absolutely impulse response: $\sum|h[n]|$ is finite. EX: $\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}=\frac{1}{1-\frac{3}{4}}=4$ but $\sum_{n=1}^{\infty} \frac{1}{n} \rightarrow \infty$. summable Necessary and sufficient for BIBO stability of an LTI system. Also see poles.
affine $y[n]=a x[n]+b$ for constants a and $b \neq 0$. This is a linear-plus-constant function. system Affine systems are not linear systems, although they do look like linear systems.
aliasing EX: $x(t)=\cos (2 \pi 6 t)$ sampled at $10 \mathrm{~Hz}: t=\frac{n}{10} \rightarrow x[n]=\cos (1.2 \pi n)=\cos (0.8 \pi n)$. Ideal interpolation (for a sinusoid) $n=10 t \rightarrow x(t)=\cos (2 \pi 4 t) .6 \mathrm{~Hz}$ aliased to 4 . Can avoid aliasing by sampling faster than Nyquist rate, or use an antialias filter.
amplitude of a sinusoid: $|A|$ in sinusoidal signal $A \cos (\omega t+\theta)$. Amplitude is always ≥ 0.
antialias Analog lowpass filter that ensures that the sampling rate exceeds Nyquist rate, filter ensuring that aliasing does not occur during interpolation of the sampled signal.
argument of a complex number: another name for phase. Matlab: angle $(1+j)=0.7854=\pi / 4$.
ARMA Auto-Regressive Moving-Average difference equation. $\# y[n]>1$ and $\# x[n]>1$. average Continuous time: Average power $=M S(x)=\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t \quad$ for $x(t)$ period= T . power Discrete time: Average power $=M S(x)=\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|^{2}$ for $x[n]$ period $=\mathrm{N}$.
band-pass Filter with frequency response $H\left(e^{j \omega}\right)$ small at DC $\omega=0$ and small at $\omega=\pi$, filter (BPF) but large at some intermediate band $a<\omega<b$. BPFs reduce high-frequency noise.
bandwidth Maximum frequency in a cont.-time signal $x(t)$. Sometimes defined as twice this.
beat EX: $\cos (99 t)+\cos (101 t)=2 \cos (1 t) \cos (100 t)$ like varying amplitude $\cos (100 t)$. signal This beating sound can be used to tune a piano; also models a tone on AM radio.

BIBO Bounded-Input-Bounded-Output system: $x[n] \rightarrow \overline{|\mathbf{B I B O}|} \rightarrow y[n]$. Means:
stable If $|x[n]| \leq M$ for some constant M, then $|y[n]| \leq \bar{N}$ for some constant N.
An LTI system is BIBO stable iff all of its poles are inside the unit circle.
 $y[n]=h[n] *(g[n] * x[n])=(h[n] * g[n]) * x[n] \rightarrow$ convolve their impulse responses.
causal: signal: $x[n]=0$ for $n<0$; causal system has a causal impulse response $h[n]$.
comb $y[n]=x[n]+x[n-1]+\ldots+x[n-M+1]$ eliminates all $A_{k} \cos \left(\frac{2 \pi}{M} k n+\theta_{k}\right)$ in $x[n]$.
filter transfer function $=H(z)=\left(z-e^{j \frac{2 \pi}{M}}\right) \ldots\left(z-e^{j \frac{2 \pi}{M}(M-1)}\right) / z^{M-1}$ has zeros at $e^{j \frac{2 \pi}{M} k}$, which are the $M^{t h}$ roots of unity. Eliminates all harmonics of periodic function.
complex of complex number $z=x+j y$ is $z^{*}=x-j y ; \quad$ of $z=M e^{j \theta}$ is $z^{*}=M e^{-j \theta}$. conjugate Properties: $|z|^{2}=z z^{*} ; \quad \operatorname{Re}[z]=\frac{1}{2}\left(z+z^{*}\right) ; \quad \operatorname{Im}[z]=\frac{1}{2 j}\left(z-z^{*}\right) ; \quad e^{j 2 L z}=\frac{z}{z^{*}}$.
