PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Closed book; 4 sides of 8.5×11 "cheat sheet."

SIGN YOUR NAME HERE:

CIRCLI	E ONE:	Undergraduate	Graduate
Write yo	ur answer to ea	ch question in the answer spa	ce to the right of that question.
Problems	s $\#1-20$ are mult	iple choice (here same as fill-in	-the-blank) worth 5 points each.
For Prob	lems #1-3: T=0	1. The analog filter is: $H_a(s)$ =	$=\frac{40s}{s^2+400}$. $h_a(t)=40\cos(20t)u(t)$.
1. h[n]	designed using \mathbf{i}	mpulse invariance is: (a) $4 c$	s(2n)u[n] (b) $40 cos(20n)u[n]$
(c)	400 cos(200n)u[n] (d) $0.4 cos(0.2n)u[n]$ (e) $2 cos$	s(2n)u[n]
2. H(z)	using bilinear	transform is: (a) $\frac{z-1}{z+1}$ (b) $\frac{2z}{z^2-1}$	$\frac{z}{z^2+2}$ (c) $\frac{4z}{z^2+2}$ (d) $\frac{2z}{z^2+1}$ (e) $\frac{z^2-1}{z^2+1}$
3. Usin	g a bilinear tra	nsform , the continuous-time fr	requency $\Omega = 20$ maps to discrete-
time	frequency $\omega =:$	(a) 20 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ (e)	π
Can	do #3 independ	ently of #2; no partial credit is	f wrong #2 leads to wrong #3.
4. IIR (a)	filters are guaraı	teed to be stable if designed fr	om a stable analog filter using:
	Impulse invarian	ce (b) Bilinear transform (c) I	Both (d) Neither (e) Can't tell
A different	ntiator has: $H_a($	s)=s and $H(e^{j\omega})=j\omega$ for $ \omega <$ gn a linear-phase length=3 non	π and h[n]= $\frac{(-1)^n}{n}$, $n \neq 0$.
For prob	lems #5-7: Desig		causal FIR differentiator using:
5. Free	$\{-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}\}$ (b)	ng with: $H(e^{j0})=0$. $H(e^{j\pi/2})=$	$j\pi/2$. $H(e^{j\pi})=0$ (not π):
(a)		$\{\frac{\pi}{4}, 0, -\frac{\pi}{4}\}$ (c) $\{-\frac{\pi}{4}, \frac{\pi}{2}, -\frac{\pi}{4}\}$ (c)	d) $\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{\pi}{4}\}$ (e) $\{1, 0, -1\}$
6. A re (a)	$\{-rac{1}{4},rac{1}{2},-rac{1}{4}\}$ (b)	dow applied to the ideal digita $\{\frac{\pi}{4}, 0, -\frac{\pi}{4}\}$ (c) $\{-\frac{\pi}{4}, \frac{\pi}{2}, -\frac{\pi}{4}\}$ (c)	l differentiator: d) $\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{\pi}{4}\}$ (e) $\{1, 0, -1\}$
7. An e (a) (d) :	equiripple filter fir1(2,[0,1],[firpm(2,[0,1],	, now with $H(e^{j\pi})=j\pi$. The Ma 0,1]) (b) fir2(2,[0,1],[0,1] [0,pi/2],'hilbert') (e) fir	atlab command designing it: 1]) (c) firpm(2,[0,1],[0,1]) pm(2,[0,1],[0,pi],'hilbert')
8. The	IIR filter for an	ideal integrator designed usin	ng bilinear transform with T=2:
(a)	y[n]+y[n-1]=x[n]	+x[n-1] (b) $y[n]-y[n-1]=x[n]+x[n-1]$	x[n-1] (c) $y[n]=x[n]+x[n-1]$
(d)	y[n]-y[n-1]=x[n]]-x[n-1] (e) $y[n]+y[n-1]=x[n]-x[n]-x[n]-x[n]-x[n]-x[n]-x[n]-x[n]-$	x[n-1] (f) $y[n]=x[n]-x[n-1]$
For sam	#9-11: A 200 Hz pler (A/D) and	sinusoid is input to a DSP system reconstructor (D/A) are not sh	m with sampling rate $1000 \frac{\text{SAMPLE}}{\text{SECOND}}$ own. No antialias filter is used.
9. 200	$Hz \rightarrow \downarrow 2 \rightarrow ? (a)$	100 Hz (b) 100&400 Hz (c) 40	00 Hz (d) 400&600 Hz (e) 600 Hz
10. 200	$Hz \rightarrow \uparrow 2 \rightarrow ? (a)$	100 Hz (b) 100&400 Hz (c) 40	00 Hz (d) 400&600 Hz (e) 600 Hz
11. If in	put is a 200 Hz s	sinusoid, which DSP system ou	tputs only a 300 Hz sinusoid?
LPF	is an ideal Low	Pass Filter (not bandpass) wit	h a single cutoff frequency.
(a)	$\rightarrow \uparrow 3 \rightarrow \downarrow 2 \rightarrow 1$	$\overrightarrow{PF} \rightarrow (b) \rightarrow \overrightarrow{\downarrow 3} \rightarrow \overrightarrow{\uparrow 2} \rightarrow \overrightarrow{LP}$	$\overrightarrow{\mathbf{F}} \rightarrow (\mathbf{c}) \rightarrow \uparrow \overrightarrow{3} \rightarrow \overrightarrow{\mathbf{LPF}} \rightarrow \downarrow \overrightarrow{2} \rightarrow$
(d)	$\rightarrow \downarrow 3 \rightarrow \mathbf{LPF}$	$\overrightarrow{\uparrow 2} \rightarrow (e) \rightarrow \overrightarrow{\uparrow 2} \rightarrow \overrightarrow{\downarrow 3} \rightarrow \overrightarrow{LP}$	$\overrightarrow{\mathbf{F}} \rightarrow (\mathbf{f}) \rightarrow \uparrow \overrightarrow{2} \rightarrow \overrightarrow{\mathbf{LPF}} \rightarrow \downarrow \overrightarrow{3} \rightarrow$

