

 3 1 4
1 5 9
2 6 5

 B′ =

 3 1 2
1 5 6
4 9 5

Other basics of arrays:

• ones(M,N) is an M × N array of “1”

• zeros(M,N) is an M × N array of “0”

• length(X) gives the length of vector X

• size(X) gives the size of array X
For B above, size(B) gives ans=3 3

• A(I,J) gives the (I,J)th element of A.
For B above, B(2,3) gives ans=9

Array Operations:

Arrays add and subtract point-by-point:
X=[3 1 4];Y=[2 7 3];X+Y gives ans=5 8 7
But X*Y generates an error message.
To compute various types of vector products:

• To multiply element-by-element, use X.*Y
This gives ans=6 7 12.
To divide element-by-element, X./Y

• To find the inner product of X and Y
(3)(2)+(1)(7)+(4)(3)=25, use X*Y’
This gives ans=25

• To find the outer product of X and Y
 (3)(2) (3)(7) (3)(3)
(1)(2) (1)(7) (1)(3)
(4)(2) (4)(7) (4)(3)

 use X’*Y

This gives the above matrix.

2

A common problem is thinking you have a row
vector when in fact you have a column vector.
Check by using size(X); here that gives ans=1,3
which tells you that X is a 1× 3 (row) vector.

• These functions operate on each element of
an array separately, giving another array:
sin,cos,tan,exp,log,log10,sqrt
cos([0:3]*pi) gives ans=1 -1 1 -1

• To compute n2 for n = 0, 1 . . . 5, use
[0:5].̂ 2 gives ans=0 1 4 9 16 25

• To compute 2n for n = 0, 1 . . . 5, use
2.̂ [0:5] gives ans=1 2 4 8 16 32

Some other array operations:

• A=[1 2 3;4 5 6];(A(:))’
Stacks A by columns into a column vector
and transposes the result to a row vector.
Here, this gives ans=1 4 2 5 3 6

• reshape(A(:),2,3)
Unstacks the column vector to a 2×3 array
which, in this case, is the original array A.

• X=[1 4 1 5 9 2 6 5];C=X(2:8)-X(1:7)
Takes differences of successive values of X.
Here, this gives C=3 -3 4 4 -7 4 -1

• D=[1 2 3]; E=[4 5 6]; F=[D E]
This concatenates the vectors D and E
(i.e., it appends E after D to get vector F)
Here, this gives F=1 2 3 4 5 6

• I=find(A>2) stores in I locations (indices)
of elements of vector A that exceed 2.
find([3 1 4 1 5]<2) gives ans=2 4

• A(A>2)=0 sets to 0 all values of elements
of vector A exceeding 2. A=[3 1 4 1 5];
A(A<2)=0 gives A=3 0 4 0 5

M/M indexing of arrays starts with 1, while
signals and systems indexing starts with 0. For
example, the DFT is defined using index n =
0, 1 . . . N − 1, for k = 0, 1 . . . N − 1. fft(X),
which computes the DFT of X, performs

fft(X)=X*exp(-j*2*pi*[0:N-1]’*[0:N-1]/N);

Solving Systems of Equations:

To solve the linear system of equations[
1 2
3 4

] [
x
y

]
=

[
17
39

]

using A=[1 2;3 4];Y=[17;39];X=A\Y;X’ gives
ans=5.000 6.000, which is the solution [x y]′.
To solve the complex system of equations[

1 + 2j 3 + 4j
5 + 6j 7 + 8j

] [
x
y

]
=

[
16 + 32j
48 + 64j

]

[1+2j 3+4j;5+6j 7+8j]\[16+32j;48+64j]
gives ans=2−2i

6+2i , which is the solution.
These systems can also be solved using

inv(A)*Y, but this is a bad idea, since computing
the matrix inverse of A takes much more compu-
tation than just solving the system of equations.
Computing a matrix inverse can lead to numer-
ical difficulties for large matrices.

PLOTTING:

Plotting Basics:

To plot a function x(t) for a ≤ t ≤ b:

• Generate, say, 100 values of t in a ≤ t ≤ b
using T=linspace(a,b,100);

• Generate and store 100 values of x(t) in X

• Plot each computed value of X against its
corresponding value of T using plot(T,X)

• If you are making several different plots,
put them all on one page using subplot.
subplot(324),plot(T,X) divides a figure
into a 3-by-2 array of plots, and puts the
X vs. T plot into the 4th place in the array
(the middle of the right-most column).

