EECS 451 LECTURE NOTES

BASIC SYSTEM PROPERTIES

What:
Why:

Input x[n] — |[SYSTEM| — y[n] output.
Design the system to filter input x[n].

DEF:
1.

for:

A system is LINEAR if these two properties hold:
Scaling: If z[n] — |SYS| — y[n], then az[n] — |[SYS| — ay[n]

any constant a. NOT true if a varies with time (i.e., a[n]).

2.
Then:

for:

Superposition: If x1[n] — [SYS| — y1[n] and x2[n] — |SYS| — ya[n],

(az1[n] + bxz[n]) — |SYS[ — (ay1[n] + bya[n])

any constants a,b. NOT true if a or b vary with time (i.e., a[n], b[n]).

EX:
NOT:

NOT:
HOW:

yln| = 3z[n=2]; yln] = z[n+1]—naln|+2zln—1];  y[n| = sin(n)z(n].
yln] = 2%[n];  y[n] = sin(z[n]); y[ | = lz[n];  yln] = xln]/zln —1].
y[n] = x[n] + 1 (try it). This is called an affine system.

If any nonlinear function of x[n], not linear. Nonlinear of just n OK.

DEF:

for:

A system is TIME-INVARIANT if this property holds:
If 2[n] — |SYS| — y[n], then x[n — N] — |SYS| — y[n — N]
any integer time delay N. NOT true if N varies with time (e.g., N(n)).

EX:
NOT:
HOW:

yln] =3z[n —2];  y[n] =sin(z[n]); yln] = z[n]/z[n —1].
y[n] = nzfn];  yln] =z[n?);  yln] = z2n];  yln] = z[-n].
If n appears anywhere other than in x[n|, not time-invariant. Else OK.

DEF:

Note:

A system is CAUSAL if it has this form for some function F(-):
y[n] = F(x[n],z[n — 1],2[n — 2] ...) (present and past input only).
Physical systems must be causal. But DSP filters need not be causal!

DEF:

A system is MEMORYLESS if y[n| = F(z[n]) (present input only).

DEF:

i.e.:

A system is (BIBO) STABLE iff: Let z[n] — |[SYSTEM| — y[n].
If |x[n]| < M for some constant M, then |y[n]| < N for some N.
“Every bounded input (BI) produces a bounded output (BO).”

HOW:

where:

BIBO stable < > °°
Impulse §[n] — [SYS| — h[n]=impulse response.

|h[n]| < L for some constant L

n=—oo

EX:

Prove:

A time-invariant system is observed to have these two responses:
{0,0,3} — |SYS| — {0,1,0,2} and {0,0,0,1} — |SYS| — {1,2,1}.
The system is nonlinear.

Proof:

By contradiction. Suppose the system is linear. But then:
{0,0,0,1} — |SYS| — {1,2, 1} implies {0,0,3} — [SYS| — {3,6, 3}
since we know it is time-invariant. Then {0, 0, 3} produces two outputs!
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CONVOLUTION AND IMPULSE RESPONSE

Note:

x[n]
n| =

{3,1,4,6} < z[n] = 30[n + 1] + 1d[n] + 40[n — 1] + 6J[n — 2].
> [ ]5 [n — 1] = x[n] * d[n] (sifting property of impulse).

8

Delay:
Fold:
Both:

] is z[n| flipped /folded/reversed around n = 0.

[

[

x[n — D] is x[n] shifted right (later) if D > 0; left (earlier) if D < 0.
(-

x[N — n] is x[—n] shifted right if N > 0 (since x[0] is now at n = N).

otk

FOR LINEAR TIME-INVARIANT (LTI) SYSTEMS:

d[n| — ]LTI| — h[n] Definition of Impulse response h[n].
d[n —i] — |LTI] — h[n — i] Time invariant: delay by 1.
z[ilé[n —i| — |LTI| — x[i]h[n —i] Linear: scale by x[i].

Yo, xlilén —i] — |LTI| — ), z[ilh[n — i] Linear: superposition.

zin] — |LTI| — y[n] = >, [i|h[n — i] = h[n] * z[n] Convolution.
Input z[n] into LTI system with no initial stored energy—output y[n|.

PROPERTIES OF DISCRETE CONVOLUTION
y[n] = hin] x z[n] = z[n] x h[n] = >, hli]lzn —i] = ) hin — i]x[d].

. h[n], z[n] both causal (h[n] =0 for n < 0 and z[n] = 0 for n < 0)

— y[n] =Y 1, hlilzn — i =3, hin — dz[i] also causal.

Note:
Note:

. Suppose h[n| # 0 only for 0 < n < L (h[n| has length L + 1).

Suppose z[n] # 0 only for 0 <n < M (x[n] has length M + 1).

Then y[n] # 0 only for 0 <n < L+ M (y[n] has length L + M + 1).
Length[y[n]|=Length[h[n]]+Length[x[n]]-1

y[0] = h[0]z[0]; y[L + M] = h[L]z[M]; x[n]*dn— D] =x[n— D].

x[n] — |hi[n]| — |h2[n]| — y[n] (cascade connection)

Equivalent to: z[n] — |h1[n] * ha[n]| — y[n].

5. xz[n] — ﬁ::ﬁ }: @ — y[n] (parallel connection)
Equivalent to: z[n] — |h1[n] + ha[n]| — y[n].
MA: y[n| = box[n] + bix[n — 1] + ... + byx[n — q] (Moving Average)

Huh?
Note:

Present output=weighted average of ¢ most recent inputs.
Equivalent to y[n| = b[n] * x[n| where blk] = b;,0 < k < q.

