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1 Introduction

In this laboratory project we will develop the idea of feedback control, the process of adjusting the input
to a system as a function of a measured variable so as to obtain a desired response. Stated like this, the
concept seems very vague, almost as vague as the notion of a system seemed to you in the first few weeks
of this course. We will try to make the notion of feedback control more precise by looking at a particular
example, the idle speed control loop in your car. After that, we’ll discuss different kinds of control.

When you press on the accelerator pedal of your car, the engine produces more power. When you take
your foot off the pedal, the engine does not stop1, rather, it runs at a fixed idle speed, such as 750 RPM
(revolutions per minute). Moreover, the engine maintains a constant idle speed even when the power load
on the engine changes, such as when the air conditioner cycles on or off, or, assuming you have your foot on
the brake, when you shift the transmission from park to neutral to drive. How is it possible for the engine to
idle at a fixed speed under a variety of loads? The answer is feedback control. A sensor measures the speed
of the engine and a “mechanism”, called a feedback controller, automatically adjusts the power requested2

from the engine so as to maintain a constant idle speed.
The engine system illustrates all the basic components of what we call a feedback control system. The

key elements are: (i) A measured Quantity that is to be regulated to a desired value (e.g., engine idle speed);
this is typically defined to be the system output ; (ii) An input that can be varied so as to change the value
of the output (e.g., throttle position); (iii) An element that determines how to adjust the input so as to
drive the output to a desired value; this element is called the controller. The overall system is shown in Fig.
1.0.1, where the comparator computes the error between the desired output value and the current output
value, and the controller seeks to drive this error to zero. Such a feedback control system is also known as a
closed-loop control system due to the closed signal path that connects all four components (e.g., Comparator
to Controller to Plant to Measurement to Comparator).

Desired Output
Response

- Comparator - Controller - Plant - Output

�Measurement

6

Figure 1.0.1: Closed-Loop Control System. The plant is the generic term for the system to be controlled.

1It may if you have a hybrid electric vehicle, or HEV.
2Power is varied by opening and closing the throttle, which regulates air flow and hence engine power, and/or by changing

the spark timing, which regulates power as well.
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In a feedback control system, information from the observed output of the system is used to modify
the system’s input and, consequently, alter the system output. The controller is designed to adjust the
input to the plant, based on the current output signal, in order to achieve a desired output signal. Feedback
control systems are widely used and can be found in almost every consumer product that involves electronics,
including ovens, computer hard drives, CD players, cellphones, automobiles, etc. Of course, there are many
non-electrical control systems, too. The human body contains a host of complex biologically-based feedback
control systems. These systems control everything from your heart rate to your ability to breathe, swallow
and walk.

Control systems do not always require feedback. Sometimes one just needs to regulate the sequence
in which events occur, such as when coins inserted into a vending machine cause a selected product to be
delivered and the correct change to be computed and returned to the customer. This type of control is called
sequential control or discrete-event control.

Another type of non-feedback control is used in situations where measurements are hard to make, or the
economic cost of adding the necessary sensor to the system is too high. In these situations, the controller
computes the input to the plant on the basis of the desired output alone, by using a mathematical model of
the system to determine the correct input. Such a control method is called3 open-loop control for the obvious
reason that the loop depicted in Fig. 1.0.1 is no longer present because nothing is measured! You may be
surprised to learn that the icon of high-tech industries, semiconductor chip manufacturing, is largely based
on open-loop manufacturing processes. For example, the amount of microwave power applied to a reactive
ion etcher is typically determined ahead of time by careful experimentation to deliver a given etch rate4 on
the assumption that the machines being used are extremely repeatable from one manufacturing run to the
next.

Although not all control systems utilize feedback control, many do. In an environment where conditions
change over time, disturbances are present, or an accurate model of the system is not available for pre-
computing the required control signal, it can be very difficult, if not impossible, to precisely regulate the
system’s output using an open-loop control method. In these cases, adjusting the input as a function of a
measured variable is more effective. The use of feedback control reduces the need for a very accurate system
model.