Print out the current figure (the one in the
foreground; click on a figure to bring it to the
foreground) by typing print
Print the current figure to a encapsulated

postscript file myname.eps by typing print
-deps2 myname.eps. Type help print for a
list of printing options for your computer. For
example, use -depsc2 to save a figure in color.

3

To make separate plots of cos(4t) and sin(4t)
for 0 ≤ t ≤ 5 in a single figure, use the following:

T=linspace(0,5,100);X=cos(4*T);Y=sin(4*T);
subplot(211),plot(T,X)
subplot(212),plot(T,Y)

These commands produce the following figure:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

The default is that plot(X,Y) plots each of the
100 ordered pairs (X(I),Y(I)) for I=1. . . 100,
and connects the points with straight lines. If
there are only a few data points to be plot-
ted, they should be plotted as individual ordered
pairs, not connected by lines. This can be done
using plot(X,Y,’o’) (see Fig. 6-76 below).

Plotting Problems:

Common problems encountered using plot:
T and X must have the same lengths; and
Neither T nor X should be complex; use
plot(T,real(X)) if necessary.
The above linspace command generates 100

equally-spaced numbers between a and b, includ-
ing a and b. This is not the same as sampling
x(t) with a sampling interval of b−a

100 . To see why:

• linspace(0,1,10) gives 10 numbers be-
tween 0 and 1 inclusive, spaced by 0.111

• [0:.1:1] gives 11 numbers spaced by 0.1

Try the following yourself on M/M:

• T=[0:10];X=3*cos(T);plot(T,X)
This should be a very jagged-looking plot,
since it is only sampled at 11 integers,
and the samples are connected by lines.

• T=[0:0.1:10];X=3*cos(T);plot(T,X)
This should be a much smoother plot,
since there are now 101 (not 100) samples.

• T=[1:4000];X=cos(2*pi*440*T/8192);
sound(X,8192) This is musical note “A.”
sound(X,Fs) plays X as sound, at a
sampling rate of Fs samples/second.

• plot(X). This should be a blue smear!
It’s about 200 cycles squished together.

• plot(X(1:100)) This “zooms in” on the
first 100 samples of X to see the sinusoid.

More Advanced Plotting:

Plots should be labelled and annotated:

• title(’Myplot’) adds the title “Myplot”

• xlabel(’t’) labels the x-axis with “t”

• ylabel(’x’) labels the y-axis with “x”

• ω produces ω in title,xlabel and
ylabel Similarly for other Greek letters.
Note ’, not ‘, should be used everywhere.

• axis tight contracts the plot borders to
the limits of the plot itself

• axis([a b c d]) changes the
horizontal axis limits to a ≤ x ≤ b and
the vertical axis limits to c ≤ y ≤ d.

• grid on adds grid lines to the plot

• plot(T,X,’g’,T,Y,’r’) plots on the same
plot (T,X,Y must all have the same lengths)
X vs. T in green and Y vs. T in red.

Plotting Examples:

A good way to learn how to plot is to study
specific examples. The figures in this book were
redrawn from figures generated using MATLAB.
Four specific illustrative examples follow.

4

Figure 4-32(b):

This example shows how to plot two different
functions in a single plot, using different colors,
and insert a title. The following .m file

clear;T=linspace(0,600,1000);

A=0.01;K=0.04;B=A+K;

SA=3*(1-exp(-A*T));

SB=3*(1-exp(-B*T));

plot(T,SA,’b’,T,SB,’r’)

title(’STEP RESPONSE WITH

AND WITHOUT FEEDBACK’)

grid on,print -depsc2 m1.eps

generates the following figure:

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3
STEP RESPONSE WITH AND WITHOUT FEEDBACK

Figure 6-24(b):

This example demonstrates ./ and .*

The following .m file

clear;W=linspace(-8,8,1000);V=j*W;

N=(V+2j).*(V-2j).*(V-.1+4j).*(V-.1-4j);

D1=(V+.5+1j).*(V+.5-1j).*(V+.5+3j);

