EEC	LS 206 DSP GLOSSARY (C)Andrew E. Yagle Fall 2005
	impulse response: $\sum h[n] $ is finite. EX : $\sum_{n=0}^{\infty} (\frac{3}{4})^n = \frac{1}{1-\frac{3}{4}} = 4$ but $\sum_{n=1}^{\infty} \frac{1}{n} \to \infty$. Necessary and sufficient for BIBO stability of an LTI system. Also see poles .
	$y[n] = ax[n] + b$ for constants a and $b \neq 0$. This is a linear-plus-constant function. Affine systems are <i>not</i> linear systems , although they do look like linear systems.
aliasing	EX: $x(t) = \cos(2\pi 6t)$ sampled at 10 Hz: $t = \frac{n}{10} \rightarrow x[n] = \cos(1.2\pi n) = \cos(0.8\pi n)$. Ideal interpolation (for a sinusoid) $n = 10t \rightarrow x(t) = \cos(2\pi 4t)$. 6 Hz aliased to 4. Can avoid aliasing by sampling faster than Nyquist rate, or use an antialias filter.
amplitude	of a sinusoid : $ A $ in sinusoidal signal $A\cos(\omega t + \theta)$. Amplitude is always ≥ 0 .
	Analog lowpass filter that ensures that the sampling rate exceeds Nyquist rate, ensuring that aliasing does not occur during interpolation of the sampled signal.
argument	of a complex number: another name for phase . Matlab: angle(1+j)= $0.7854=\pi/4$.
ARMA	Auto-Regressive Moving-Average difference equation. $\#y[n] > 1$ and $\#x[n] > 1$.
	Continuous time: Average power= $MS(x) = \frac{1}{T} \int_0^T x(t) ^2 dt$ for $x(t)$ period=T. Discrete time: Average power= $MS(x) = \frac{1}{N} \sum_{n=0}^{N-1} x[n] ^2$ for $x[n]$ period=N.
	Filter with frequency response $H(e^{j\omega})$ small at DC $\omega = 0$ and small at $\omega = \pi$, but large at some intermediate band $a < \omega < b$. BPFs reduce high-frequency noise.
bandwidth	Maximum frequency in a conttime signal $x(t)$. Sometimes defined as twice this.
	EX: $\cos(99t) + \cos(101t) = 2\cos(1t)\cos(100t)$ like varying amplitude $\cos(100t)$. This beating sound can be used to tune a piano; also models a tone on AM radio.
BIBO stable	Bounded-Input-Bounded-Output system: $x[n] \to \overline{ \mathbf{BIBO} } \to y[n]$. Means: If $ x[n] \leq M$ for some constant M , then $ y[n] \leq \overline{N}$ for some constant N . An LTI system is BIBO stable iff all of its poles are inside the unit circle.
cascade	connection of systems: $x[n] \to \overline{ \mathbf{g}[\mathbf{n}] } \to \overline{ \mathbf{h}[\mathbf{n}] } \to y[n]$. Overall impulse response : $y[n] = h[n] * (g[n] * x[n]) = (h[n] * g[n]) * x[n] \to \mathbf{convolve}$ their impulse responses .
causal:	signal: $x[n] = 0$ for $n < 0$; causal system has a causal impulse response $h[n]$.
	$y[n] = x[n] + x[n-1] + \ldots + x[n-M+1]$ eliminates all $A_k \cos(\frac{2\pi}{M}kn + \theta_k)$ in $x[n]$. transfer function = $H(z) = (z - e^{j\frac{2\pi}{M}}) \ldots (z - e^{j\frac{2\pi}{M}(M-1)})/z^{M-1}$ has zeros at $e^{j\frac{2\pi}{M}k}$, which are the M^{th} roots of unity. Eliminates all harmonics of periodic function.
complex conjugate	of complex number $z = x + jy$ is $z^* = x - jy$; of $z = Me^{j\theta}$ is $z^* = Me^{-j\theta}$. Properties: $ z ^2 = zz^*$; $Re[z] = \frac{1}{2}(z + z^*)$; $Im[z] = \frac{1}{2j}(z - z^*)$; $e^{j2\angle z} = \frac{z}{z^*}$.
	Continuous time: $x(t) = e^{j\omega t}$. Discrete time: $x[n] = e^{j\omega n}$ where $\omega =$ frequency. Fourier series are expansions of periodic signals in terms of these functions.