Another reason for using feedback control is stability. Civilian aircraft are designed to be open-loop
stable, meaning that even in the absence of feedback, the aircraft is BIBO stable, so that small changes to
the control surfaces produce small changes in the aircraft’s pitch, for example. There are cases, however,
where it would be useful if small changes in the control surfaces produce large changes in pitch. In combat
situations for fighter aircraft, speed of response is often the difference between life and death. The F-16
was the first military craft5 to be deliberately designed to be open-loop unstable. In fact, to achieve the
desired response speeds require, it is so unstable that human reflexes are too slow to achieve stability. A
sophisticated digital feedback control system makes the system BIBO stable as well as highly maneuverable.
On the downside, if a key actuator or sensor fails6, the plane tumbles and disintegrates in less than a second!

In summary, feedback control allows (1) the output of a system to be regulated to a precise value in the
absence of a precise system model or when the characteristics of the system change over time, and (2) an
unstable system to be stabilized.

In the present laboratory, we will consider the control of LTI systems using LTI controllers. Furthermore,
we will restrict our attention to systems that have only a single input and a single output and which operate
in the absence of large external disturbances. We will find that Laplace transform (i.e., s-domain) tools are
ideally suited to the analysis and design of linear feedback-control systems, and that the response of the
system will be determined by the location of the poles and zeros of the closed-loop system transfer function.
Basic concepts will be illustrated by constructing a PD (proportional-differential) feedback controller using
operational amplifiers and by comparing the measured performance of the closed-loop system against theory.

3It is also known as feedforward control
4This is key to Intel’s “copy exactly” manufacturing philosophy.
5What was the first civilian aircraft to be designed to be open-loop unstable? The Wright brothers’ 1903 aircraft that they

successfully flew at Kitty Hawk, North Carolina! The pitch mode was unstable and had to stabilized by the pilot acting as the
feedback controller.

6Redundancy is used to improve reliability and safety.

EECS 216: Signals & Systems 2 Winter 2008



Lab 4 Control

2 Preliminary Information

2.1 A Closed-Loop Feedback Model

The block diagram of a generic closed-loop feedback control system is shown in Fig. 1.0.1. In this figure,
the “plant” is the system whose output we wish to control. A measurement is performed on the output
by the measurement sub-system, which is then compared with the desired output, i.e., the input to the
control system. The output of the comparator, which computes the difference between the desired and the
actual output, is fed into a controller whose output serves as the input to the plant. If the comparator and
measurement system were removed from the above diagram then one would be left with an open-loop (i.e.,
no feedback) controller.

2.2 Closed-Loop Transfer Function

As mentioned earlier, we will restrict our discussion to the case where all of the blocks shown in Fig. 1.0.1
are LTI systems. Thus the input/output relationship of each of these blocks can be described by a system
transfer function. Furthermore, we will realize the comparator as an adder and change the gain on the
measurement to -1. With these changes, the block diagram of Fig. 2.2.1 becomes:

X(s) -����
+

+

−

-

E(s)
C(s) - P (s) - Y (s)

Output

�H(s)

6

Figure 2.2.1: Closed-Loop Feedback Control System. (C: Controller, P: Plant, M: Measurement)

It is a simple matter of algebra to compute the closed-loop transfer function, Gcl(s) = Y (s)/X(s), of the
systems shown in Fig. 1.0.1 as indicated below.

Y (s) = E(s)C(s)P (s) (2.2.1)
E(s) = X(s)−H(s)Y (s) (2.2.2)

Combining Eqs. (2.2.1) and (2.2.2) yields

Gcl(s) =
Y (s)
X(s)

=
C(s)P (s)

1 + C(s)P (s)H(s)
(2.2.3)

E(s)
X(s)

=
1

1 + C(s)P (s)H(s)
(2.2.4)

2.3 Examples of Feedback Control Systems

2.3.1 DC Motor Model

Let us assume that we want to control the shaft position of a DC motor. To help design a controller for
this DC motor, we mathematically model the angular position, θ(t) of the shift by the following differential
equation

d2θ(t)
dt2

+
dθ(t)
dt

= V (t) (2.3.1)
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where V (t) is the voltage applied to the motor. Thus the plant (i.e., the motor) is a LTI system that has
the following system transfer function

P (s) =
1

s(s + 1)
(2.3.2)

This transfer function corresponds to a second-order LTI system with no zeros, and a pair of real poles
located at the origin and at -1.