D2=(V+.5-3j).*(V+.5+5j).*(V+.5-5j);

plot(W,abs(N./D1./D2),’r’),grid on

generates the following figure:

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Figure 6-38(b):

This example shows how to use a loop:
H=H./(V-P(I)); is executed for I=1,2,3,4,5 in
succession. The following .m file

clear;W=linspace(-2,2,1000);V=j*W;
P=exp(j*2*pi*[3:7]/10);
H=ones(1,1000);
for I=1:5;H=H./(V-P(I));end
subplot(211),plot(W,abs(H)),grid on
generates the following figure:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 6-76:

This example shows how to use hold to su-
perpose two plots, how to plot individual points,
use subplot to change the aspect ratio of a
figure, and axis tight to tighten it. It also
uses [a:0.001:b], not linspace(a,b,1000), to
sample every 0.001. The following .m file

T1=[0:1/45000:1/45];
X1=cos(2*pi*500*T1);
T2=[0:1/450:1/45];
X2=cos(2*pi*500*T2);
subplot(211),plot(T2,X2,’or’),hold,
subplot(211),plot(T1,X1),axis tight
generates the following figure:

0 0.005 0.01 0.015 0.02
−1

−0.5

0

0.5

1

These do not include the computer examples,
whose programs are listed elsewhere on this CD.

5

PARTIAL FRACTIONS:

Rectangular-to-Polar Complex Conversion:

If an M/M result is a complex number, then it
is presented in its rectangular form a+bj. M/M
recognizes both i and j as

√−1, so that complex
numbers can be entered as 3+2j.
To convert a complex number X to polar form,

use abs(X),angle(X) to get its magnitude and
phase (in radians), respectively. To get its phase
in degrees, use angle(X)*180/pi
Note atan(imag(X)/real(X)) will not give

the correct phase, since this formula is only valid
if the real part is positive. angle corrects this.
The real and imaginary parts of X are found

using real(X) and imag(X), respectively.

Polynomial Zeros:

To compute the zeros of a polynomial, en-
ter its coefficients as a row vector P and use
R=roots(P). For example, to find the zeros of
3x3–21x+18 (the roots of 3x3–21x+18=0) use
P=[3 0 -21 18];R=roots(P);R’, giving ans=
-3.0000 2.0000 1.0000, which are the roots.
To find the monic (leading coefficient one)

polynomial having a given set of numbers for
zeros, enter the numbers as a column vector
R and use P=poly(R). For example, to find
the polynomial having {1, 3, 5} as its zeros, use
R=[1;3;5];P=poly(R), giving P=1 -9 23 -15.
The polynomial is therefore x3–9x2+23x–15.
Note that polynomial are stored as row vec-

tors, and roots are stored as column vectors.
Pole-zero diagrams are made using zplane, in

the MATLAB Signal Processing Toolbox. To
produce the pole-zero diagram of H(z)=z2+3z+2

z2+5z+6 ,
type zplane([1 3 2],[1 5 6]). The unit cir-
cle |z|=1 is also plotted, as a dotted line.

Partial Fraction Expansions:

Partial fraction expansions are a vital part of
signals and systems, and their computation is
onerous (see Chapter 3). M/M computes partial
fraction expansions using residue. Specifically,

H(s) =
b0sM + b1sM−1 + . . . + bM

a0sN + a1sN−1 + . . . + aN

has the partial fraction expansion (if M ≤ N)

H(s) = K + R1
s−p1

+ . . . + RN
s−pN

The poles {pi} and residues {Ri} can be com-
puted from coefficients {ai} and {bi} using

B=[b0 b1 . . . bM];A=[a0 a1 . . . aN]
[R P]=residue(B,A);[R P]

The residues {Ri} are given in column vector R,
and poles {pi} are given in column vector P.

To compute the partial fraction expansion of
H(s) = 3s+6

s2+5s+4 , use the command

[R P]=residue([3 6],[1 5 4]);[R P]

This gives
[
2 −4
1 −1

]
, so R=

[
2
1

]
and P=

[−4
−1

]
from which we read off H(s)= 2

s+4+
1

s+1 .

In practice, the poles and residues both often
occur in complex conjugate pairs. Then use

Rept + R∗ep∗t = 2|R|eat cos(ωt + θ),

R=|R|ejθ and p=a+jω, to simplify the result.

