CONTINUOUS-TIME AND DISCRETE-TIME SINUSOIDS

DEF: A sinusoidal signal has the standard form \(x(t) = A \cos(\omega_o t + \phi) \).

Where: \(A \geq 0 = \text{amplitude}; \) \(\omega_o \geq 0 = \text{frequency}; \) \(|\phi| \leq \pi = \text{phase} \) (shift).

Freq: \(f_o = \omega_o/(2\pi) = \text{circular or cyclic frequency in Hertz} = \text{cycles per second}. \)

Note: Sinusoid \(x(t) = A \cos(2\pi f_o t + \phi) \) has cyclic frequency \(f_o \) Hertz.

Period: \(T = \frac{1}{f_o} = \frac{2\pi}{\omega_o} \rightarrow x(t) = x(t + T) \) for all \(t \) using \(\cos(x) = \cos(x + 2k\pi) \).

DC: DC (constant) signals: \(\omega_o = f_o = 0; \) \(T = \infty \) (low-frequency limit).

\[
\text{RMS}(x) = \sqrt{\frac{1}{T} \int_0^T A^2 \cos^2(\omega_o t + \phi) dt} = \sqrt{\frac{1}{T} \int_0^T A^2}{\left(1 + \cos(2\omega_o t + 2\phi)\right)} dt = \frac{A}{\sqrt{2}}
\]

Note: Can convert other forms to this standard form. Some examples:

1. \(x(t) = -3 \cos(7t + 0.1) = 3 \cos(7t \pm \pi + 0.1) \) using \(-\cos(x) = \cos(x \pm \pi) \).
2. \(x(t) = 3 \sin(7t + 0.1) = 3 \cos(7t - \frac{\pi}{2} + 0.1) \) using \(\sin(x) = \cos(x - \frac{\pi}{2}) \).
3. \(x(t) = -3 \cos(-7t + 0.1) = 3 \cos(7t \pm \pi - 0.1) \) using \(\cos(-x) = \cos(x) \).

x(t): Continuous-time sinusoids are periodic with period \(T = \frac{1}{f_o} = \frac{2\pi}{\omega_o} \).

x[n]: Discrete-time sinusoids are NOT periodic UNLESS \(f_o \) is rational.

\(\omega_o = 2\pi \frac{K}{T} \leftrightarrow x[n] \) has period \(T \), provided \(\frac{K}{T} \) is reduced to lowest terms.

Why? \(A \cos(\omega_o n + \phi) = A \cos(\omega_o(n + T) + \phi) \leftrightarrow \omega_o T = 2\pi K \leftrightarrow f_o = \frac{\omega_o}{2\pi} = \frac{K}{T} \).

EX: \(\omega_o = 2\pi \rightarrow T = 1; \) \(\omega_o = (2.02)\pi \rightarrow T = 100; \) \(\omega_o = 2 \rightarrow \text{nonperiodic} \).

Freq.: \(A \cos(\omega_o n + \phi) = A \cos([\omega_o + 2k\pi]n + \phi) \rightarrow \omega_o \text{ itself} \) is periodic.

As \(\omega_o \) increases from 0 to \(\pi \), oscillation rate increases.

As \(\omega_o \) increases from \(\pi \) to 2\(\pi \), oscillation rate decreases.

Huh? Frequency range \(\pi \leq \omega_o \leq 2\pi \leftrightarrow -\pi \leq \omega_o \leq 0 \) since \(\omega_o \) periodic.

WLOG: Restrict discrete-time frequencies to range \(-\pi \leq \omega_o \leq \pi \).

Note: \(\omega_o = 0 \rightarrow \cos(\omega_o n) = 1; \) \(\omega_o = \pm \pi \rightarrow \cos(\omega_o n) = (-1)^n \).

SUM OF MULTIPLE SINUSOIDS

If: \(x(t) \) has period \(T_x \) and freq. \(f_x \); \(y(t) \) has period \(T_y \) and freq. \(f_y \);

And: \(T_x/T_y \) is a rational number (otherwise \(x(t) + y(t) \) not periodic);

Then: \(x(t) + y(t) \) has period \(T_{x+y} = \text{Least Common Multiple of} \ T_x \text{ and} \ T_y \);

Then: \(x(t) + y(t) \) has freq. \(f_{x+y} = \text{Greatest Common Divisor of} \ f_x \text{ and} \ f_y \).

