Given: A circuit with several inductors and capacitors and different sources.
Also: Non-zero initial conditions: capacitors charged and inductors “juiced.”
Goal: Compute any circuit voltage or current as a function of time \(t \) for \(t > 0 \).
Soln: Solve constant-coefficient differential equation with initial conditions.
But: Lots of algebra, even using Laplace transform (have to obtain diff. eqn.)
But: Is there easier way, like phasors but for any source and initial conds.?

Idea: Take Laplace transform of entire circuit. Using \(\mathcal{L}\{ \frac{dx}{dt} \} = sX(s) - x(0^+) \),

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Resistor</th>
<th>Inductor</th>
<th>Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Its Formula</td>
<td>(v = Ri)</td>
<td>(v(t) = L \frac{di}{dt})</td>
<td>(i(t) = C \frac{dv}{dt})</td>
</tr>
<tr>
<td>After Lxfm</td>
<td>(V = RI)</td>
<td>(V = L(sI - i(0)))</td>
<td>(I = C(sV - v(0)))</td>
</tr>
<tr>
<td>Impedance</td>
<td>(R)</td>
<td>(sL)</td>
<td>(\frac{1}{sC})</td>
</tr>
<tr>
<td>Device Model</td>
<td>(-R)</td>
<td>(-sL)</td>
<td>(-\frac{1}{sC})</td>
</tr>
</tbody>
</table>

1. **Sources** have their values replaced with their Laplace transforms.
 - Note that a **constant source** \(A \) volts or amps is replaced with \(\frac{A}{s} \).
 - Dependent sources now depend on some circuit variable \(V(s) \) or \(I(s) \).
2. **Capacitor**: \(I = C(sV - v(0)) \rightarrow V = \frac{1}{sC}I + \frac{v(0)}{s} \) (note the + sign).
 - Can also use the **Norton equivalent**: \(\left(\frac{1}{sC} \right) || \left(\text{current source} = Cv(0) \right) \).
3. Note **sign difference**: Voltage sources for \(L \) and \(C \) initial conditions.
4. Now straightforward circuit analysis. Like phasors except \(s \), not \(j\omega \).
5. After compute desired \(V(s) = \mathcal{L}\{v(t)\} \) or \(I(s) = \mathcal{L}\{i(t)\} \), compute \(\mathcal{L}^{-1} \).
 - Note \(V(s) \) or \(I(s) \) will be a rational function, so use partial fractions.

EXAMPLE: RC CIRCUIT DRIVEN BY STEP FUNCTION

Given: Series RC circuit driven by step voltage source \(A \cdot 1(t) \)
Goal: Compute capacitor voltage
With: Initial capacitor voltage=\(B \)

\[\text{Soln: KVL} \rightarrow \frac{A}{s} - I(s)R - I(s)\frac{1}{sC} - \frac{B}{s} = 0 \rightarrow I(s) = \frac{\frac{A}{s} - \frac{B}{s}}{\frac{1}{sC} + \frac{1}{sC}} = \frac{(A-B)/R}{s+1/(RC)} \]

Then: \(V(s) = \frac{B}{s} + \frac{1}{sC}I(s) = \frac{B}{s} + \frac{(A-B)/(RC)}{s(s+1/(RC))} \). Compute partial fractions:

Then: \(V(s) = \frac{A}{s} + \frac{B-A}{s+1/(RC)} \rightarrow v(t) = \frac{A}{s} + (B-A)e^{-t/(RC)} \) for \(t > 0 \).

Also: Can rewrite this as \(v(t) = A(1 - e^{-t/(RC)}) + Be^{-t/(RC)} \) for \(t > 0 \).
REDO PREVIOUS 2nd-ORDER CIRCUIT EXAMPLE:

Given: Circuit shown at right:

Initially: \(i(0) = 0 \) and \(v(0) = -1 \)

Then: Throw switch at \(t = 0 \).

Goal: Compute \(i(t) \) for \(t > 0 \)

KVL: \(\frac{2s}{s^2+9} - 4I - s1I + 0 - \frac{1}{s^3}I = 0 \rightarrow I = \frac{\frac{2s}{s^2+9} + \frac{1}{s}}{4 + s + \frac{3}{s}} \).

Solve: \(I = \frac{3s^2+9}{(s^2+9)(s^2+4s+3)} = 0.223e^{j27^\circ} + 0.223e^{-j\cdot27^\circ} + \frac{0.6}{s+1} + \frac{-1}{s+3} \) PARTIAL FRACTION

\(\mathcal{L}^{-1} \): \(i(t) = 0.223e^{-j3t+j\cdot27^\circ} + 0.223e^{j3t-j\cdot27^\circ} + 0.6e^{-t} - e^{-3t} \) for \(t > 0 \)

Then: Simplifies to: \(i(t) = 0.447\cos(3t - 27^\circ) + 0.6e^{-t} - e^{-3t} \) for \(t > 0 \).

1. This agrees with previous handout result using differential equations.
2. Note characteristic equation appears in denominator of \(I(s) \) expression.
3. Partial fraction shows where transient and steady-state responses arise.

Given: The circuit shown at right:

Initially: Switch closed for long time.

Then: Switch is opened at \(t = 0 \).

Goal: Compute \(v_C(t) \) for \(t > 0 \).

\(t = 0^- \): \(C \rightarrow \) open and \(L \rightarrow \) short \(\rightarrow i_L(0^-) = \frac{10}{50} = 0.2 \) and \(v_C(0^-) = 0 \).

\(t = 0^+ \): We don’t need rest of the messy computation from previous handout!

Now: With the switch open, this is now just a voltage divider for \(V_C(s) \):

\[
V_C(s) = \frac{\frac{1}{0.02s}}{1/((0.02s)+1)+5s}(-5(0.2)) = \frac{-10}{s^2+2s+10} = \frac{(-3.33)(3)}{(s+1)^2+(3)^2} \textrm{ so that:}
\]

\(\mathcal{L}^{-1} \): \(v_c(t) = -3.33e^{-t}\sin(3t) \) for \(t > 0 \). Agrees with the previous handout.

1. We don’t need to go through previous mess of finding \(\frac{dv_C}{dt}(0^+) \) (ugh).
2. We can compute inverse Laplace transform without partial fractions.
3. Note characteristic equation appears in denominator of \(I(s) \) expression.

Given: Series RLC circuit (resistor+inductor+capacitor connected together).

Initial: Capacitor is charged up to \(v(0) \) and inductor is “juiced up” to \(i(0) \).

t=0: Close or throw the switch at \(t = 0 \). Recall \(i(t) \) and \(v(t) \) don’t jump.

Goal: Compute current through inductor (and everything else) \(i(t) \) for \(t > 0 \).

KVL: \(LI(0) - sLI - RI - \frac{1}{sC}I - \frac{v_c(0)}{s} = 0 \rightarrow I(s) = \frac{Li(0)-v(0)/s}{sL+R+1/(Cs)} \). Easy!

Soln: \(i(t) = \mathcal{L}^{-1} \) of \(I(s) = \frac{si(0)-v(0)/L}{s^2+\frac{R}{L}s+\frac{1}{LC}} \). Note the characteristic equation.