2.3.2 No Controller

Suppose we want the shaft of the motor to rotate by one radian per second by using a unit step as the input,
i.e., V (t) = u(t). Then

θ(s) = V (s)P (s) =
1
s

1
s(s + 1)

= −1
s

+
1
s2

+
1

s + 1
(2.3.3)

where the right-most side of Eq. (2.3.3) is obtained by a partial fraction expansion. Consequently,

θ(t) = (t− 1 + e−t)u(t) (2.3.4)

which is clearly not going to achieve the desired rotation by one radian per second!

2.3.3 Controller Without Feedback (i.e., Open-Loop Control)

Shown below is the block diagram of an open-loop controller. We choose a differentiator as the controller,

V (t) - C(s) - P (s) - θ(t)

Figure 2.3.1: Open-Loop Controller

i.e.,
C(s) = s (2.3.5)

of a unit-step input. Thus

θ(s) = V (s)C(s)P (s) =
1
s
s

1
s(s + 1)

=
1
s
− 1

s + 1
(2.3.6)

Therefore
θ(t) = (1− e−t)u(t) (2.3.7)

Clearly, limt→∞ θ(t) = 1, so that this controller results in no steady-state error (i.e., e(t) = V (t)− θ(t) = 0
as t →∞) when the input is a unit step. The response of the DC motor to the unit step, however, is rather
slow. It takes approximately 2.3 s for the shaft angle to reach 90% of its final value of 1 radian.

We might ask how well this same controller would work if the input were a ramp rather than a step.
Under such circumstances

V (s) =
1
s2

(2.3.8)

θ(s) = V (s)C(s)P (s) =
1
s2

s
1

s(s + 1)
= −1

s
+

1
s2

+
1

s + 1
(2.3.9)

Therefore

θ(t) = (t− 1 + e−t)u(t) (2.3.10)

and the steady-state error is 1 radian/second. Thus the angular position of the shift deviates from the
desired position by 1 radian as t →∞, and this differentiator-controller is inadequate for a ramp input.
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2.3.4 Sensitivity of an Open-Loop Controller to Plant Changes

Suppose that overheating changes the transfer function of the mtoro by a small amount to become

P (s) =
1

(s + 0.01)(s + 1)
(2.3.11)

i.e., one of the poles has moved along the real axis from the origin into the left-hand plane (LHP). The step
response of the motor now becomes

θ(s) = V (s)C(s)P (s) =
1
s
s

1
(s + 0.01)(s + 1)

=
100/99
s + 0.01

− 100/99
s + 1

(2.3.12)

Therefore
θ(t) = (100/99)(e−0.01t − e−t)u(t) (2.3.13)

and in steady state limt→∞ θ(t) = 0, yielding a steady state error of one radian. It is clear that this open-loop
controller is quite sensitive to variations in the plant transfer function.

2.3.5 Feedback (or Closed-Loop) Control

Consider now the feedback control system shown in Fig. 2.2.1 with H(s) = 1, C(s) = Ks (i.e., a differential
controller) and P (s) = 1/[s(s+1)] as before. Then according to Eq. (2.2.3) the closed-loop transfer function
is given by

Gcl(s) =
Y (s)
X(s)

=
C(s)P (s)

1 + C(s)P (s)H(s)
=

KsP (s)
1 + KsP (s)

=
K

s + (K + 1)
(2.3.14)

and the step response becomes

θ(s) = V (s)Gcl(s) =
1
s

K

s + (K + 1)
=

K/(K + 1)
s

− K/(K + 1)
s + (K + 1)

(2.3.15)

or equivalently

θ(t) =
K

K + 1
(1− e−(K+1)t)u(t). (2.3.16)

If K is sufficiently large, then the steady-state error, limt→∞(V (t) − θ(t)) = 1/(K + 1) will be small. Also
note that the response time is much improved over that obtained by an open-loop controller. In particular,
the 90% rise-time has been reduced from 2.3 s to 2.3/(K+1) s.