complex Continuous time: $x(t)=e^{j \omega t}$. Discrete time: $x[n]=e^{j \omega n}$ where $\omega=$ frequency. exponential Fourier series are expansions of periodic signals in terms of these functions.
complex Plot of Imaginary part of complex number vs. real part of complex number. plane You can visualize $z=3+j 4$ at Cartesian coordinates $(3,4)$ in the complex plane.
conjugate If $x(t)$ is real-valued, then $x_{-k}=x_{k}^{*}$ in its Fourier series expansion, where symmetry x_{k}^{*} is complex conjugate of x_{k}. DFT: If $x[n]$ is real-valued, then $X_{N-k}=X_{k}^{*}$
 $x[n] \rightarrow \overline{\underline{\mathbf{L T I} \mid}} \rightarrow y[n]=h[n] * x[n]$ where $h[n]=$ impulse response of LTI system.
correlation Continuous time: $C(x, y)=\int x(t) y(t)^{*} d t$. Discrete time: $C(x, y)=\sum x[n] y[n]^{*}$. correlation $C_{N}(x, y)=\frac{C(x, y)}{\sqrt{C(x, x) C(y, y)}}$ where $C(x, y)=$ correlation and $C(x, x)=E(x)=$ energy. coefficient $\left|C_{N}(x, y)\right| \leq 1$ by Cauchy-Schwarz \neq, so $C_{N}(x, y)=($ the similarity of $x[n]$ and $y[n])$.

DC term in Fourier series is constant x_{0} or a_{0} (continuous time) or X_{0} (discrete time). DC means Direct Current, which does not vary with time, vs. AC, which is a sinusoid.
delay $x[n]$ delayed by $D>0$ is $x[n-D]: D$ seconds later; shift $x[n]$ graph right by $D>0$.
DFT N-point DFT of $\{x[n]\}$ is $X_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} n k}$ for $k=0,1 \ldots N-1$. Use fft. Discrete Fourier Transform computes coefficients X_{k} of the discrete-time Fourier series $x[n]=X_{0}+X_{1} e^{j \frac{2 \pi}{N} n}+X_{2} e^{j \frac{4 \pi}{N} n}+\ldots+X_{N-1} e^{j 2 \pi \frac{N-1}{N} n}$ where $x[n]$ has period=N.
difference $y[n]+a_{1} y[n-1]+\ldots+a_{N} y[n-N]=b_{0} x[n]+b_{1} x[n-1]+\ldots+b_{M} x[n-M]$.
equation ARMA; describes an LTI system; this is how it is actually implemented on a chip.
duration Continuous time: If signal support $=[a, b] \rightarrow$ duration $=(b-a)=$ how long it lasts. Discrete time: If signal support $=[a, b] \rightarrow$ duration $=(b-a+1)$. Note the " +1 ".
energy Continuous: $E(x)=\int_{a}^{b}|x(t)|^{2} d t$. Discrete: $E(x)=\sum_{n=a}^{b}|x[n]|^{2}$ if support $=[a, b]$.
Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$. Polar \Leftrightarrow rectangular: $M e^{j \theta}=M \cos \theta+j M \sin \theta$.
even $x(t)=x(-t): x(t)$ is symmetric about the vertical axis $t=0 . \mathbf{E X : ~} \cos (t), t^{2}, t^{4}$.
function A periodic even function has Fourier series having $b_{k}=0$ and x_{k} real numbers.
fft Matlab command that computes DFT. Use: $f f t(X, N) / N$. See also fftshift.
fftshift Matlab command that swaps first and second halves of a vector. Used with fft. Displays the line spectrum with negative frequencies to left of positive ones.
filter LTI system with frequency response performing some task, e.g., noise reduction.
FIR Finite Impulse Response system: its impulse response $h[n]$ has finite duration. FIR systems are: also MA systems; always BIBO stable; all poles are at origin.

