
Please box your answers. Show your work. Turn in all Matlab plots and Matlab code.

[20] 1. We are given \(x[n] = \{ \ldots 18, 12, 6, 0, 6, 12, 18, 12, 6, 0, 6, 12, 18 \ldots \} \) (a periodic signal).

 [10] (a) Compute the Discrete-Time Fourier Series (DTFS) expansion of \(x[n] \).
 \textbf{Hint:} \(x[n] \) has period=6, \(x[n] \) is real-valued, and \(x[n] \) is an even function.
 [05] (b) Compute average power in the time domain. Your answer should agree with:
 [05] (c) Compute average power in the frequency domain.

[20] 2. We are given DTFS coefficients \(x_k = \cos(\pi k/4) + \sin(3\pi k/4) \).

 Note that \(x_k \) is entirely real-valued, but it is \textit{not} an even function.

 [5] (a) Explain why \(x[n] \) with these coefficients \(x_k \) has period=8.
 [5] (b) Compute the \textit{purely real} part of \(x[n] \) from the \textit{even} part of \(x_k \).
 [5] (c) Compute the \textit{imaginary} part of \(x[n] \) from the \textit{odd} part of \(x_k \).

\textbf{Hint:} One period of \(x[n] \) has only two real and two imaginary nonzero values.

\textbf{Hint:} Read off \(x[n] \) from \(x_k = \sum_{n=0}^{N-1} \frac{x[n]}{N} e^{-j2\pi nk/N} \). Note \(e^{-j2\pi nk/N} = e^{j2\pi (N-n)k/N} \).

[10] 3. Compute DTFTs of the following. Simplify to sums of sines and cosines.

 [5] (a) \(\{1, 1, \frac{1}{2}, 1, 1\} \). [5] (b) \(\{3, 2, 1\} \).

[10] 4. Use the inverse DTFT to evaluate the following integrals:

 [5] (a) \(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{j\omega} e^{-j3\omega}}{e^{j\omega} - e^{-j\omega}} d\omega \).
 [5] (b) \(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j3\omega} 2 \cos(3\omega) d\omega \).

 \textbf{Hint:} Replace \(e^{j\omega} \) with \(z \) and compute \(Z^{-1} \) at a specific \(n \).

[20] 5. \(x[n] = \{1, 4, 3, 2, 5, 7, -45, 7, 5, 2, 3, 4, 1\} \). Let \(X(e^{j\omega}) = \text{DTFT}[x[n]] \). Compute:

 [5] (a) \(X(e^{j\pi}) \). [5] (b) \(\arg[X(e^{j\omega})] \).
 [5] (c) \(\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega \).
 [5] (d) \(\int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega \).

 \textbf{Hint:} Do not actually compute \(X(e^{j\omega}) \)! Use some properties of the DTFT.

 \textbf{Note:} \(45 > 1 + 4 + 3 + 2 + 5 + 7 + 7 + 5 + 2 + 3 + 4 + 1 \), so the phase is uniquely specified here.

[20] 6. Download \texttt{p5.mat}. In Matlab, type \texttt{>>load p5.mat} to get the sampled signal \(X \).

 [5] (a) Listen to \(X \) using \texttt{soundsc(X,24000)}. Describe it. (It’s not the same as before.)
 [5] (b) Plot the spectrum of \(X \) using the Matlab command from problem set #1.
 Compare carefully to the spectrum plot from problem set #1. What did I do?
 [5] (c) Use \texttt{fftshift} somehow and \(Y = \text{real}(\text{ifft}(FY)) \) to unscramble \(X \).
 [5] (d) Use the modulation property of the DTFT to unscramble \(X \) more easily.

 \textbf{Hint:} Shifting discrete-time frequency by \(\pi \) does what in the time domain?

 \textbf{Note:} This is the digital version of \textit{voice scramblers} used in World War II.

 Turn in plots of the spectrum of \(X \) and of its unscrambled version.

“A chicken is just an egg’s way of making another egg.”