2.3.6 Sensitivity of the Closed-Loop Controller to Plant Changes

As before we will consider the situation where the transfer function of the motor changes by a small amount
to become that given by Eq. (2.3.11). Using the same feedback controller described above, the closed-loop
response becomes

Gcl(s) =
Ks

s2 + (1.01 + K)s + 0.01
. (2.3.17)

Thus the step response is given by

θ(s) =
K

s2 + (1.01 + K)s + 0.01
=

K/(a+ − a−)
s + a+

− K/(a+ − a−)
s + a−

(2.3.18)

where

a± =
(1.01 + K)∓

√
(1.01 + K)2 − 0.04
2

. (2.3.19)

Therefore for K large a+ ≈ 0 and a− ≈ K, yielding the step response

θ(t) ≈ (1− e−Kt)u(t) (2.3.20)

Notice that with this closed-loop controller the step response is relatively insensitive to small changes in the
plant.
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2.3.7 Using Feedback to Stabilize Unstable Systems

Consider a plant that has the following transfer function

P (s) =
1

s− 1
(2.3.21)

This system is not bounded-input/bounded-output (BIBO) stable, since its transfer function has a pole in
the right-half plane. It is easy to verify, for example, that the unit step response of this system is given by
(−1 + et)u(t) and hence is not bounded. By implementing the feedback system shown in Fig. 2.2.1 with
H(s) = 1 and C(s) = K, the closed-loop transfer function becomes

Gcl(s) =
C(s)P (s)

1 + C(s)P (s)
=

1
s + (K − 1)

(2.3.22)

Thus for K > 1, the pole has been moved into the LHP and the system has become BIBO stable.

3 Pre-Lab Homework

3.1 Plant

In this laboratory experiment we have decided to construct our own plant so that we will know its charac-
teristics (i.e., P (s)). It is convenient for illustrative purposes to construct this plant using an op-amp. The
circuit we have chosen is shown below in Fig. 3.1.1.

b−

Vi

b+ � � �A A A
R A

C1

B

D
� � �A A A

R "
"

"

b
b

b
−
+

C2

b +

b −
Vo

Figure 3.1.1: Op-Amp Circuit for Plant

3.1.1

Using nodal analysis along with the golden rules of op-amps, show that the transfer function of this circuit
is given by

Vo(s)
Vi(s)

=
a1

s2 + a2s + a3
(3.1.1)

and express the values of a1,a2,a3 in terms of R, C1, and C2.

EECS 216: Signals & Systems 6 Winter 2008



Lab 4 Control

3.1.2

With C1 = 100µF and R = 10 kΩ find the value of C2 so that the plant has a pair of complex conjugated
poles located at −1± j

√
399 (i.e., ≈ −1± j20).

3.1.3

With the above values for R, C1, and C2 find and plot (Matlab) the unit step response of the plant.

3.2 PID Feedback Controller

If we consider the block diagram shown in Fig. 1.0.1, there are many possible choices for the controller,
C(s). Controllers of the following form

C(s) = Kp +
KI

s
+ KDs (3.2.1)

are known as proportional-integral-differential (PID) controllers and are widely used. The name of this
controller is quite descriptive, since in the time-domain the Kp term corresponds to multiplication by a
constant, whereas the terms 1/s and s correspond to integration and differentiation, respectively. Each of
these terms can be implemented in hardware using op-amp circuits indicated below:

"
"

"

b
b

b
−
+

� � �A A A
R1

b

+

−

Vi

b
� � �A A A

Rf

b +

Vo

b −
Figure 3.2.1: Proportional Controller

"
"

"

b
b

b
−
+C

b
+

−

Vi

b

� � �A A A
R

b +

Vo

b −
Figure 3.2.2: Differential Controller

EECS 216: Signals & Systems 7 Winter 2008



Lab 4 Control

"
"

"

b
b

b
−
+

� � �A A A
R

b
+

−

Vi

b

C

b +

Vo

b −
Figure 3.2.3: Integral Controller

Applying the Golden Rules for op-amps along with a simple nodal analysis you should be able to verify
the relationships given by Eqs. (3.2.2)-(3.2.4) below.

