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1 Introduction

In the first few weeks of EECS 216, you learned how to determine the response of an LTI system by
convolving its input with the its impulse response. More recently, you have been studying the frequency
domain description of signals in terms of Fourier series and Fourier transform representations, the response
of LTI systems to sinusoidal inputs, the frequency transfer function of an LTI system, and the frequency
domain description of linear filtering.

In Lab 2, you will characterize a number of electrical systems based on LTI concepts and tools. In
particular, you will analyze, construct, and characterize an operational-amplifier circuit whose output is the
derivative of its input (i.e., y(t) ∝ dx(t)/dt ). You will consider the frequency response function of this LTI
system, H(jω). You will pass periodic signals through this circuit and will compute the output signal using
both time and frequency domain techniques. You will observe that both of these techniques yield identical
answers, and that these answers are consistent with your measured results in lab.

As part of Lab 2, you will also analyze and characterize an envelope detector circuit using a pn junction
diode, a resistor and a capacitor. An envelope detector can be used to recover the envelope (i.e., amplitude)
of a modulated sine wave signal. In particular, you will demonstrate that a properly designed envelope
detector will produce y(t) = |A(t)| as its output when its input is x(t) = A(t) cos(ωct + φ). An envelope
detector is a key component in AM radios. You will use an envelope detector both in this lab, and in Lab
3, where you build an AM radio.

By connecting the output of your differentiator to the input of your envelope detector you will construct
a frequency discriminator. When the input of the frequency discriminator is x(t) = A cos(ωct + φ(t)), its
output is given by y(t) ∝ |ωc + dφ(t)

dt |. Frequency discriminators are important components in many signal
processing and communication systems. They are also used in FM radios. For the present lab, you will use
your frequency discriminator circuit to measure the frequency of a source.

2 Goals

• To gain a better appreciation of frequency response concepts and to apply them to increase your
understanding of filtering.

• To understand both the time-domain and frequency-domain interpretations of filtering and recognize
that these two interpretations, though different, describe the same system.

• To analyze, construct and characterize an operational amplifier circuit that performs differentiation on
its input signal (i.e., output ∝ d

dt (input)).

• To learn about envelope detectors and to construct and analyze an envelope detector consisting of a
pn junction diode, a resistor and a capacitor.

• To construct a frequency discriminator using your differentiator and your envelope detector.
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• To use your frequency discriminator to measure the oscillation frequency of a source.

3 Preliminary information: Envelope Detector

3.1 The Idea of an Envelope

Consider the following voltage signal

v(t) = (1 + 0.5 cos(ωmt)) cos(ωct) (3.1.1)

If ωm << ωc, then the second of the two sinusoids on the right-hand side of the equation above oscillates
many times before the first of the two sinusoids completes one cycle. Under these conditions, we call this
“slowly varying” characteristic the envelope of the signal. An example is shown in Fig. 3.1.1, where the top
panel shows the signal, the middle panel highlights the slow variations signal amplitude, and the bottom panel
plots this slow variation as a separate function. We call ωm and ωc the modulation and carrier frequencies,
respectively. For the case shown, the modulation frequency is 3 Hz and the carrier frequency is 80 Hz.

Figure 3.1.1: An envelope is a temporal feature of signals. The voltage signal in the top panel can be viewed
as a sinusoid who’s amplitude is varying slowly over time. The middle panel shows this slow variation in
amplitude as a second function that “rides on top of” the sinusoid. The bottom panel isolates this second
function. We call the second function the envelope of the original signal in the top panel.

When a signal can be written in the form of Eq. 3.1.1, it is clear what is the envelope (1 + 0.5 cos(ωmt))
and what is the carrier cos(ωct). If you aren’t given a mathematical expression for the signal ahead of time,
however, it is not necessarily straight forward to find a factoring of the form

v(t) = e(t)s(t)

where the envelope, e(t), varies “slowly” with respect to some more “faster varying” signal, s(t). Indeed,
it turns out that an exact expression for a signal’s envelope requires a little more finesse and a lot more
mathematical development.

