1. C. Discrete time! \(0.075 = \frac{75}{1000} = 3/40 \) lowest terms \(\rightarrow \) period \(= \) denominator \(= \) 40.

2. A. \(\sin(32\pi \frac{n}{40}) + \sin(48\pi \frac{n}{40}) = \sin(0.8\pi n) + \sin(1.2\pi n) = 0. \)
 Replace “sin” with “cos” throughout and the answer is (e).

4. C. \(Y(z)[1 + 2z^{-1} + 3z^{-2}] = X(z)[4 + 5z^{-1} + 6z^{-2}] \rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{4z^2 + 5z + 6}{z^2 + 2z + 3}. \)

5. E. \(H(z) = Z\{h[n]\} = \frac{z}{z^2 + 2} + \frac{z^2}{z^2 + 2} = \frac{2z^2 - 3z}{z^2 + 2z + 3}. \)

6. E. \(\frac{z^2}{z^2 + 2} = \frac{z}{z^2 - 2} \)

7. E. \(\frac{z}{z^2 - 2} \)

8. A. \{ 1, -3, 2 \} \# u(n) = u(n) - 3u(n-1) + 2u(n-2) = \{ 1, -2 \} \cdot (1 - 3z^{-1} + 2z^{-2}) \rightarrow h[n] = \frac{2z}{z^2}. \)

9. D. \(H(z) = \frac{2z - 2z^{-1}}{z^2 - 2} = \frac{2z - 2z^{-1}}{2z^2 - 2} = 1 - 2z^{-1} \rightarrow h[n] = \{ 1, -2 \}. \) Same as #8!

10. A. 1-sided: \(Y^+(z) - 2z^{-1}Y^+(z) + 2y(-1) = 0 \rightarrow Y^+(z) = \frac{2z}{z^2} \rightarrow y[n] = 2(2)^{n}u[n]. \)

11. B. Poles \{ 2, 3 \} both outside unit circle \(\rightarrow \) unstable. I should have specified “causal.”

12. C. \(H(z) = \frac{Y(z)}{X(z)} = \frac{z^2 - 7z + 6}{z^2 - 5z + 6}. \) Cross-multiply: \(Y(z)(z^2 - 5z + 6) = X(z)(z^2 - 7z + 6). \) Z \(\rightarrow \) 1.

13. A. \(Y(z) = H(z)X(z) = \frac{z^2 - 7z + 6}{z^2 - 5z + 6} \rightarrow y[n] = \{ 1, -7, 6 \}. \)

14. A. \(y[n] = h[n] \ast \sum_{n=0}^{\infty} h(n) = 7H(1) = 0. \) OK, I shouldn’t have asked this one.

15. D. \(\frac{H(z)}{z} = \frac{(z - 1)(z - 6)}{z(z - 2)(z - 1)} = \frac{1}{z} + \frac{2}{z - 1} - \frac{2}{z - 2} \rightarrow H(z) = 1 + 2z - 2z^{-1}. \)

16. (i) \((0.5)^{n-1}u[n - 1] - 3^n - 1u[n - 1] \) \{ \(z : |z| > 3 \) \} causal unstable

 (ii) \((0.5)^{n-1}u[n - 1] + 3^n - 1u[u - n] \) \{ \(z : 0.5 < |z| < 3 \) \} noncausal stable

 (iii) \(3^n - 1u[-n] - (0.5)^{n-1}u[-n] \) \{ \(z : |z| < 0.5 \) \} anticausal unstable

Scores: # undergrad # grad problem grading comments

100	5	1	1	Discrete time! Aargh...
95 - 99	12	3	7	(d) Must replace n \(\rightarrow \) n - 1
90 - 94	14	2	12	Trouble with this? Aargh...
85 - 89	12	0	14	Much harder than I thought
80 - 84	10	0	16	-3 if thought \(\frac{z}{z - 0.5} - \frac{z}{z - 3} \)
75 - 79	4	0	16	I admit it: I forgot z's
70 - 74	5	0	16	-2 if u[-n - 2] not u[-n]
65 - 69	3	1	16	u[-(n - 1) - 1] = u[-n]. Delay :
60 - 65	3	1	16	Replace n \(\rightarrow \) n - 1 everywhere
TOTAL	67	7	15	Put answer in different form

Mean: 85.5 90.3
Pretty good! Was it too easy?