EECS 451 CIRCULAR CONVOLUTION

Def: y(n) = h(n)@Qu(n) = i o h(i)(u(n —i))x & Yi = XiUs.
where: (z(n))ny <N-point periodic extension of z(n). ”Cyclic”="circular.”
Order: ”N-point” or "order N”< y(n), h(n),u(n) all have length N.

How to Compute Circular Convolutions:

Goal: Compute {1,2,3,4}©{0,1,2,3} in three different ways:
Ref: Phillips and Parr, Signals, Systems and Transforms, p.576-580.

#1. Take only one cycle of the two cycles shown for each:

y(0) = fyaa i — (D0) +(2)3) + (3)(2) + (4)(1) = 16.
y(1) = Hoaatose — (M1 +(2)(0) + (3)(3) + (4)(2) = 18
y(2) = Lrvsates — (@) +2)(1) + (3)(0) + (4)(3) = 16.
y(3) = (L23412340 L (1)(3) 4 (2)(2) + (3)(1) + (4)(0) = 10.

#2. Compute the linear convolution and then alias it:
Linear: {1,2,3,4}%{0,1,2,3} ={0,1,4,10,16,17,12} (mult. z-transforms).
Alias: — {0+ 16,1+ 17,4+ 12,10} = {16, 18,16, 10} checks.

#3. Compute 4-point DFTs, multiply, compute 4-point inverse DFT:
Hy: DFT{1,2,3,4} ={10,—2 + j2,—2,—2 — 52}. Confirm this!
Up: DFT{0,1,2,3} = {06, -2+ j2,—2,—2 — 52}. Confirm this!
HiUs: {(10)(6), (—24+72)(—2+72), (~2)(~2), (~2—j2)(—2—j2)} = {60, 8,4, j8}.
y(n): y(n) = DFT~1{60, —;8,4, j8} = {16,18,16,10} checks.

Using Cyclic Convs and DFTs to Compute Linear Convs:

0-pad: {1,2,3,4,0,0,0}©{0,1,2,3,0,0,0} = {0,1,4,10,16,17,12}.
Note: Linear conv. of two 4-point— 4 + 4 — 1 = 7-point sequence.

Long Often input signal u(n) is much longer than filter h(n).
input Chop up u(n) into segments u;(n) and compute h(n) * u;(n).
u(n): Use Overlap-save or overlap-add methods (see text p.430-433).

Compute quickly by multiplying 7-point DFT's, then inverse DFT:

EECS 451

COMPUTING CONTINUOUS-TIME
FOURIER TRANSFORMS USING THE DFT

Goal:

Assume:

Assume:

Compute numerically X (f) = [x(t)e 72 tdt; z(t) = [X (f)e??™/tdf.
Note X (f) = X(£) and df = £ (note missing 27 in inverse).

x(t) time-limited to 0 <t < T (so that x(¢t) = 0 for other values of t).
What if () is time-limited to another interval T; < t < T}7

Then use T' = Ty — T; and multiply X (f) by e 72™/Ti afterwards.

X (f) band-limited to —B/2 < f < B/2 (X(f) =0 for |f| > B/2).
Why B/2 instead of B? Saves factor 2 throughout below; symmetry.

Sample t:
Sample f:

Approx:
Sample f:
Inverse:

t =nA; for 0 <n < N — 1. Nyquist sampling— A; = 1/B.
f=kAs for 0 <k <N —1. Nyquist sampling— Ay =1/T.
X(f) =~ ijz_ol z(nlAy)e 727 mA A, (using rectangle rule).

X (kAg) 7 YopTg w(nd)e I2mmFads A
Repeating above, z(n) ~ kN:_Ol X (kA j)ed?mnkBels A

DFT:
Then:

FFT:
where:

Formulae:
Remember:

Let Xk = X(kAf)/At = X(k‘Af)B and AtAf = 1/N above.

X ~ quj:_ol :c(nAt)e_j%”k/N; x(n) ~ % kN:_Ol X el2mnk/N DET)
Use FFT of order N = BT to compute DFT of order N = BT.
AAy =1/N and Ay =1/B and Ay =1/T all- BT = N.

BT = N; AtAf == 1/N, At == 1/B, Af == 1/T; Xk; == X(kAf)B
X(f) =0 for |f| > B/2, not |f| > B!

Example:
Limits:
Values:

FFT:

Fle M} =2/(w? +1) = 2/(4n%f? +1). Recall w = 2nf.

About -6 <t <6 —->T =12and -8 < f <8 — B =16 (not 8!).
N = BT = (16)(12) = 192; A, = 1/B = 1/16; Ay = 1/T = 1/12.
192-point FFT of z(t) sampled 1/16 to get 16X (f) sampled 1/12.