• Proportional controller (Fig. 3.2.1):

Vo(s)
Vi(s)

= Kp where Kp = −Rf

R1
(3.2.2)

• Differentiator controller (Fig. 3.2.2):

Vo(s)
Vi(s)

= KDs where KD = −RC (3.2.3)

• Integral controller (Fig. 3.2.3):

Vo(s)
Vi(s)

=
KI

s
where KI = − 1

RC
(3.2.4)

Combining the outputs of the three circuits above using a summing op-amp allows one to realize a general
PID transfer function.

In the present lab, we will implement and analyze a PD controller to control the plant described previously
in Section 3.1. Although we established analytically that a single differentiator is sufficient to control the
plant, a practical issue prevents the use of an ideal differentiator (i.e., a term KDs) as the only component
of the controller sub-system in Fig. 2.2.1. This issue can be appreciated by considering the case where the
output of the plant is initially zero and a unit step is applied as the input to the controller, i.e., x(t) = u(t).
The controller (i.e., C(s)) has a term which attempts to differentiate this step input. The derivative of a
step, however, is a delta function, and the large voltage generated at the output of C(s) saturates the device
(an op-amp, for example) producing a response that is no longer linear.

3.3 PD Controller With 2-Degrees of Freedom

In order to avoid the problem of saturation, we will implement the control system shown below. This type
of controller is known as a controller with 2-degrees of freedom.

3.3.1

Derive the closed-loop response, Gcl(s) = Y (s)/X(s), of the controller in Fig. 3.3.1 in terms of C1(s), C2(s)
and P (s).
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X(s)
Input

-����
+

+

−

-

E(s)
C1(s) ����

+

−

+
- - P (s) - Y (s)

Output6

C2(s)-

6

Figure 3.3.1: Two-Degree of Freedom Controller

3.3.2

Find the closed-loop response for a PD controller (i.e., C1(s) = Kp, C2(s) = KDs) with 2-degrees of freedom
as shown in Fig. 3.3.1. Express your answer in terms of Kp, KD and P (s).

3.3.3

Find the closed-loop response for the PD controller (i.e., C1(s) = Kp, C2(s) = KDs) with 2-degrees of
freedom shown in Fig. 3.3.1 assuming the plant described in Section 3.1 (using the R & C values given and
computed in that section). Express your answer in terms of Kp and KD.

3.4 Unit Step Response of PD Controller With 2-Degrees of Freedom

3.4.1

The closed-loop transfer function derived in question six of Section 3.3 has a pair of poles and no zeros. Find
expressions for the poles, s1 and s2, in terms of KP and KD. Find the conditions on KD and KP such that
the poles are (a) distinct and real-valued, (b) identical and real-valued and (c) a pair of complex conjugate
numbers. Case (a) is referred to as an over-damped system, case (b) as a critically-damped system and case
(c) as an under-damped system.

3.4.2

Show that the unit step response of the over-damped system can be written as

y(t) = (A1 + A2e
s1t + A3e

s2t)u(t). (3.4.1)

Express A1, A2 and A3 in terms of the poles s1, s2 and KP . Show that y(t) is a monotonically increasing
function of t (i.e., dy/dt > 0 for all t), 0 ≤ y(t) < 1 for all t, and

lim
t→∞

y(t) =
Kp

Kp + 1
. (3.4.2)

3.4.3

Show that the unit step response of the critically-damped system can be written as

y(t) = (A1 + A2e
s1t + A3e

s1t)u(t). (3.4.3)
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Express A1, A2 and A3 in terms of the pole s1 and KP . Show that y(t) is a monotonically increasing function
of t (i.e., dy/dt > 0 for all t), 0 ≤ y(t) < 1 for all t, and

lim
t→∞

y(t) =
Kp

Kp + 1
. (3.4.4)