complex Plot of **Imaginary part** of complex number vs. **real part** of complex number. **plane** You can visualize z = 3 + j4 at Cartesian coordinates (3, 4) in the complex plane.

conjugate If x(t) is real-valued, then $x_{-k} = x_k^*$ in its Fourier series expansion, where symmetry x_k^* is complex conjugate of x_k . DFT: If x[n] is real-valued, then $X_{N-k} = X_k^*$

convolution $y[n] = h[n] * x[n] = \sum_{i=0}^{n} h[i]x[n-i] = \sum_{i=0}^{n} h[n-i]x[i]$ if h[n] and x[n] **causal**. $x[n] \to |\overline{\mathbf{LTI}}| \to y[n] = h[n] * x[n]$ where $h[n] = \mathbf{impulse}$ response of \mathbf{LTI} system.

correlation Continuous time: $C(x,y) = \int x(t)y(t)^* dt$. Discrete time: $C(x,y) = \sum x[n]y[n]^*$.

correlation $C_N(x,y) = \frac{C(x,y)}{\sqrt{C(x,x)C(y,y)}}$ where C(x,y)=correlation and C(x,x) = E(x)=energy. coefficient $|C_N(x,y)| \leq 1$ by Cauchy-Schwarz \neq , so $C_N(x,y)$ =(the similarity of x[n] and y[n]).

DC term in **Fourier series** is constant x_0 or a_0 (continuous time) or X_0 (discrete time). DC means Direct Current, which does not vary with time, vs. AC, which is a **sinusoid**.

delay x[n] delayed by D > 0 is x[n - D]: D seconds later; shift x[n] graph right by D > 0.

DFT N-point DFT of $\{x[n]\}$ is $X_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}$ for $k = 0, 1 \dots N - 1$. Use **fft**. Discrete Fourier Transform computes coefficients X_k of the discrete-time Fourier series $x[n] = X_0 + X_1 e^{j\frac{2\pi}{N}n} + X_2 e^{j\frac{4\pi}{N}n} + \dots + X_{N-1} e^{j2\pi\frac{N-1}{N}n}$ where x[n] has period=N.

difference $y[n] + a_1y[n-1] + \ldots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \ldots + b_Mx[n-M]$. equation ARMA; describes an LTI system; this is how it is actually implemented on a chip.

duration Continuous time: If signal $support=[a, b] \rightarrow duration=(b-a)=how long it lasts.$ $Discrete time: If signal <math>support=[a, b] \rightarrow duration=(b-a+1)$. Note the "+1".

energy Continuous: $E(x) = \int_a^b |x(t)|^2 dt$. Discrete: $E(x) = \sum_{n=a}^b |x[n]|^2$ if **support**=[a, b].

Euler's formula: $e^{j\theta} = \cos \theta + j \sin \theta$. Polar \Leftrightarrow rectangular: $Me^{j\theta} = M \cos \theta + jM \sin \theta$.

even x(t) = x(-t): x(t) is symmetric about the vertical axis t = 0. **EX**: $\cos(t), t^2, t^4$. function A periodic even function has Fourier series having $b_k = 0$ and x_k real numbers.

fft Matlab command that computes DFT. Use: fft(X,N)/N. See also fftshift.

fftshift Matlab command that swaps first and second halves of a vector. Used with fft. Displays the **line spectrum** with negative **frequencies** to left of positive ones.

filter LTI system with frequency response performing some task, e.g., noise reduction.

FIR Finite Impulse Response system: its **impulse response** h[n] has finite **duration**. FIR systems are: also **MA** systems; always **BIBO stable**; all **poles** are at **origin**.