To compute the partial fraction expansion of
H(s) = s+7

s2+8s+25
, use the command

[R P]=residue([1 7],[1 8 25]);[R P]

This gives
[
0.5000 − 0.5000i −4.000 + 3.000i
0.5000 + 0.5000i −4.000 − 3.000i

]
from which we have H(s)=0.5−j0.5

s+4−j3 +
0.5+j0.5
s+4+j3

which has the inverse Laplace transform

h(t)=(0.5–j0.5)e(−4+j3)t+(0.5+j0.5)e(−4−j3)t

From abs(0.5-0.5j),angle(0.5-0.5j),

h(t)=2
√

2
2 e−4t cos(3t–π

4)=
√
2e−4t cos(3t–π

4).

Both h(t) expressions are valid for t > 0.

If H(s) is proper but not strictly proper, the
constant K is nonzero. It is computed using

[R P K]=residue(B,A);[R P],K

since K has size different from R and P.

To find the partial fraction expansion of
H(s)= s2+8s+9

s2+3s+2 , use the command

[R P K]=residue([1 8 9],[1 3 2]);[R P]

6

K gives
[
3 −2
2 −1

]
, K=1 so R=

[
3
2

]
, P=

[−2
−1

]
from which we read off H(s)=1+ 3

s+2+
2

s+1 .

Double poles are handled as follows:
To find the partial fraction expansion of

H(s)= 8s2+33s+30
s3+5s2+8s+4 , use the command

[R P]=residue([8 33 30],[1 5 8 4]);

[R P] gives

 3 −2
4 −2
5 −1

, so R=

 34
5

, P=

−2
−2
−1

We then read off H(s)= 3
s+2+

4
(s+2)2

+ 5
s+1 .

In practice, we are interested not in an ana-
lytic expression for h(t), but in computing h(t)
sampled every Ts seconds. These samples can be
computed directly from R and P, for 0 ≤ t ≤ T :

t=[0:Ts:T];H=real(R.’*exp(P*t));

Since R and P are column vectors, and t is a
row vector, H is the inner products of R with each
column of the array exp(P*t). R.’ transposes
R without also taking complex conjugates of its
elements. real is necessary since roundoff error
creates a tiny (incorrect) imaginary part in H.

Frequency Response:

polyval(P,W) evaluates the polynomial
whose coefficents are stored in row vector P
at the elements of vector W. For example, to
evaluate the polynomial x2–3x+2 at x=4,
polyval([1 -3 2],4) gives ans=6
The continuous-time frequency response of

H(s) =
b0sM + b1sM−1 + . . . + bM

a0sN + a1sN−1 + . . . + aN

can be plotted for 0 ≤ ω ≤ W using

B=[b0 b1 . . . bM];A=[a0 a1 . . . aN]
w=linspace(0,W,1000);
H=polyval(B,j*w)./polyval(A,j*w);
subplot(211),plot(w,abs(H))

Discrete-Time Commands

• stem(X) produces a stem plot of X

• conv(X,Y) convolves X and Y

• fft(X,N) computes the N-point DFT of X

• ifft(F) computes the inverse DFT of F.
Due to roundoff error, use real(ifft(F)).

• sinc(X) compute sin(πx)
πx for each element.

Figure 6-30

We combine many of the above commands to
show how Fig. 6-30 in the book was produced.
Example 6-8 plots the impulse and magnitude

frequency responses of a comb filter that elim-
inates 1-kHz and 2-kHz sinusoids, using poles
with a real part of –100. Both plots are given in
Fig. 6-30, which was redrafted from plots from:
(% denotes a comment statement)

F=linspace(0,3000,100000);
W=j*2*pi*F;A=100;
%Compute frequency response:
Z=j*2*pi*1000*[-2 -1 1 2];
N=poly(Z);D=poly(Z-A);
FH=polyval(N,W)./polyval(D,W);
subplot(211),plot(F,abs(FH))
%Compute impulse response:
T=linspace(0,0.05,10000);
[R P K]=residue(N,D);
H=real(R.’*exp(P*T));
subplot(212),plot(T,H)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−400

−300

−200

−100

0

100

200

300

7

