TRIGONOMETRIC FOURIER SERIES OF PERIODIC SIGNALS

THEOREM: Let x(t) be a bounded periodic signal with period T. Then x(t) can be expanded as a weighted sum of sinusoids

with angular frequencies that are integer multiples of $\omega_0 = \frac{2\pi}{T}$:

$$x(t) = a_0 + a_1 \cos(\omega_0 t) + a_2 \cos(2\omega_0 t) + a_3 \cos(3\omega_0 t) + \dots + b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + b_3 \sin(3\omega_0 t) + \dots$$

This is the trigonometric Fourier series expansion of x(t).

Or, we can use only cosines with phase shifts:

$$x(t) = a_0 + c_1 \cos(\omega_0 t - \phi_1) + c_2 \cos(2\omega_0 t - \phi_2) + c_3 \cos(3\omega_0 t - \phi_3) + \dots$$

PROOF: Take a high-level math course to see this done properly.

NOTE: A Fourier series is a mathematical version of a **prism**.

COMPUTATION OF FOURIER SERIES COEFFICIENTS:

THEOREM: Coefficients a_n , b_n , c_n and ϕ_n can be computed using:

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} x(t) \cos(n\omega_0 t) dt$$
 and $b_n = \frac{2}{T} \int_{t_0}^{t_0+T} x(t) \sin(n\omega_0 t) dt$.

For n=0 we have: $a_0=\frac{1}{T}\int_{t_0}^{t_0+T}x(t)dt$ =average value of x(t).

For cosines with phase shifts: $c_n = \sqrt{a_n^2 + b_n^2}$; $\phi_n = \tan^{-1}(\frac{b_n}{a_n})$, $n \neq 0$

using
$$a_n \cos(\omega t) + b_n \sin(\omega t) = \sqrt{a_n^2 + b_n^2} \cos(\omega t - \tan^{-1}(\frac{b_n}{a_n}))$$
 $(a_n > 0)$.

Derive using phasors: $a_n + b_n e^{-j\pi/2} = a_n - jb_n = \sqrt{a_n^2 + b_n^2} e^{-j\tan^{-1}(\frac{b_n}{a_n})}$.

EXAMPLE OF FOURIER SERIES DECOMPOSITION:

$$x(t) = \begin{cases} \pi/4 & \text{for } (2k\pi) < t < (2k+1)\pi & \text{Square wave with period} \\ -\pi/4 & \text{for } (2k-1)\pi < t < (2k\pi) & T = 2\pi \to \omega_o = \frac{2\pi}{2\pi} = 1 \end{cases}$$
$$a_n = \frac{2}{2\pi} \int_{-\pi}^{\pi} x(t) \cos(n\omega_0 t) dt = 0 \text{ by inspection: Set } t_0 = -\frac{T}{2} = -\pi.$$

$$a_n = \frac{2}{2\pi} \int_{-\pi}^{\pi} x(t) \cos(n\omega_0 t) dt = 0$$
 by inspection: Set $t_0 = -\frac{T}{2} = -\pi$.

$$b_n = \frac{2}{2\pi} \int_0^{2\pi} x(t) \sin(nt) dt = \frac{1}{\pi} \left[\int_0^{\pi} \left(\frac{\pi}{4} \right) \sin(nt) dt + \int_{\pi}^{2\pi} \left(-\frac{\pi}{4} \right) \sin(nt) dt \right]$$

$$= \begin{cases} \frac{1}{n}, & \text{if n is odd;} \\ 0, & \text{if n is even.} \end{cases} \rightarrow x(t) = \sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \dots$$

PARSEVAL'S THEORM FOR THIS EXAMPLE

Average $\frac{1}{T} \int_0^T |x(t)|^2 dt = \frac{1}{2\pi} \int_0^{2\pi} |\pm \frac{\pi}{4}|^2 dt = \frac{\pi^2}{16}$. This agrees with:

Power:
$$a_0^2 + \frac{1}{2} \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{2} \sum_{k \text{ odd}}^{\infty} (\frac{1}{k})^2 = \frac{1}{2} (1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots) = \frac{\pi^2}{16}.$$

PROOF OF THEOREM: First we need the following lemma:

LEMMA: The sine and cosine functions are *orthogonal* functions:

$$\int_{t_0}^{t_0+T} \cos(i\omega_0 t) \cos(j\omega_0 t) dt = \int_{t_0}^{t_0+T} \sin(i\omega_0 t) \sin(j\omega_0 t) dt = \begin{cases} T/2, & \text{if } i=j; \\ 0, & \text{if } i\neq j. \end{cases}$$

$$\int_{t_0}^{t_0+T} \cos(i\omega_0 t) \sin(j\omega_0 t) dt = 0 \text{ (even if } i=j). \text{ These assume } i,j>0.$$

PROOF OF LEMMA: Adding and subtracting the cosine addition formula $\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$ gives the formulae

$$2\cos(x)\cos(y) = \cos(x-y) + \cos(x+y)$$

$$2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y).$$

Setting $x = i\omega_0 t$ and $y = j\omega_0 t$ and $\int_{t_0}^{t_0+T} dt$ gives

$$2\int_{t_0}^{t_0+T} \cos(i\omega_0 t) \cos(j\omega_0 t) dt = \int_{t_0}^{t_0+T} [\cos((i+j)\omega_0 t) + \cos((i-j)\omega_0 t)] dt.$$

Since the integral of a sinusoid with nonzero frequency over an integer number $i \pm j$ of periods is zero, the first part of the lemma follows. The other two parts follow similarly. QED.

PROOF: Multiply the Fourier series by $\cos(n\omega_0 t)$ and $\int_{t_0}^{t_0+T} dt$:

$$\int_{t_0}^{t_0+T} x(t) \cos(n\omega_0 t) dt = \int_{t_0}^{t_0+T} a_0 \cos(n\omega_0 t) dt
+ \int_{t_0}^{t_0+T} a_1 \cos(n\omega_0 t) \cos(\omega_0 t) dt + \int_{t_0}^{t_0+T} a_2 \cos(n\omega_0 t) \cos(2\omega_0 t) dt + \dots
+ \int_{t_0}^{t_0+T} b_1 \cos(n\omega_0 t) \sin(\omega_0 t) dt + \int_{t_0}^{t_0+T} b_2 \cos(n\omega_0 t) \sin(2\omega_0 t) dt + \dots
= 0 + 0 + \dots + 0 + a_n \frac{T}{2} + 0 + \dots$$
 from which the a_n formula follows.

The formulae for a_0 and b_n follow similarly. QED.

COMMENTS:

- 1. t_0 is arbitrary; all integrals are over one period.
- 2. $\omega_0 = \frac{2\pi}{T}$ is angular frequency in $\frac{\text{RADIAN}}{\text{SECOND}}$; this is $\frac{1}{T}$ Hertz.
- 3. The sinusoid at frequency ω_0 is called the *fundamental*; the sinusoid at frequency $n\omega_0$ is the n^{th} harmonic. Harmonics are also called *overtones* (not used much anymore). Some say the n^{th} harmonic is at frequency $(n+1)\omega_o$.
- 4. The more terms (i.e., harmonics) we keep in the Fourier series, the better the approximation the truncated series is to x(t).
- 5. If x(t) has a discontinuity at $t = t_1$, the Fourier series converges to $\frac{1}{2}(x(t_1^-) + x(t_1^+))$, where $x(t^-)$ and $x(t^+)$ are the values of x(t) on either side of the discontinuity.