Fourier $x(t) = x_0 + x_1 e^{j\frac{2\pi}{T}t} + x_2 e^{j\frac{4\pi}{N}t} + x_3 e^{j\frac{6\pi}{N}t} + \dots + x_1^* e^{-j\frac{2\pi}{T}t} + x_2^* e^{-j\frac{4\pi}{N}t} + x_3^* e^{-j\frac{6\pi}{N}t} + \dots$ series where $x_k = \frac{1}{T} \int_0^T x(t) e^{-j\frac{2\pi}{T}kt} dt$ for integers k and x(t) is real-valued with period=T.

series	$x(t) = a_0 + a_1 \cos(\frac{2\pi}{T}t) + a_2 \cos(\frac{4\pi}{T}t) + \ldots + b_1 \sin(\frac{2\pi}{T}t) + b_2 \cos(\frac{4\pi}{T}t) + \ldots \text{ where}$ $a_k = \frac{2}{T} \int_0^T x(t) \cos(\frac{2\pi}{T}kt) dt \text{ and } b_k = \frac{2}{T} \int_0^T x(t) \sin(\frac{2\pi}{T}kt) dt \text{ and } x(t) \text{ has period} = \text{T.}$ BUT: note $a_0 = \frac{1}{T} \int_0^T x(t) dt = M(x) = \text{DC}$ term is a special case: note $\frac{1}{T}$, not $\frac{2}{T}$.
frequency	of a sinusoid : ω in signal $A\cos(\omega t + \theta)$. Units of $\omega : \frac{\text{RAD}}{\text{SEC}}$. Units of $f = \frac{\omega}{2\pi}$: Hertz.
	$\begin{split} H(e^{j\omega}) &= H(z) _{z=e^{j\omega}} \text{ where } H(z) \text{ is transfer function. Sometimes write: } H(\omega).\\ \cos(\omega_o n) &\to \overline{ \mathbf{LTI} } \to A\cos(\omega_o n + \theta) \text{ where } H(e^{j\omega_o}) = Ae^{j\theta}. \ A=\mathbf{gain} \text{ of system.}\\ x[n] &= \sum X_k e^{j\frac{2\pi}{N}kn} \to \overline{ \mathbf{LTI} } \to y[n] = \sum Y_k e^{j\frac{2\pi}{N}kn} \text{ where } Y_k = H(e^{j\frac{2\pi}{N}k})X_k. \end{split}$
fundamental	Sinusoid $c_1 \cos(\frac{2\pi}{T}t + \theta_1)$ at frequency $\frac{1}{T}$ Hertz in Fourier series of periodic $x(t)$.
gain	Gain= $ H(e^{j\omega}) $ =magnitude of frequency response. Describes filtering effect.
harmonic	Sinusoid $c_k \cos(\frac{2\pi}{T}kt + \theta_k)$ at frequency $\frac{k}{T}$ Hz in Fourier series of periodic $x(t)$.
	Filter with frequency response $H(e^{j\omega})$ small at DC $\omega = 0$ and large at $\omega = \pi$. HPFs enhance edges in images and signals, but also amplify high-frequency noise.
histogram	Plot of #times a signal value lies in a given range vs. range of signal values (bins). Can be used to compute good approximations to mean , mean square , rms , etc.
IIR	Infinite Impulse Response system: impulse response $h[n]$ has infinite duration .
	of a complex number: $Im[x+jy] = y$; $Im[Me^{j\theta}] = M\sin\theta$. Matlab: $imag(3+4j)=4$. Note that the imaginary part of $3 + j4$ is 4, NOT j4! A VERY common mistake!
impulse	Discrete time: $\delta[n] = 0$ unless $n = 0$; $\delta[0] = 1$. Continuous time: wait for EECS 306.
	$h[n]: \text{ Response to an impulse: } \delta[n] \to \overline{ \mathbf{LTI} } \to h[n]. \qquad y[n] = b_0 x[n] + \ldots + b_M x[n-M],$ $x[n] \to \overline{ \mathbf{LTI} } \to y[n] = h[n] * x[n]; \text{ see convolution.} \qquad \text{then } h[n] = \{b_0, b_1 \ldots b_M\}.$
	A signal nature (60 Hz) or humans (jamming) adds to a desired signal that obscures the desired signal. Unlike added noise , interference is usually known approximately.
	The act of reconstructing $x(t)$ from its samples $x[n] = x(t = n\Delta)$. Also: D-to-A. Zero-order hold: $\hat{x}(t) = x[n]$ for $\{n\Delta < t < (n+1)\Delta\}$; linear; exact using a sinc . Exact interpolation of discrete Fourier series : set $n = t/\Delta$ in all the sinusoids .
	Get $x[n]$ from its z-xform $X(z) = \mathcal{Z}\{x[n]\}$. EX: $X(z) = \frac{z}{z-3} \to x[n] = 3^n u[n]$. Do this by inspection or partial fraction expansion of rational function $X(z)$.
	Plot of the x_k in Fourier series of a signal vs. frequency ω . Also for X_k in DFT .

