1.	A. $h[n] = Th(t=nT) = (0.2)10e^{-10(0.2n)}u(0.2n) = 2e^{-2n}u[n].$
2.	$\mathbf{A.} = \frac{2}{T} \frac{z-1}{z+1} \to H(z) = \frac{10}{10 \frac{z-1}{z+1} + 10} = \frac{10(z+1)}{10(z-1) + 10(z+1)} = \frac{1}{2}(1+z^{-1}). \text{ Average 2 most recent.}$
3.	D. $10=\Omega=\frac{2}{T}\tan(\frac{\omega}{2}) \rightarrow 1=\tan(\frac{\omega}{2}) \rightarrow \omega=\pi/2 \text{ (not } \pi/4\text{)}.$
4.	C. $H_a(s) = s \text{ and } s = \frac{2}{2} \frac{z-1}{z+1} \to H(z) = \frac{z-1}{z+1} = \frac{Y(z)}{X(z)} \to y[n] + y[n-1] = x[n] - x[n-1]$
5.	C. Bilinear transform maps $\operatorname{Re}[s] < 0 \rightarrow z < 1$, so stable&causal \rightarrow stable&causal.
6.	B. $h[n] = \{a, \underline{b}, a\} \rightarrow H(e^{j\omega}) = ae^{j\omega} + b + ae^{-j\omega} = b + 2a\cos(\omega)$. Solve these equations: $\omega = 0$: $1 = b + 2a$. $\omega = \pi$: $0 = b - 2a$. $\omega = \frac{\pi}{2}$: $\frac{1}{2} = b + 0a \rightarrow a = \frac{1}{4}, b = \frac{1}{2} \rightarrow h[n] = \{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\}.$
7.	E. $h_{IDEAL}[n] = \frac{\sin(\frac{\pi}{2}n)}{\pi n} \rightarrow h[n] = w[n] h_{IDEAL}[n] = \frac{\sin(\frac{\pi}{2}n)}{\pi n}, n \le 1 = \{\frac{1}{\pi}, \frac{1}{2}, \frac{1}{\pi}\}.$
8.	D. Could have used fir1 for $\#8$ and fir2 for $\#7$ (with different arguments).
9.	D. $a+b+0-b-a=0$ and $a(-1)^2+b(-1)+0-b(-1)-a(-1)^2=0$.
10.	B. A blurs the points; C makes the points only more prominent!
11.	A. (b) doesn't help; (c) makes noise worse since it enhances high frequencies.
12.	E. (a) blurs image features; both (b) and (c) can help.
13.	A. Only A does not reject DC and emphasize high frequencies.
14.	C. Increasing N does not help resolve peaks unless N was very small.
15.	A. Does not reduce sidelobes, only width of main peak (see formula in notes).
16.	E. Reduces resolution and convolves spectrum with window's spectrum, smoothing.
17.	C. Downsampling by 2 doubles frequency to 600 Hz , which is aliased down to 400 Hz . The reconstructor output is never more than half the sampling rate, so no 600 Hz .
18.	B. Upsampling halves frequency, but also brings in the aliased version (350 Hz) of it.
19.	F. A and C reduce, not raise, frequency. B and D first cause unrecoverable aliasing. In E 350 Hz gets aliased. F works: LPF both eliminates 350 Hz and avoids aliasing.
20.	A. Don't even think about asking for partial credit!
	SCORES959085807570656055TotalMeanMedian#ugrad11291710103316678.580#grad01321000782.985