Fourier $x(t)=x_{0}+x_{1} e^{j \frac{2 \pi}{T} t}+x_{2} e^{j \frac{4 \pi}{N} t}+x_{3} e^{j \frac{6 \pi}{N} t}+\ldots+x_{1}^{*} e^{-j \frac{2 \pi}{T} t}+x_{2}^{*} e^{-j \frac{4 \pi}{N} t}+x_{3}^{*} e^{-j \frac{6 \pi}{N} t}+\ldots$ series where $x_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j \frac{2 \pi}{T} k t} d t$ for integers k and $x(t)$ is real-valued with period $=\mathrm{T}$.

Fourier $x(t)=a_{0}+a_{1} \cos \left(\frac{2 \pi}{T} t\right)+a_{2} \cos \left(\frac{4 \pi}{T} t\right)+\ldots+b_{1} \sin \left(\frac{2 \pi}{T} t\right)+b_{2} \cos \left(\frac{4 \pi}{T} t\right)+\ldots$ where series $a_{k}=\frac{2}{T} \int_{0}^{T} x(t) \cos \left(\frac{2 \pi}{T} k t\right) d t$ and $b_{k}=\frac{2}{T} \int_{0}^{T} x(t) \sin \left(\frac{2 \pi}{T} k t\right) d t$ and $x(t)$ has period=T. (trig form) BUT: note $a_{0}=\frac{1}{T} \int_{0}^{T} x(t) d t=M(x)=\mathbf{D C}$ term is a special case: note $\frac{1}{T}$, not $\frac{2}{T}$.
frequency of a sinusoid: ω in signal $A \cos (\omega t+\theta)$. Units of $\omega: \frac{\mathrm{RAD}}{\mathrm{SEC}}$. Units of $f=\frac{\omega}{2 \pi}$: Hertz.
frequency $H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}$ where $H(z)$ is transfer function. Sometimes write: $H(\omega)$.
response $\cos \left(\omega_{o} n\right) \rightarrow \overline{\underline{\mathbf{L T I}}} \rightarrow A \cos \left(\omega_{o} n+\theta\right)$ where $H\left(e^{j \omega_{o}}\right)=A e^{j \theta} . A=$ gain of system. $x[n]=\sum X_{k} e^{\frac{j \pi}{N} k n} \rightarrow \overline{\mathbf{L T I}} \rightarrow y[n]=\sum Y_{k} e^{j \frac{2 \pi}{N} k n}$ where $Y_{k}=H\left(e^{j \frac{2 \pi}{N} k}\right) X_{k}$.
fundamental Sinusoid $c_{1} \cos \left(\frac{2 \pi}{T} t+\theta_{1}\right)$ at frequency $\frac{1}{T}$ Hertz in Fourier series of periodic $x(t)$.
gain Gain $=\left|H\left(e^{j \omega}\right)\right|=$ magnitude of frequency response. Describes filtering effect.
harmonic Sinusoid $c_{k} \cos \left(\frac{2 \pi}{T} k t+\theta_{k}\right)$ at frequency $\frac{k}{T} \mathrm{~Hz}$ in Fourier series of periodic $x(t)$.
high-pass Filter with frequency response $H\left(e^{j \omega}\right)$ small at $\mathbf{D C} \omega=0$ and large at $\omega=\pi$. filter (HPF) HPFs enhance edges in images and signals, but also amplify high-frequency noise.
histogram Plot of \#times a signal value lies in a given range vs. range of signal values (bins). Can be used to compute good approximations to mean, mean square, rms, etc.