FIR:
EX:
IIR:
EX:

Finite Impulse Response < h[n| has finite duration.
Any MA system is also an FIR system, and vice-versa.
Infinite Impulse Response < h[n| not finite duration.
hin] = a™u[n] = a™ for n > 0 and |a| < 1 is stable and IIR.
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RECURSIVE COMPUTATION OF IMPULSE RESPONSE

Goal: Compute impulse response h[n| of system y[n| — %y[n — 1] = 3z|n].

Sol'n: Compute recursively h[n] — $hin — 1] = 36[n] = 0 if n > 0.
n=0: h[0] — $h[—1] = 35[0] — A[0] — 5(0) = 3(1) — h[0] = 3.
=t - B0 = 300 — A0 - 9) = 300) 40 = .
n=2: h[2] — 3h[1] =30[2] — h[2] — 5(3) = 3(0) — A[0] = 1.
n=3: h[3] — $h[2] = 36[3] — R[3] — 5($) = 3(0) — A[0] = 3.

hin] = 3(3)"u[n] = 3(3)™ for n > 0. Geometric signal.

BIBO (BOUNDED INPUT—-BOUNDED OUTPUT) STABILITY
Goal: Determine whether an LTI system is BIBO stable from its h[n].

EX #1: h[n] = {2,3,—4} — X |hln]| = 2| +[3] + | — 4] =9 < 00 — BI20.

EX #2: hln] = (=3)"uln] = L |hln]| = | = 3" = =5 < 00 — SO0

EX #3: hin] = SXuln] — 3 |hin]| = 32 -2 uln] — co — NOT BIBO stable.
Note: > (;i)lnu[n] =log2 but ) | (;Jlr)ln lu[n] = > n%rlu[n] — 00

so absolute summability vs. summability matters for BIBO stability!

CONVOLUTION OF TWO FINITE SIGNALS
Goal: Compute {1,2,3} % {4,5,6,7} = {4,13,28,34,32,21}.

y[0] = h[0]z[0] = (1)(4) = 04

y[1] = h(1]x[0] + h[0]z[1] = (2)(4) + (1)(5) = 13

y[2] = h(2]x[0] + h[1]z[1] + A[0]z[2] = (3)(4) + (2)(5) + (1)(6) = 28.
y[3] = h(2]x[1] + h[1]x[2] + h[0]z[3] = (3)(5) + (2)(6) + (1)(7) = 34
y[4] = h[2]x[2] + h[1]z[3] = (3)(6) + (2)(7) = 32

y[5] = h[2]x[3] = (3)(7) = 21.

Note: Length y[n|=Length h[n]+Length z[n] —1=34+4—-1=6.
CONVOLUTION OF FINITE AND INFINITE SIGNALS
Goal: Compute {2, —1,3} * (3)"u[n] = 28[n] + 3(3)"2u[n — 2].
Sol’n: {2,-1,3} = (5)"u[n] = (26[n] — 16[n — 1] + 36[n — 2]) * (5)"u[n] =
2(2)"uln]—1(3)"tuln—1]4+3(3)" 2uln—2] = 26[n]+3(5)" 2u[n—2].

Note: {2,—1}* (1)"un] = 25[n]. So z[n] — |(3)"u[n]| — [{2, -1} — 2zn].
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MA:
Huh?
Note:

Why?

y(n) =box(n) +byz(n —1)+ ...+ bx(n — q) (Moving Average)
Present output=weighted average of ¢ most recent inputs.
Equivalent to y(n) = b(n) * z(n) where b(k) = b, 0 < k <g.

So why bother? Because now can have initial conditions.

AR:
Huh?
Note:

y(n) +aryin—1)+ ...+ apy(n —p) = x(n) (AutoRegression)
Present output=weighted sum of p most recent outputs.
Compute y(n) recursively from its p most recent values.

ARMA:

P q
Z a;yin—1i) = Z bixz(n —i) (Combine AR and MA—ARMA).
i=0 i=0

AUTOREGRESSIVE MOVING AVERAGE

PROPERTIES OF DIFFERENCE EQUATIONS

. Clearly represent LTI system. Now allow initial conditions.
. MA model<FIR (Finite Impulse Response) filter:

For MA model, h(n) has finite length ¢ + 1.

. AR model<IIR (Infinite Impulse Response) filter:

For AR model, h(n) does not have finite length.
But can implement using finite set of coefficients a;.

Note:
Note:

. Analogous to differential equation in continuous time:

P p—1 q qg—1
(j?+a1%+...+ap> y(t) = (%erl%qt...qtbq) x(t).
Coeflicients a; and b; are not directly analogous here.
Time-invariant in both cases since coefficients indpt of time.

. SKIP Section 2.4.3 in text: 1-sided z-transform is much easier.

READ Section 2.5 in text: signal flow graph implementations.

DIFFERENCE EQUATIONS VS. h(n)

Advantages of Difference Equations:

. Analogous to differential equation in continuous time.

Often can write them down from model of physical system.

. Can incorporate nonzero initial conditions.
. AR model may be much more efficient implementation of system.

Disadvantages of Difference Equations:

. There may not be a difference equation description of system!

Example: h(n) = 1,n > 0 has no difference equation model.

Recall: h(t) = d(t — 1) (delay) has no differential equation model.

. May only want output y(IV) for single time N (e.g., end of year).

Then convolution y(NN) = > h(i)x(N — i) more efficient computation.