Envelopes are so important in many branches of electrical and computer engineering that long before
all the theory was cleaned up, practical devices were designed which performed something close to the
decomposition illustrated in Fig. 3.1.1. Such devices are called envelope detectors. The rest of Section 3
is devoted to one such envelope detector that you will be using in Labs 2 and 3. It will be built around a
nonlinear circuit component, the diode.
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3.2 PN Junction Diode

Although this course is concerned primarily with linear time-invariant systems, we will take a short digression
to discuss a nonlinear semiconductor device that will play an important role in this lab and Lab 3 (AM radio).
The symbol for a pn junction diode is shown in Fig. 3.2.1 below. This device operates as a uni-directional

Figure 3.2.1: pn junction diode

current valve. When the diode is forward-biased, i.e., v > 0, the device lets current flow in the direction
indicated above. In contrast, when the device is reverse-biased, i.e., v < 0, the current, i, flowing through
the device is practically zero.

In practice, device operation deviates somewhat from this idealization. A sketch of the current vs. voltage
characteristic of a common pn junction diode is shown in Fig. 3.2.2. In particular, when a small forward-
biased voltage is applied, a small current flows in the forward direction. When the forward-biased voltage
approaches the “turn-on” value (typically ∼ 0.65 V for a silicon device and ∼ 0.2 V for a germanium device)
the current in the forward direction increases rapidly as shown in Fig. 3.2.2. When the device is reverse-
biased, a very small amount of “leakage” current flows in the reverse direction until the breakdown voltage
(typically 50 V or more) is reached. Thus, when forward-biased, the device operates as a resistor with a
small resistance (∼< 100 ohms); when reversed-biased, the device operates as an open circuit, allowing no
current to flow in either direction.1

Figure 3.2.2: I-V Characteristic of a pn junction diode (from http://en.wikipedia.org/wiki/Diode)

1For a detailed device datasheet for the 1N34A germanium pn junction diode that will be used in ths lab see
http : //www.tranzistoare.ro/datasheets/70/140702 DS.pdf.
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3.3 PN Junction Diode-based Envelope Detector

Consider the envelope detector circuit shown in Fig. 3.3.1. Since the behavior of the circuit changes according
to the sign of the input voltage, vi(t), we consider the following two forms of the circuit.

Figure 3.3.1: Envelope Detector

When the diode is forward-biased (i.e., Vi > Vo ), the envelope detector circuit becomes the circuit shown
in Fig. 3.3.2 where Rd the diode resistance is on the order of a few hundred ohms or less. It is easy to verify

Figure 3.3.2: Forward-biased envelope detector circuit

that the forward-biased circuit has the equivalent (i.e., the same differential equation relating the input and
output) representation shown in Fig. 3.3.3.

Figure 3.3.3: Forward-biased envelope detector equivalent circuit (where R−1
eq = R−1

d + R−1 and typically
Rd � R)

When the diode is reverse-biased (i.e., Vi < Vo) the envelope detector circuit becomes the circuit shown
in Fig. 3.3.4.
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Figure 3.3.4: Reverse-biased envelope detector circuit

Given the two cases above, the behavior of the envelope-detector circuit shown in Fig. 3.3.1 with respect
to a sinusoidal input voltage can be understood as follows. Let

Vi(t) = A(t) sin(ωct + θ)

and let the following conditions be true:

(i) A(t) > 0

(ii) 1
A(t)

dA(t)
dt (RC) � 1

(iii) RC � 2π
ωc

(iv) RdC � 2π
ωc

(thus RdC � RC and Req ≈ Rd)

We note first that the amplitude, A(t), of the sinusoid changes very slowly as the sinusoid passes through
many cycles of oscillation (see conditions (ii) and (iii)). Furthermore the time-constant associated with
the discharging of the capacitor (when the diode is reversed biased) is on the order of RC, while the time
constant associated with the charging of the capacitor (when the diode is forward biased) is on the order of
ReqC. Thus the time required to charge is much less than the time required to discharge (see condition (iv)).
In the time it would take the capacitor to either fully charge (when the diode is forward biased) or fully
discharge (when the diode is reversed biased), the amplitude, A(t), of the sinusoid is essentially constant
(see conditions (ii), (iii) and (iv)).