IIR Infinite Impulse Response system: impulse response $h[n]$ has infinite duration.
imaginary of a complex number: $\operatorname{Im}[x+j y]=y ; \quad \operatorname{Im}\left[M e^{j \theta}\right]=M \sin \theta$. Matlab: $\operatorname{imag}(3+4 \mathrm{j})=4$.
part Note that the imaginary part of $3+j 4$ is 4 , NOT j4! A VERY common mistake!
impulse Discrete time: $\delta[n]=0$ unless $n=0 ; \delta[0]=1$. Continuous time: wait for EECS 306.
impulse $h[n]$: Response to an impulse: $\delta[n] \rightarrow \overline{\underline{\mathbf{L T I}}} \rightarrow h[n] . \quad \mathrm{y}[\mathrm{n}]=b_{0} \mathrm{x}[\mathrm{n}]+\ldots+b_{M} \mathrm{x}[\mathrm{n}-\mathrm{M}]$, response $x[n] \rightarrow \overline{\underline{\mathbf{L T I} \mid}} \rightarrow y[n]=h[n] * x[n]$; see convolution. then $h[n]=\left\{b_{0}, b_{1} \ldots b_{M}\right\}$.
inter- A signal nature (60 Hz) or humans (jamming) adds to a desired signal that obscures ference the desired signal. Unlike added noise, interference is usually known approximately.
interp- The act of reconstructing $x(t)$ from its samples $x[n]=x(t=n \Delta)$. Also: D-to-A.
olation Zero-order hold: $\hat{x}(t)=x[n]$ for $\{n \Delta<t<(n+1) \Delta\}$; linear; exact using a sinc.
Exact interpolation of discrete Fourier series: set $n=t / \Delta$ in all the sinusoids.
inverse Get $x[n]$ from its z-xform $X(z)=\mathcal{Z}\{x[n]\}$. EX: $X(z)=\frac{z}{z-3} \rightarrow x[n]=3^{n} u[n]$. z-xform Do this by inspection or partial fraction expansion of rational function $X(z)$.
line Plot of the x_{k} in Fourier series of a signal vs. frequency ω. Also for X_{k} in DFT. spectrum x_{k} is depicted in plot by a vertical line of height $\left|x_{k}\right|$ at $\omega=\frac{2 \pi}{T} k$ where $\mathrm{T}=$ period.
linear of two signals $x_{1}[n]$ and $x_{2}[n]$ is the signal $\left(a x_{1}[n]+b x_{2}[n]\right)$ for constants a and b. combination Lin. system: Response to linear combination is linear combination of responses.
linear This means that if $x_{1}[n] \rightarrow \overline{\underline{\text { LINEAR }}} \rightarrow y_{1}[n]$ and $x_{2}[n] \rightarrow \overline{\underline{\text { LINEAR }}} \rightarrow y_{2}[n]$ system then $\left(a x_{1}[n]+b x_{2}[n]\right) \rightarrow \overline{\text { LINEAR } \mid} \rightarrow\left(a y_{1}[n]+b y_{2}[n]\right)$ for any constants a and b. Often works: if doubling input $x[n]$ doubles output $y[n]$, system is likely to be linear.
low-pass Filter with frequency response $H\left(e^{j \omega}\right)$ large at $\mathbf{D C} \omega=0$ and small at $\omega=\pi$. filter (LPF) LPFs smooth edges in images and signals, but they do reduce high-frequency noise.

LTI system is both Linear and Time-Invariant. So what? See | IMPULSE |
| :---: |
| RESPONSE |\(\underset{\substack{and \\

frequency \\
RESPONSE}}{ }\)

MA Moving-Average difference equation: $y[n]=b_{0} x[n]+b_{1} x[n-1]+\ldots+b_{M} x[n-M]$. MA systems are: also FIR systems; always BIBO stable; all poles are at origin.
magnitude of a complex number: $\left|M e^{j \theta}\right|=M ; \quad|x+j y|=\sqrt{x^{2}+y^{2}}$. Matlab: abs $(3+4 j)=5$.