3.4.4

Show that the unit step response of the under-damped system (i.e., poles are complex and s2 = s∗1) can be
written as

y(t) = (A1 + B1e
at cos(bt + θ))u(t) (3.4.5)

where a = Re{s1}, b = Im{s1}. Express A1, B1 and θ in terms of a, b and KP . Show that y(t) achieves a
maximum value of

Kp

Kp + 1
[1 + eπa/b] (3.4.6)

and
lim

t→∞
y(t) =

Kp

Kp + 1
. (3.4.7)

Observe that the unit step response of a second-order, over-damped system rises smoothly and mono-
tonically from 0 up to some final value that is less than 1. Conversely, the unit step response of the system
when it is under-damped will overshoot its final value, which is less than 1, and will exhibit a damped oscil-
latory behavior. The oscillatory behavior will finally decay away, yielding a limt→∞(x(t)−y(t)) steady-state
value that is less than 1. A system that is critically damped lies on the boundary between overdamped and
under-damped. The solution is very similar to the over-damped case, but the rise-time (i.e., the time needed
to achieve some fraction of the final value) is minimized. Note that the response of this control system
is determined and easily analyzed from knowledge of the pole location of the closed-loop system transfer
function. The location of these poles can be controlled by varying the parameters KP and KD. When the
poles of the closed-loop system are both real, the system does not exhibit any oscillatory behavior in its step
response. Furthermore, the rise-time will be primarily be determined by the pole of smallest absolute value.
If our goal is to get the fastest rise-time then we need to chose the pole locations to maximize the minimum
of the absolute values of the two poles, i.e.,

rise time ∝ 1
max min{|s1|, |s2|}

.

When the poles are complex-conjugate pairs, the step response will exhibit a decaying oscillatory behavior.
The oscillation frequency will be determined by the imaginary value of the pole, while the decay rate will be
determined by the real value of the pole.

In the analysis presented in this section, we have found that the steady-state error (i.e., limt→∞(x(t) −
y(t))) is given by 1/(Kp +1). Thus once we have decided upon an acceptable value for this error, for example
2%, KP is fixed (i.e., ≈ 50). We are now free to vary KD in order to obtain an acceptable response time
(note with KP fixed, KD alone will determine the location of the poles). In control theory the location of
the poles is often plotted as a function of some system parameter. Such plots are known as root locus plots.
The root locus plot of our closed-loop system with KP set to 50 is shown in Fig. 3.4.1. The vertical axis
is the imaginary part of the pole, while the horizontal axis is the real part. The root locus contours are
shown in this plot as KD increases from a value of 0.5 up to 1. Note that as KD increases from 0.5 up to
0.709, the contours in this plot consist of a pair of branches, one which is drawn as a solid line and the other
dashed. The points on these branches are the complex conjugate poles. For example, when KD = 0.5 there
is a pole on the lower branch at −100 − j100 and a second, complex conjugate pole, −100 + j100, on the
upper branch. The branches merge together at KD = 0.709 where there is a single pole. This merge point
corresponds to a critically damped system. As KD continues to increase beyond 0.709, a pair of real-valued
poles occur that move in opposite directions along the real axis. One pole approaches −∞ while the other
approaches 0.

EECS 216: Signals & Systems 10 Winter 2008



Lab 4 Control

Figure 3.4.1: Root-locus plot of PD controller with 2 degrees of freedom
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3.5 Op-Amp Realization of PD Controller with 2-Degrees of Freedom

A PD controller realized using the block diagram shown in Fig. 3.3.1 can be implemented in hardware as
follows:

bx(t)
� � �A A A

R1

"
"

"

b
b

b
−
+

� � �A A A
R1

� � �A A A
R2

A

� � �A A A
R2

C

b
b

b

"
"

"
−
+

"
"

"

b
b

b
−
+

� � �A A A
R3

P (s) by(t)

Figure 3.5.1: Op-Amp Realization of PD Controller with 2-Degrees of Freedom

3.5.1

Show that in Fig. 3.5.1 W (s) can be related to X(s) and Y (s) by the following equation:

W (s) = Kp(X(s)− Y (s))−KDsY (s) (3.5.1)

where Kp and KD are constants. Express the constants Kp and KD in terms of R2, R3 and C.
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