spectrum x_k is depicted in plot by a vertical line of height $|x_k|$ at $\omega = \frac{2\pi}{T}k$ where T=period.

linear of two signals $x_1[n]$ and $x_2[n]$ is the signal $(ax_1[n] + bx_2[n])$ for constants a and b. combination Lin. system: Response to linear combination is linear combination of responses.

linear This means that if $x_1[n] \to |\overline{\mathbf{LINEAR}|} \to y_1[n]$ and $x_2[n] \to |\overline{\mathbf{LINEAR}|} \to y_2[n]$ system then $(ax_1[n] + bx_2[n]) \to |\overline{\mathbf{LINEAR}|} \to (ay_1[n] + by_2[n])$ for any constants a and b. Often works: if doubling input x[n] doubles output y[n], system is likely to be linear.

low-pass Filter with frequency response $H(e^{j\omega})$ large at DC $\omega = 0$ and small at $\omega = \pi$. filter (LPF) LPFs smooth edges in images and signals, but they do reduce high-frequency noise.

LTI system is both Linear and Time-Invariant. So what? See **IMPULSE** and **FREQUENCY** RESPONSE and **FREQUENCY**

MA Moving-Average difference equation: $y[n] = b_0 x[n] + b_1 x[n-1] + \ldots + b_M x[n-M]$. MA systems are: also **FIR** systems; always **BIBO** stable; all **poles** are at origin.

magnitude of a complex number: $|Me^{j\theta}| = M$; $|x + jy| = \sqrt{x^2 + y^2}$. Matlab: abs(3+4j)=5.

Matlab Computer program used universally in communications, control, and signal processing. Matlab has been known to drive people crazy (look at what happened to me :)).

mean Cont.: $M(x) = \frac{1}{T} \int_0^T x(t) dt$ for x(t) period=T. $M(x) = x_0 = a_0$ in Fourier series. Disc.: $M(x) = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$ for x[n] period=N. $M(x) = X_0$ in the **DFT** of x[n].

mean Cont.: $MS(x) = \frac{1}{T} \int_0^T |x(t)|^2 dt = M(x^2) \neq (M(x))^2$ for x(t) periodic with period=T. square Disc.: $MS(x) = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$ for x[n] period=N. Mean square=average power.

mean Fourier series Periodic $x(t) = x_0 + x_1 e^{j\frac{2\pi}{T}t} + \ldots + x_1^* e^{-j\frac{2\pi}{T}t} + \ldots$ (infinite series). square $\hat{x}(t) = x_0 + x_1 e^{j\frac{2\pi}{T}t} + \ldots + x_M e^{j\frac{2\pi}{T}Mt} + x_1^* e^{-j\frac{2\pi}{T}t} + \ldots + x_M^* e^{-j\frac{2\pi}{T}Mt}$ (finite series). error MSE=MS $(x(t) - \hat{x}(t))$ is the mean square error in approximating x(t) with $\hat{x}(t)$.

noise An unknown signal that nature adds to a desired signal that obscures desired signal. A **lowpass filter** often helps reduce noise, while (mostly) keeping the desired signal.

notch $y[n] = x[n] - 2\cos(\omega_o)x[n-1] + x[n-2]$ eliminates $A\cos(\omega_o n + \theta)$ component in x[n]. filter transfer function= $(z - e^{j\omega_o})(z - e^{-j\omega_o})/z^2$ has: zeros at $e^{\pm j\omega_o}$; poles at origin.

Nyquist Sampling a continuous-time signal x(t) at twice its bandwidth (minimum rate). sampling The minimum sampling rate for which x(t) can be interpolated from its samples.

odd x(t) = -x(-t): x(t) is antisymmetric about the vertical axis t = 0. **EX:** $\sin(t), t, t^3$. function A periodic odd function has Fourier series having $a_k = 0$ and x_k pure imaginary.

order of this MA (also FIR) system is M: $y[n] = b_0 x[n] + b_1 x[n-1] + \ldots + b_M x[n-M]$.

origin of the complex plane is at Cartesian coordinates (0, 0). An elegant name for 0+j0.