Matlab Computer program used universally in communications, control, and signal processing. Matlab has been known to drive people crazy (look at what happened to me:)).
mean Cont.: $M(x)=\frac{1}{T} \int_{0}^{T} x(t) d t$ for $x(t)$ period=T. $M(x)=x_{0}=a_{0}$ in Fourier series. Disc.: $M(x)=\frac{1}{N} \sum_{n=0}^{N-1} x[n]$ for $x[n]$ period=N. $M(x)=X_{0}$ in the DFT of $x[n]$.
mean Cont.: $M S(x)=\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t=M\left(x^{2}\right) \neq(M(x))^{2}$ for $x(t)$ periodic with period=T. square Disc.: $M S(x)=\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|^{2}$ for $x[n]$ period=N. Mean square=average power.
mean Fourier series Periodic $x(t)=x_{0}+x_{1} e^{j \frac{2 \pi}{T} t}+\ldots+x_{1}^{*} e^{-j \frac{2 \pi}{T} t}+\ldots$ (infinite series). square $\hat{x}(t)=x_{0}+x_{1} e^{j \frac{2 \pi}{T} t}+\ldots+x_{M} e^{j \frac{2 \pi}{T} M t}+x_{1}^{*} e^{-j \frac{2 \pi}{T} t}+\ldots+x_{M}^{*} e^{-j \frac{2 \pi}{T} M t}$ (finite series). error $\operatorname{MSE}=\mathrm{MS}(x(t)-\hat{x}(t))$ is the mean square error in approximating $x(t)$ with $\hat{x}(t)$.
noise An unknown signal that nature adds to a desired signal that obscures desired signal. A lowpass filter often helps reduce noise, while (mostly) keeping the desired signal.
notch $y[n]=x[n]-2 \cos \left(\omega_{o}\right) x[n-1]+x[n-2]$ eliminates $A \cos \left(\omega_{o} n+\theta\right)$ component in $x[n]$. filter transfer function $=\left(z-e^{j \omega_{o}}\right)\left(z-e^{-j \omega_{o}}\right) / z^{2}$ has: zeros at $e^{ \pm j \omega_{o}}$; poles at origin.

Nyquist Sampling a continuous-time signal $x(t)$ at twice its bandwidth (minimum rate). sampling The minimum sampling rate for which $x(t)$ can be interpolated from its samples.
odd $x(t)=-x(-t): x(t)$ is antisymmetric about the vertical axis $t=0 . \mathbf{E X : ~} \sin (t), t, t^{3}$. function A periodic odd function has Fourier series having $a_{k}=0$ and x_{k} pure imaginary.
order of this MA (also FIR) system is $M: y[n]=b_{0} x[n]+b_{1} x[n-1]+\ldots+b_{M} x[n-M]$.
origin of the complex plane is at Cartesian coordinates $(0,0)$. An elegant name for $0+j 0$. orthogonal signals $x(t)$ and $y(t)$ have correlation $C(x, y)=0 ; M S(x+y)=M S(x)+M S(y)$. complex exponentials and sinusoids that are harmonics yields Fourier series.

Parseval's Cont.: $\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|x_{k}\right|^{2}=a_{0}^{2}+\frac{1}{2} \sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right)$ (see Fourier series). theorem Discrete time: $\frac{1}{N} \int_{0}^{T}|x[n]|^{2}=\sum_{k=0}^{N-1}\left|X_{k}\right|^{2}$ where $\left\{X_{k}\right\}$ are the N-point DFT of $x[n]$. States that average power can be computed in either the time or Fourier domains.
partial of $\underset{\text { FUNCTION }}{\text { RATIONAL }} H(z)=\frac{N(z)}{D(z)}=\frac{A_{1}}{z-p_{1}}+\ldots+\frac{A_{N}}{z-p_{N}}$. Need: degree $D(z)>$ degree $N(z)$. fraction $\left\{p_{1} \ldots p_{N}\right\}$ are the poles of the transfer function $H(z) ;\left\{A_{n}\right\}$ are its residues. expansion Used to compute the inverse z-transform of a rational function by inspection.
periodic $x(t)$ has period $=\mathrm{T} \rightarrow x(t)=x(t \pm T)=x(t \pm 2 T)=x(t \pm 3 T)=\ldots$ for ALL time t. function $A \cos (\omega t+\theta)$ has period $T=\frac{2 \pi}{\omega} ; \quad A \cos (\omega n+\theta)$ is not periodic unless $\omega=2 \pi_{\text {NUMBER }}^{\text {RATIONAL }}$
phase of complex number: $\angle\left(M e^{j \theta}\right)=\theta ; \quad \angle(x+j y)=\tan ^{-1}\left(\frac{y}{x}\right) . \quad$ Use angle $(1+j)=\pi / 4$.
phase of a sinusoid: θ in the sinusoid $A \cos (\omega t+\theta)$. Add π if $M<0, A<0$ or $x<0$ above.
phasor Complex number $M e^{j \theta}$ used to represent sinusoid $M \cos (\omega t+\theta)$. So why do this?
