PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Closed book; 2 sides of 8.5×11 "cheat sheet."

SIGN YOUR NAME HERE:

CIRCLE ONE:			Undergraduate	Graduate
TT 7 • 1		1		

Write your answer to each question in the answer space to the right of that question. Problems #1-15 are multiple choice (here same as fill-in-the-blank) worth 5 points each.

- 1. The **period** of $x[n] = 3\cos(2\pi 0.075n + 1)$ for **integer** *n* is: (a) 1 (b) 1/0.075 (c) 40 (d) 75 (e) not periodic
- 2. $\sin(32\pi t) + \sin(48\pi t)$ is sampled at 40 Hz, then *ideally* interpolated. The result is: (a) 0 (b) $\sin(16\pi t)$ (c) $2\sin(16\pi t)$ (d) $\sin(32\pi t)$ (e) $2\sin(32\pi t)$
- 3. The convolution {1,2,3} * {4,5,6} =: (a) {7,8,9} (b) {4,13,27,18}
 (c) {4,13,28,27,18} (d) {4,14,32,28,18} (e) {5,11,20,23,9}
- 4. The system (transfer) function of a LTI system described by the difference equation y[n] + 2y[n-1] + 3y[n-2] = 4x[n] + 5x[n-1] + 6x[n-2] is: (a) $\frac{z^2+2z+3}{4z^2+5z+6}$ (b) $\frac{3z^2+2z+1}{6z^2+5z+4}$ (c) $\frac{4z^2+5z+6}{z^2+2z+3}$ (d) $\frac{6z^2+5z+4}{3z^2+2z+1}$ (e) $z^2 + z + 1$
- 5. The system function of a LTI system with impulse response $h[n] = u[n] + 2^n u[n]$ is: (a) $\frac{z+2}{z}$ (b) $\frac{z+2}{z-1}$ (c) $\frac{z+2}{z^2-3z+2}$ (d) $\frac{z^2-3z}{z^2-3z+2}$ (e) $\frac{2z^2-3z}{z^2-3z+2}$
- 6. $\mathcal{Z}\{2^{n}u[n]+3^{n}u[n]\} =:$ (a) $\frac{z^{2}-5z+6}{1}$ (b) $\frac{1}{z^{2}+5z+6}$ (c) $\frac{5}{z^{2}+5z+6}$ (d) $\frac{2z-5}{z^{2}-5z+6}$ (e) $\frac{2z^{2}-5z}{z^{2}-5z+6}$
- 7. If H(z) = 6/[(z+1)(z-2)], then $h[n] = \mathcal{Z}^{-1}\{H(z)\} =:$ (a) $2^n u[n] + (-1)^n u[n]$ (b) $2^n u[n] - (-1)^n u[n]$ (c) $2(2^n)u[n] + 2(-1)^n u[n]$ (d) $2(2^n)u[n] - 2(-1)^n u[n]$ (e) $2^n u[n] + 2(-1)^n u[n] - 3\delta[n]$.
- 8. The z-transform of $\{\underline{1}, -3, 2\} * u[n]$ is: (a) $\frac{z-2}{z}$ (b) $\frac{2z^3-4z^2+5z-2}{z^3-z^2}$ (c) $1+3z^{-1}+2z^{-2}+\frac{z}{z-1}$ (d) 1-2z (e) z-2
- 9. The impulse response if $\delta[n] + 2^n u[n] \to \overline{|LTI|} \to \{\underline{2}, -2\}$ is: (a) $\delta[n] 2^n u[n]$ (b) $(\frac{1}{2})^n u[n]$ (c) $2(\frac{1}{2})^n u[n] - 2(\frac{1}{2})^{n-1} u[n-1]$ (d) $\{\underline{1}, -2\}$ (e) $2\delta[n] - 2(2^{n-1})u[n-1]$
- 10. The zero-input response for y(n)-2y(n-1)=x(n)+x(n-1) with y(-1)=1 is: (a) $2^{n+1}u(n)$ (b) $2^nu(n)$ (c) $2^{n-1}u(n-1)$ (d) $2^nu(n)+2^{n-1}u(n-1)$ (e) 0

		For problems	#11-15: An L	TI system has t	transfer function	on $H(z) = \frac{(z-1)}{(z-2)}$	$\frac{(z-6)}{(z-3)}$.					
-	11.	a) $\{1,6\}; \{2,3\}$ $3\}; \{1,6\};$ unsta										
-	12.	The difference equation for the system is: (a) $y[n] - 7y[n-1] + 6y[n-2] = x[n] - 5x[n-1] + 6x[n-2]$ (b) $6y[n] - 7y[n-1] + y[n-2] = 6x[n] - 5x[n-1] + x[n-2]$ (c) $y[n] - 5y[n-1] + 6y[n-2] = x[n] - 7x[n-1] + 6x[n-2]$ (d) $6y[n] - 5y[n-1] + y[n-2] = 6x[n] - 7x[n-1] + x[n-2]$										
-	13.	The response of the system to $x[n] = \{1, -5, 6\}$ is $y[n] =$: (a) $\{1, -7, 6\}$ (b) $(2)^{n+1}u[n] - 2(3)^n u[n]$ (c) $\{6, -7, 1\}$ (d) $\delta[n] + (2)^{n+1}u[n] - 2(3)^n u[n]$										
-	14.	The response of the system to $x[n] = 7$ for all n is $y[n] =$: (a) 0 (b) $\frac{7}{6}\cos(\pi n)$ (c) ∞ (d) $1.22\cos(\pi n - 0.165)$ (e) $1.22\cos(\pi n + 0.165)$										
-	15.	The impulse response of the system is $h[n] =:$ (a) {1,-7,6} (b) (2) ⁿ⁺¹ u[n]-2(3) ⁿ u[n] (c) {6,-7,1} (d) $\delta[n]+(2)^{n+1}u[n]-2(3)^nu[n]$										
[24]	16.	. $X(z) = \frac{1}{z-0.5} - \frac{1}{z-3}$ has 3 different inverse z-transforms. For each one, compute: [3@3] (a) $x[n]$ [3@3] (b) ROCs [3@1] (c) if stable [3@1] (d) if causal. Write below										
		\bigcirc	÷	\bigcirc		\bigcirc						
		STABLE	CAUSAL	STABLE	CAUSAL	STABLE	CAUSAL					

[1] 17. Did you: (a) PRINT your name; (b) SIGN your name; (c) CIRCLE grad or undergrad?