Consider now the case where θ = 0, Vi(t) = A(t) sin(ωct) is applied at t = to, and the capacitor is initially
charged to a voltage of b volts, i.e., Vo(to) = bV . According to condition (ii), the amplitude A(t) can be
considered essentially constant (i.e., A(to)) over a time interval of RC seconds, which corresponds to many
cycles of the sinusoidal carrier (see condition (iii)). If A(to) is less than b, the diode will be reversed biased
during both the positive and negative half cycles of the sinusoid, and it will begin to discharge through the
R ohm resistor. It will continue to discharge, during both positive and negative half cycles, until it reaches
a voltage equal to A(to), and the time to reach this voltage will be on the order of RC seconds. Once the
capacitor voltage reaches A(t0), the small drop in voltage that occurs, due to continuous discharging during
the entire duration of the negative half cycles, will be quickly and fully restored by the rapid (see condition
(iv)) charging that occurs over the much smaller time interval when the diode is forward biased during the
subsequent positive half cycles. Thus the output voltage will remain essentially equal to A(to).

Similarly, suppose that A(to) is initially greater than b, then the capacitor will fully charge over the
intervals for which A(t0) sin(ωct) exceeds b during the positive half cycles of the sinusoid, reaching a voltage
of A(to) in a time on the order of ReqC seconds. During subsequent negative half cycles, the capacitor will
discharge by a small amount that will be quickly restored during the positive half cycles.

Based on the analysis above, we see that the output of the envelope detector will, in general, be nonnega-
tive and will tend to follow the local maxima of the signal. Fig. 3.3.5 illustrates the measured output, Vo(t), of
the envelope detector shown in Fig. 3.3.1 when the input is given by Vi(t) = (2.5+sin(2π·10t)) sin(2π·200t)V,
and R = 91KΩ and C = 2.7nF (thus RC = 2.7×10−4s). As can be seen, the output voltage follows the local
positive peaks of the signal. Examining the fine-scale behavior of the envelope detector, we see that the local
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peaks of the output voltage lag slightly behind the input peaks. Once the input becomes positive, the diode
is in forward-bias mode, the capacitor begins (re-)charging, and continues to charge until the input voltage
crosses the origin. Once the input voltage is negative, the stored charge begins to dissipate at the much
longer time constant of the reversed-bias form of the envelope detector. This fast-charge/slow-discharge
behavior of the circuit is what is responsible for the scallop appearance in the fine structure of the envelope
detector’s output voltage.

Figure 3.3.5: Envelope detector operation

If you compare Figures 3.3.1 and 3.1.1, you’ll see the differences between a practical envelope detector and
the ideal device it is intended to emulate. While not exact, the envelope detector does a good job of “follow-
ing” the local positive peaks of the signal and interpolating between them with a “quasi-smooth” function.
It also has the advantage that you can build it, it works, and it doesn’t require further theoretical develop-
ment! The down side, of course, is that the extracted envelope is not equal to the amplitude-modulation
term in Eq. 3.1.1. Depending on the application, we may have to re-design the envelope detector with better
“envelope tracking” circuitry or post-process the detected envelope to eliminate unwanted artifacts from the
signal.

4 Pre-lab Assignment

You should work each of the problems below showing all your work. Please staple your work to the cover
sheet. You may discuss the general concepts of this lab with other students in the class, but the work
you turn in needs to be yours and yours alone. You need to bring duplicate copies of your prelab
homework solutions to the lab so that you can immediately compare (qualitatively), while
in the laboratory, your measured results against theory. One set of your solutions will be
collected at the beginning of the lab by the GSIs. Each solution should be labeled by the
corresponding problem number (e.g., 4-3).

Note: Use the Matlab axis command as specified when making plots. In addition, (i) label your plot (using
the Matlab title command), (ii) label the plot axes (using the Matlab xlabel and ylabel commands), (iii)
label the individual curves when multiple curves appear on a single plot (using the Matlab legend command),
and (iv) use the Matlab grid command to place a fine grid on your plots. Documentation on any command
can be found by typing help ”command” in the Matlab command window (e.g., help xlabel).
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4.1 A differentiator

(a) Let x(t) be a periodic signal of period T with the following Fourier series representation in complex
exponential form:

x(t) =
∞∑

k=−∞

ckej 2π
T kt (4.1.1)

Note that dx(t)
dt is also periodic with period T . Let the Fourier series representation of dx(t)

dt in complex
exponential form be given by

dx(t)
dt

=
∞∑

k=−∞

ĉkej 2π
T kt (4.1.2)

Express the ĉk coefficient in terms of the ck coefficient.