Note: Always works for sinusoids; rarely fails for general periodic signals.

How? (1) Reduce \(\frac{T_x}{T_y} = \frac{M}{N} \) to lowest terms. (2) \(T_{x+y} = NT_x = MT_y \).

Why? \(\frac{T_x}{T_y} = \frac{M}{N} \rightarrow x(t + T_{x+y}) + y(t + T_{x+y}) = x(t + NT_x) + y(t + MT_y) \).

EX: \(x(t) = \cos(0.3\pi t) + \cos(2\pi/3 t) \rightarrow f_o = \frac{3}{20}, \frac{1}{3} \rightarrow f_{x+y} = \frac{1}{60} \rightarrow T_{x+y} = 60 \).
ELEMENTARY SIGNAL OPERATIONS: TRANSLATION

Value: $y(t) = x(t) + c$ shifts plot of $x(t)$ up by c if $c > 0$ (down if $c < 0$).
Value: $y(t) = cx(t)$ scales vertical axis of plot by factor c.

Time: $y(t) = x(t-d)$ shifts plot of $x(t)$ right by d if $d > 0$ (left if $d < 0$).
Time: $y(t) = x(dt)$ scales horizontal axis of plot by factor d.
Time: $y(t) = x(-t)$ reverses: flips plot about $t = 0$ axis.

Note: For discrete time signals $x[n]$, d must be an integer!

EX #1: $y(t) = x(t-2)$ delays $x(t)$ by 2: $y(2) = x(0), y(3) = x(1)$.
EX #2: $y(t) = x(2t)$ shrinks $x(t)$ by 2: $y(1) = x(2), y(2) = x(4)$.
Means: If $x(t) = \cos(\omega_0 t)$, this doubles frequency & halves period.

EX #3: $y(t) = x(-t)$: If $x(t)$ audio, then $y(t)$ is $x(t)$ backwards!
Play Beatles records backwards to find hidden messages? Doppler.

COMBINING SIGNAL OPERATIONS

- One of the trickiest topics in EECS 216! Be very careful.
- Two methods are available. Pick one and stick with it.

Why? See lecture notes. Reread at least three times.

- **First Method: Shift then Scale**
 1. Put problem into the form $y(t) = x(at - b)$.
 2. Shift $x(t)$ by b. $b > 0 \rightarrow$ shift right. $b < 0 \rightarrow$ shift left.
 3. Scale result of #2 in time by a. $a > 1 \rightarrow$ compress. $0 < a < 1 \rightarrow$ expand.
 $a < 0 \rightarrow$ time reversal: flip plot around $t = 0$ axis.

- **Second Method: Scale then Shift**
 1. Put problem into the form $y(t) = x(c(t-d))$.
 2. Scale $x(t)$ in t by c. $c > 1 \rightarrow$ compress in time. $0 < c < 1 \rightarrow$ expand.
 $c < 0 \rightarrow$ time reversal: flip plot around $t = 0$ axis.
 3. Shift result of #2 in time by d. $d > 0 \rightarrow$ shift right. $d < 0 \rightarrow$ shift left.

EX: $x(t) = 5\cos(3t+2)$. $y(t) = 4x(2t-1)$. $y(3) = 4x(6-1) = 20\cos(17)$.
Result: $y(t) = 20\cos(3(2t-1)+2) = 20\cos(6t-1)$. Frequency doubles.

DEF: Linear combination $z(t)$ of $x(t)$ and $y(t)$:
$z(t) = ax(t) + by(t)$ for two constants a and b.

NOT: $tx(t) + 3y(t)$ is NOT a linear combination of $x(t)$ and $y(t)$.
EX: Audio mixing; summing Fourier series (later in EECS 216).

DEF: Concatenation $z(t)$ of finite-support $x(t)$ and $y(t)$:
$x(t)$ has support $[0, T_x] \rightarrow z(t) = x(t)$ for $0 \leq t \leq T_x$.
$y(t)$ has support $[0, T_y] \rightarrow z(t) = y(t-T_x)$ for $T_x \leq t \leq (T_x + T_y)$.
$z(t)$ has support $[0, T_x + T_y] \leftrightarrow z(t) = 0$ for $t < 0$ or $t > (T_x + T_y)$.