12.	For which frequency ω_o are the outputs $x[n]$ of these two systems identical? In both systems, LPF is an ideal lowpass filter with cutoff frequency $\pi/3$. #1: $\cos(\omega_o n) \rightarrow \uparrow 3 \rightarrow \textbf{LPF} \rightarrow x[n]$ #2: $\cos(\omega_o n) \rightarrow \downarrow 3 \rightarrow \textbf{LPF} \rightarrow x[n]$		
	(a) 0.3π (b) 0.5π (c) 0.6π (d) 0.75π (e) (c) & (d)		
	For #13-16: $x[n] = Acos(\omega_0 n) + Bcos(\omega_1 n)$ for $0 \le n \le L-1$; use an N-point DFT of $x[n]$.		
13.	To help resolve the two peaks, we should do which of the following: (a) Increase L (b) Increase N (c) Use Hamming window (d) (a)&(c) (e) (b)&(c)		
14.	To make the spectrum smoother, we should do which of the following: (a) Increase L (b) Increase N (c) Use Hamming window (d) (a)&(c) (e) (b)&(c)		
15.	To reduce sidelobes around the peaks, we should do which of the following: (a) Increase L (b) Increase N (c) Use Hamming window (d) (a)&(c) (e) (b)&(c)		
16.	Which of these makes it harder to resolve the two peaks: (a) Decrease L (b) Decrease N (c) Use Hamming window (d) (a)&(c) (e) (b)&(c)		
17.	The filter type designed by firpm(10, [0,0.2,0.3,0.7,0.8,1], [0,0,1,1,0,0]) is: (a) Lowpass (b) Bandpass (c) Highpass (d) Band-reject (e) Notch (f) Comb		
18.	The filter with $h[n] = \{a, b, c, d, 0, -d, -c, -b, -a\}$ is guaranteed to be: (a) Lowpass (b) Bandpass (c) Highpass (d) Band-reject (e) Notch (f) Comb		
19.	The 2-D filter having 2-D impulse response $h[i,j] = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$ is:		
	(a) Lowpass (b) Bandpass (c) Highpass (d) Band-reject (e) Notch (f) Comb HINT: h[i,j] is separable: h[i,j]=h[i]h[j]. What are h[i] and h[j] and what do they do?		
20.	"DSP" stands for: (a) Digital Signal Processing (b) Drivel Spewed by Professor (c) Dumbest Subject Partaken (d) Drive Slowly Please (e) Dummies Should Pass		