orthogonal signals x(t) and y(t) have correlation C(x, y) = 0; MS(x + y) = MS(x) + MS(y). complex exponentials and sinusoids that are harmonics yields Fourier series. **Parseval's** Cont.: $\frac{1}{T} \int_0^T |x(t)|^2 dt = \sum_{k=-\infty}^\infty |x_k|^2 = a_0^2 + \frac{1}{2} \sum_{k=1}^\infty (a_k^2 + b_k^2)$ (see Fourier series). **theorem** Discrete time: $\frac{1}{N} \int_0^T |x[n]|^2 = \sum_{k=0}^{N-1} |X_k|^2$ where $\{X_k\}$ are the N-point DFT of x[n]. States that **average power** can be computed in either the time or Fourier domains.

partial of **RATIONAL** $H(z) = \frac{N(z)}{D(z)} = \frac{A_1}{z-p_1} + \ldots + \frac{A_N}{z-p_N}$. Need: degree D(z) > degree N(z). **fraction** $\{p_1 \ldots p_N\}$ are the **poles** of the **transfer function** H(z); $\{A_n\}$ are its **residues**. **expansion** Used to compute the **inverse z-transform** of a **rational function** by inspection.

periodic x(t) has period=T $\rightarrow x(t) = x(t \pm T) = x(t \pm 2T) = x(t \pm 3T) = ...$ for ALL time t. function $A\cos(\omega t + \theta)$ has period $T = \frac{2\pi}{\omega}$; $A\cos(\omega n + \theta)$ is not periodic unless $\omega = 2\pi \frac{\text{RATIONAL}}{\text{NUMBER}}$

phase of complex number: $\angle (Me^{j\theta}) = \theta$; $\angle (x+jy) = \tan^{-1}(\frac{y}{x})$. Use angle(1+j)= $\pi/4$. **phase** of a sinusoid: θ in the sinusoid $A\cos(\omega t + \theta)$. Add π if M < 0, A < 0 or x < 0 above.

phasor Complex number $Me^{j\theta}$ used to represent sinusoid $M\cos(\omega t + \theta)$. So why do this? $A\cos(\omega t + \theta) + B\cos(\omega t + \phi) = C\cos(\omega t + \psi) \Leftrightarrow Ae^{j\theta} + Be^{j\phi} = Ce^{j\psi}$ (much easier!).

polar of complex number: $Me^{j\theta}$; M=magnitude=distance from origin of complex plane form at angle θ =phase from real axis. $z=x+jy\rightarrow M=\sqrt{x^2+y^2}$; $\theta = \tan^{-1}(\frac{y}{x})$ if x > 0.

poles of a rational-function transfer-function $H(z) = \frac{N(z)}{D(z)}$ are the roots of D(z) = 0. **EX:** $H(z) = \frac{z^2 - 3z + 2}{z^2 - 7z + 12} \rightarrow z^2 - 7z + 12 = 0 \rightarrow \{\text{poles}\} = \{3, 4\}$. roots([1 -7 12]=3,4.

An LTI system is **BIBO stable** if and only if all poles are inside the **unit circle**.

pole-zero Plot of poles using X's and zeros using O's of LTI system in the complex plane.diagram If all X's are inside the unit circle, then system is BIBO stable. Matlab: zplane(N,D).

quantiz- of x[n] represents each value of x[n] with a finite #bits=N, so x[n] can take 2^N values. **ation** Produces slight roundoff error, which is neglected in EECS 206 since N=16 or 32.

rational of z is the ratio of two polynomials in z, so it has a partial fraction expansion. function Transfer functions in EECS 206 are rational functions with finite #poles & zeros.

residues The constants $\{A_n\}$ in the partial fraction expansion of a rational function.

real part of a complex number: Re[x+jy] = x; $Re[Me^{j\theta}] = M\cos\theta$. Matlab: **real(3+4j)**=3.

rectangular of complex number: x + jy. Coordinates (x, y) in complex plane. cf. polar form. form x=real part; y=imaginary part. $z=Me^{j\theta} \rightarrow x=M\cos\theta$; $y=M\sin\theta \Leftrightarrow P \rightarrow R$ key.

rms $\sqrt{\frac{1}{T}\int_0^T |x(t)|^2 dt} = \sqrt{MS(x)} = \sqrt{M(x^2)}$. **EX:** $\operatorname{rms}[A\cos(\omega t + \theta)] = \frac{A}{\sqrt{2}}$ if $\omega \neq 0$.