(b) Let x(t) be a signal of finite energy with Fourier integral representation

x(t) =
1
2π

∫ ∞

−∞
X(ω)ejωtdω. (4.1.3)

Find the Fourier transform of dx(t)
dt and express your answer in terms of X(ω).

(c) Consider a system whose output is dx(t)
dt whenever the input of the system is x(t), where x(t) is arbitrary.

Note that this system is linear-time and invariant. Use your answers from part (b) above to find the
frequency transfer function, H(jω), of this system. In order to verify that your answer is correct note
that

|H(j25)| = 25 and ∠H(j50) =
π

2
. (4.1.4)

(d) Use the Matlab bode, bode(N, D, w), command to make magnitude and phase bode plots of H(jω).

[Note that the frequency transfer function can be written as H(jω) = N(s)
D(s) , where N(s) and D(s) are

polynomials in s with s = jω. In the Matlab bode command, bode(N, D, w), the quantities N and D are
row vectors that contain the polynomial coefficients of N(s) and D(s), respectively, listed in descending
order. For example if H(jω) = jω

−ω2+10 , then N =
[
1 0

]
and D =

[
1 0 10

]
. w is a vector of the

frequency values (in rad/s) at which the frequency transfer function will be evaluated. Use the Matlab
command w = logspace(0, 4, 100) which generates 100 frequency values in the range between 100 and
104 rad/s.]

4.2 Differentiator Op-Amp Circuit

(a) Consider the operational amplifier circuit shown in Figure 4.2.1. Apply the Golden Rules of Op-Amps

Figure 4.2.1: Operational Amplifier Differentiator Circuit
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(i.e., the voltage drop across the input of the opamp is zero and the op-amp inputs draw no current)
to derive the frequency transfer function, H(jω) = Vo(jω)

Vi(jω) , of the op-amp circuit shown in Fig. 4.2.1.
(Just hand in the solution for H(jω), not your calculations.) You may verify that your answer is
correct by noting that |H(j107)| = 2.28× 103 and ∠H(j107) = −1.96 radians when C= 2.7 nF, Rf =
91 KΩ and R1 = 15 Ω.

(b) Make a table of |H(j2πf)| and ∠H(j2πf) (in degrees) vs. f , at the following frequencies: f = 100 Hz,
500 Hz, 1 kHz, 2 kHz and 5 kHz when C= 2.7 nF, Rf = 91 KΩ and R1 = 15 Ω.

(c) (i) Use the Matlab bode command, bode(N, D, logspace(1, 8, 200)), to plot the magnitude and phase
response of this circuit when when C= 2.7 nF, Rf = 91 KΩ and R1 = 15 Ω.

(ii) Use the Matlab bode command to plot on these same set of plots the magnitude and phase
response of a system with frequency transfer function Ĥ(jω) = −2.457× 10−4(jω).
Note: When the command, bode(N, D), is invoked, the Matlab program automatically chooses the
frequency values at which the magnitude and phase are plotted. You may specify these frequencies
yourself by using the Matlab command bode(N, D, w), where w is a row vector of the user-specified
frequencies. The Matlab command logspace(a, b, n) generates a row vector of n points, each of
value 10x , where x consists of n equally spaced numbers starting at a and ending at b. By using
the Matlab hold command (hold) you can issue successive plotting commands that will cause the
successive sets of data to be plotted together on the same plot. The Matlab command, holdoff,
deactivates the hold command.

(d) When R1 = 0, find the frequency transfer function of this circuit and describe, in the time domain,
what function this circuit performs.

(e) (i) Find the frequency transfer function, H(jω), of a system that has the following impulse response

h(t) = −b

(
1
a
δ(t)− 1

a2
e−t/au(t)

)
. (4.2.1)

(ii) Use convolution to compute the output, y(t), of this system when the input is given by x(t) = tu(t)
by convolving the input with h(t). In order to verify your answer note that y(1.5a) = −0.777b.

(iii) Evaluate your expression for y(t) computed above as a → 0+.

(f) Show using your part (e) answer that as a → 0+ the system described by Eq. (4.2.1) performs the
operation of differentiation (i.e., y(t) = −bdx(t)

dt ).

(g) Suppose the input to an LTI system is 10t2e−2tu(t), where the impulse response is given by (4.2.1)
with b = 0.5. As a → 0+ in the expression for the impulse response, find the output of the system.
Plot your result using the Matlab axis command axis([ 0 4 − 2.5 1 ])
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