PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Closed book; 4 sides of 8.5×11 "cheat sheet."

SIGN YOUR NAME HERE:

α TD	CIE		г.
UID	\mathbf{CLE}	\mathbf{ON}	r,:

Undergraduate

Graduate

Write your answer to each question in the answer space to the right of that question. Problems #1-15 are multiple choice (here same as fill-in-the-blank) worth 5 points each.

- 1. The DFT of $\{12, 8, 4, 8\}$ is: (a) $\{8, 1 + j2, 4, 1 j2\}$ (b) $\{8, 1 j2, 4, 1 + j2\}$ (c) $\{32, 4 j8, 16, 4 + j8\}$ (d) $\{8, 2, 0, 2\}$ (e) $\{32, 8, 0, 8\}$
- 2. The DFT of $\cos(\frac{\pi}{4}n)$ is: (a) $\{4,0,0,0,0,0,0,4\}$ (b) $\{0,4,0,0,0,0,0,4\}$ (c) $\{0,0,4,0,0,0,4,0\}$ (d) $\{0,4,0,0,0,0,4,0\}$ (e) $\{0,0,0,4,4,0,0,0\}$
- 3. Which signal is eliminated by y[n] y[n-1] = x[n] + x[n-1] + x[n-2]: (a) 1 (b) $\cos(\frac{\pi}{4}n)$ (c) $\cos(\frac{\pi}{3}n)$ (d) $\cos(\frac{\pi}{2}n)$ (e) $\cos(\frac{2\pi}{3}n)$
- 4. Which of these filters eliminates 375 Hz in a signal sampled at 1 kHz? h[n] =: (a) $\{1, 1, 1\}$ (b) $\{1, -1, 1\}$ (c) $\{1, 0, 1\}$ (d) $\{1, 0, -1\}$ (e) $\{1, \sqrt{2}, 1\}$
- 5. The response of y[n] = 8x[n] + 3x[n-1] + 4x[n-2] to $x[n] = \cos(\frac{\pi}{2}n)$ is: (a) $9\cos(\frac{\pi}{2}n)$ (b) $5\cos(\frac{\pi}{2}n + 37^o)$ (c) $15\cos(\frac{\pi}{2}n)$ (d) $5\cos(\frac{\pi}{2}n 37^o)$ (e) $9\sin(\frac{\pi}{2}n)$
- 6. If $x[n] = \cos(\frac{\pi}{2}n) + \cos(\pi n)$ then y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] =: (a) $\cos(\frac{\pi}{2}n)$ (b) $\cos(\pi n)$ (c) $2\cos(\frac{\pi}{2}n) + 3\cos(\pi n)$ (d) 4x[n] (e) 0
- 7. The system having frequency response $[2e^{-j\omega}]/[1+3e^{-j2\omega}]$ is: (a) $y[n-1] = \frac{1}{2}x[n] + \frac{3}{2}x[n-2]$ (b) y[n] + 3y[n-2] = 2x[n-1] (c) y[n] = x[n] + 3x[n-2] (d) y[n] + 3y[n-1] = 2x[n] (e) y[n] + 3y[n-1] = 2x[n-1]
- 8. The filter eliminating discrete-time frequencies $\omega = \frac{\pi}{3}$ and $\omega = \frac{2\pi}{3}$ is: (a) $\{1, 0, 1, 0, 1\}$ (b) $\{1, 0, 1.25, 0, 1\}$ (c) $\{1, 0, 1.75, 0, 1\}$ (d) $\{1, .27, -1.46, .27, 1\}$
- 9. The frequency response function of y[n] + y[n-2] = x[n] x[n-2] is: (a) $\tan(\omega)$ (b) $j \tan(\omega)$ (c) $\cot(\omega)$ (d) $-j \cot(\omega)$ (e) $\frac{1-e^{-j\omega}}{1+e^{-j\omega}}$
- 10. The system y(n)=x(n+1)+3x(n)+ax(n-1) has zero phase for all frequencies for a=: (a) 1/2 (b) 1 (c) 2 (d) 3 (e) No values of a
- 11. The system y(n)=x(n)+x(n-1)+ax(n-2) has a stable and causal inverse for a=: (a) 1/2 (b) 1 (c) 2 (d) 3 (e) No values of a
- 12. Which function cannot be the DTFT of any x[n]: (a) $\cos(2\omega)$ (b) $\sin(2\omega)$ (c) $\cos(\omega/2)$ (d) $|\sin(\omega/2)|$ (e) $\sin(\omega)$
- 13. The *cyclic* convolution $\{\underline{3}, 1, 4\} \odot \{\underline{2}, 7, 1\}$ is: **(a)** $\{\underline{6}, 23, 18, 29, 4\}$ **(b)** $\{\underline{24}, 52, 4\}$ **(c)** $\{\underline{6}, 52, 22\}$ **(d)** $\{\underline{10}, 52, 18\}$ **(e)** $\{\underline{35}, 27, 18\}$

14. Which system has gain function $\sqrt{(3+4\cos\omega)^2+16\sin^2\omega}/\sqrt{(1+2\cos\omega)^2+4\sin^2\omega}$?

(a) 3y[n]+4y[n-1]=x[n]+2x[n-1] (b) y[n]+2y[n-1]=3x[n]+4x[n-1] (c) 4y[n]+3y[n-1]=2x[n]+x[n-1] (d) 2y[n]+y[n-1]=4x[n]+3x[n-1] (e) y[n]=x[n]+x[n-1]

- [10] 15. For $H(\omega) = 1 + 4e^{-j\omega} + 3e^{-j3\omega}$, the response to $x[n] = 1 + 2\cos(\frac{\pi}{2}n) + 3\cos(\pi n)$ is $y[n] = 2\cos(\frac{\pi}{2}n) + 4\sqrt{2}\cos(\frac{\pi}{2}n \frac{\pi}{4})$ (c) $4\sqrt{2}\cos(\frac{\pi}{2}n \frac{\pi}{4}) 18\cos(\pi n)$ (d) $8 + 4\sqrt{2}\cos(\frac{\pi}{2}n + \frac{\pi}{4}) 18\cos(\pi n)$ (e) $8 + 2\sqrt{2}\cos(\frac{\pi}{2}n \frac{\pi}{4}) 18\cos(\pi n)$
- [10] 16. (Period=8, real, even) $x[n] \to \overline{|y[n] = x[n] x[n-2] + x[n-4] x[n-6]|} \to y[n]$ Make a stem plot of y[n] on the axis below. Don't worry about the vertical scale. HINT: $(z^6 - z^4 + z^2 - 1)(z^2 + 1) = (z^8 - 1)$. What do the zeros do to periodic x[n]?

0 1 2 3 4 5

[10] 17. A LTI system has $H(z) = [(z - e^{j2\pi/3})(z - e^{-j2\pi/3}]/[(z - 0.99e^{j\pi/3})(z - 0.99e^{-j\pi/3})]$. Sketch the relative magnitude of its frequency response (i.e., gain) on the plot below.

 $-\pi$ 0 π