M roots The *M* solutions to $z^M = 1$, which are $z = e^{j\frac{2\pi}{M}k}$ for k = 1...M. Unity means "1." of unity The zeros of a comb filter are the M^{th} roots of unity, excluding the root z = 1.

-	Correlation between a signal and delayed versions of another signal, regarded as a function of the delay : $RC[n] = C(x[i], y[i - n])$. Used for time delay estimation.
sampling	Act of constructing $x[n] = x(t = n\Delta)$ from values of $x(t)$ at integer multiples of Δ .
sawtooth	Periodic $x(t) = at$ for $0 < t < b$ and $x(t) = 0$ for $b < t < c$ (like chain of triangles).
sinc	$\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$. Used in ideal interpolator, and also in $h[n]$ for ideal lowpass filter.
sinusoid	A function of time of the form $x(t) = A\cos(\omega t + \theta) = (\frac{A}{2}e^{j\theta})e^{j\omega t} + (\frac{A}{2}e^{-j\theta})e^{-j\omega t}$.
spectrum	See line spectrum . In EECS 206, all spectra are line spectra. Not so in EECS 306.
	Periodic $x(t) = a$ for $c < t < d$ and $x(t) = b$ for $d < t < e$ (like chain of squares). $x(t)$ has period =e-c and "duty cycle" $\frac{d-c}{e-c}$ if $a > b$, so that a="on" and b="off."
stem plot	Plot of discrete-time signal using chain of vertical lines topped with circles. stem(X).
step	function $u(t) = \begin{cases} 1 & \text{for } t > 0 \\ 0 & \text{for } t < 0 \end{cases}$ and $u[n] = \begin{cases} 1 & \text{for } n \ge 0 \\ 0 & \text{for } n \le -1 \end{cases}$. Note that $u[0] = 1$.
$\overline{\mathrm{step}}$	response $s[n]$: Response of a system to a step function: $u[n] \to \overline{ \mathbf{LTI} } \to s[n]$
-	of two signals $x_1[n]$ and $x_2[n]$ is the signal $(ax_1[n] + bx_2[n])$ for constants a and b . Linear system : Response to a superposition is the superposition of the responses. Another term for linear combination , but applied specifically to system inputs.
support	of $x(t)$ is interval $[a, b]$ means that $x(t) = 0$ for all $t > a$ and $t < b$. Same for $x[n]$.
system	function Another name for transfer function $H(z)$. Term used mostly in DSP.
Time- Invariance	If $x[n] \to \overline{ \mathbf{TI} } \to y[n]$ then $x[n-D] \to \overline{ \mathbf{TI} } \to y[n-D]$ for any constant delay D . A system is TI if there are no " n "s outside brackets. EX: $y[n] = nx[n]$ is not TI.
time scale	x(at) is $x(t)$ compressed if $a > 1$; expanded if $0 < a < 1$; time-reversed if $a < 0$.
transfer	$H(z) = \mathcal{Z}{h[n]} = z$ -transform of impulse response of an LTI system. So what?
function	Relates: IMPULSE, FREQUENCY, DIFFERENCE, POLE-ZERO RESPONSE, RESPONSE, EQUATION, DIAGRAM descriptions.
triangle	Periodic $x(t) = a - t $ for $ t < a$ and $x(t) = 0$ rest of period (chain of triangles).
	The circle $\{z : z = 1\} = \{z : z = e^{j\omega}\}$ in the complex plane , centered at origin . An LTI system is BIBO stable if and only if all poles are inside the unit circle.
zeros	of a rational-function transfer-function $H(z) = \frac{N(z)}{D(z)}$ are the roots of $N(z) = 0$. EX: $H(z) = \frac{z^2 - 3z + 2}{z^2 - 7z + 12} \rightarrow z^2 - 3z + 2 = 0 \rightarrow \{\text{zeros}\} = \{1, 2\}$. roots([1 -3 2]=1,2.
z-xform	of $x[n]$ is $X(z) = \mathcal{Z}\{x[n]\} = x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots \mathbf{EX}: \mathcal{Z}\{\underline{3}, 1, 4\} = \frac{3z^2 + z + 4}{z^2}.$