$A \cos (\omega t+\theta)+B \cos (\omega t+\phi)=C \cos (\omega t+\psi) \Leftrightarrow A e^{j \theta}+B e^{j \phi}=C e^{j \psi}$ (much easier!).
polar of complex number: $M e^{j \theta} ; M=$ magnitude= distance from origin of complex plane form at angle $\theta=$ phase from real axis. $\mathrm{z}=\mathrm{x}+\mathrm{jy} \rightarrow \mathrm{M}=\sqrt{x^{2}+y^{2}} ; \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right)$ if $x>0$.
poles of a rational-function transfer-function $H(z)=\frac{N(z)}{D(z)}$ are the roots of $D(z)=0$. EX: $H(z)=\frac{z^{2}-3 z+2}{z^{2}-7 z+12} \rightarrow z^{2}-7 z+12=0 \rightarrow\{$ poles $\}=\{3,4\}$. roots $\left(\left[\begin{array}{ccc}1 & -7 & 12\end{array}\right]=3,4\right.$.
An LTI system is BIBO stable if and only if all poles are inside the unit circle.
pole-zero Plot of poles using X's and zeros using O's of LTI system in the complex plane. diagram If all X's are inside the unit circle, then system is BIBO stable. Matlab: zplane (N, D).
quantiz- of $x[n]$ represents each value of $x[n]$ with a finite $\# \mathrm{bits}=\mathrm{N}$, so $x[n]$ can take 2^{N} values. ation Produces slight roundoff error, which is neglected in EECS 206 since $\mathrm{N}=16$ or 32.
rational of z is the ratio of two polynomials in z, so it has a partial fraction expansion. function Transfer functions in EECS 206 are rational functions with finite \#poles \& zeros.
residues The constants $\left\{A_{n}\right\}$ in the partial fraction expansion of a rational function.
real part of a complex number: $\operatorname{Re}[x+j y]=x ; \quad \operatorname{Re}\left[M e^{j \theta}\right]=M \cos \theta$. Matlab: real $(3+4 \mathrm{j})=3$.
rectangular of complex number: $x+j y$. Coordinates (x, y) in complex plane. cf. polar form.
form $x=$ real part; $y=$ imaginary part. $\mathrm{z}=M e^{j \theta} \rightarrow \mathrm{x}=M \cos \theta ; \mathrm{y}=M \sin \theta \Leftrightarrow \mathrm{P} \rightarrow \mathrm{R}$ key.
$\operatorname{rms} \sqrt{\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t}=\sqrt{M S(x)}=\sqrt{M\left(x^{2}\right)} . \mathbf{E X : ~} \operatorname{rms}[A \cos (\omega t+\theta)]=\frac{A}{\sqrt{2}}$ if $\omega \neq 0$.
M roots The M solutions to $z^{M}=1$, which are $z=e^{j \frac{2 \pi}{M} k}$ for $k=1 \ldots M$. Unity means " 1 ." of unity The zeros of a comb filter are the $M^{t h}$ roots of unity, excluding the root $z=1$.
running Correlation between a signal and delayed versions of another signal, regarded as correlation a function of the delay: $R C[n]=C(x[i], y[i-n])$. Used for time delay estimation.
sampling Act of constructing $x[n]=x(t=n \Delta)$ from values of $x(t)$ at integer multiples of Δ.
sawtooth Periodic $x(t)=a t$ for $0<t<b$ and $x(t)=0$ for $b<t<c$ (like chain of triangles).
sinc $\operatorname{sinc}(x)=\frac{\sin \pi x}{\pi x}$. Used in ideal interpolator, and also in $h[n]$ for ideal lowpass filter.
sinusoid A function of time of the form $x(t)=A \cos (\omega t+\theta)=\left(\frac{A}{2} e^{j \theta}\right) e^{j \omega t}+\left(\frac{A}{2} e^{-j \theta}\right) e^{-j \omega t}$.
spectrum See line spectrum. In EECS 206, all spectra are line spectra. Not so in EECS 306.
square Periodic $x(t)=a$ for $c<t<d$ and $x(t)=b$ for $d<t<e$ (like chain of squares). wave $x(t)$ has period=e-c and "duty cycle" $\frac{d-c}{e-c}$ if $a>b$, so that $\mathrm{a}=$ "on" and $\mathrm{b}=$ "off."
stem plot Plot of discrete-time signal using chain of vertical lines topped with circles. stem (X).
step function $u(t)=\left\{\begin{array}{ll}1 & \text { for } t>0 \\ 0 & \text { for } t<0\end{array}\right.$ and $u[n]=\left\{\begin{array}{ll}1 & \text { for } n \geq 0 \\ 0 & \text { for } n \leq-1\end{array}\right.$. Note that $u[0]=1$.
step response $s[n]:$ Response of a system to a step function: $u[n] \rightarrow \underline{\underline{\mathbf{L T I}}} \rightarrow s[n]$
super- of two signals $x_{1}[n]$ and $x_{2}[n]$ is the signal $\left(a x_{1}[n]+b x_{2}[n]\right)$ for constants a and b. position Linear system: Response to a superposition is the superposition of the responses. Another term for linear combination, but applied specifically to system inputs.
support of $x(t)$ is interval $[a, b]$ means that $x(t)=0$ for all $t>a$ and $t<b$. Same for $x[n]$.
system function Another name for transfer function $H(z)$. Term used mostly in DSP.
Time- If $x[n] \rightarrow \overline{|\mathbf{T I}|} \rightarrow y[n]$ then $x[n-D] \rightarrow \overline{|\mathbf{T I}|} \rightarrow y[n-D]$ for any constant delay D. Invariance A system is TI if there are no " n "s outside brackets. EX: $y[n]=n x[n]$ is not TI.
time scale $x(a t)$ is $x(t)$ compressed if $a>1$; expanded if $0<a<1$; time-reversed if $a<0$.
transfer $H(z)=\mathcal{Z}\{h[n]\}=$ z-transform of impulse response of an LTI system. So what?
function Relates: $\underset{\text { RESPOLSEE }}{\text { IMPULSE }}, \underset{\text { RESPONSE }}{\text { FREQUENCY }}, \underset{\text { EQUATION }}{\text { DIFFERENCE }}, \underset{\text { DIAGRAM }}{\text { POLE-ZERO }}$ descriptions.
triangle Periodic $x(t)=a-|t|$ for $|t|<a$ and $x(t)=0$ rest of period (chain of triangles).
unit The circle $\{z:|z|=1\}=\left\{z: z=e^{j \omega}\right\}$ in the complex plane, centered at origin. circle An LTI system is BIBO stable if and only if all poles are inside the unit circle.
zeros of a rational-function transfer-function $H(z)=\frac{N(z)}{D(z)}$ are the roots of $N(z)=0$. EX: $H(z)=\frac{z^{2}-3 z+2}{z^{2}-7 z+12} \rightarrow z^{2}-3 z+2=0 \rightarrow\{\operatorname{zeros}\}=\{1,2\} . \operatorname{roots}\left(\left[\begin{array}{lll}1 & -3 & 2\end{array}\right]=1,2\right.$.
$\mathbf{z - x f o r m}$ of $x[n]$ is $X(z)=\mathcal{Z}\{x[n]\}=x[0]+x[1] z^{-1}+x[2] z^{-2}+\ldots \mathbf{E X : \mathcal { Z }}\{\underline{3}, 1,4\}=\frac{3 z^{2}+z+4}{z^{2}}$.

