Signals: Voltages or currents that varies with time.
Examples: Audio signals include speech and music. Musical notes (middle C is a 254 Hz sinusoid), octaves.

Periodic: \(x(t) \) has period \(T \leftrightarrow x(t) = x(t + T) \) repeats every \(T \).
Examples: Musical tones; EKGs (heart); 60 Hz wall sockets.
Then: Periodic signals can be decomposed into sinusoids:

Periodic signal= sum of sinusoids at frequencies which are integer multiples of the fundamental frequency \(= \frac{1}{T} \) Hz ~ prism. Have frequency content. See Fourier series handout for details.

Circuits: Components connected together in a network.
Components: Resistors, inductors, capacitors, sources.
Examples: Op-amps modelled using dependent sources.

Systems: Use of a circuit to process signals to do something.
Filters: Circuits that affect the frequency content of a signal.
EX #1: Low-pass filters to reduce noise in sensor signals;
EX #2: Bass and treble controls or graphic equalizers;
EX #3: Dolby noise reduction; preemphasis and deemphasis.

Sinusoid: Signal having form \(x(t) = A \cos(\omega t + \theta) \) where:
Amplitude: \(A \)= (usual) amplitude; \(2A \)= peak-to-peak amplitude \(A_{pp} \);
Amplitude: \(\frac{A}{\sqrt{2}} \approx 0.707 A = \text{rms amplitude} A_{rms} \); \(20 \log_{10} A_{rms} = \text{dBV} \).
Why? \(A_{pp} \) easy to measure on scope; \(A_{rms} \) for AC power (see later).
\[A_{rms} = \sqrt{\frac{1}{T} \int_0^T A^2 \cos^2(\omega t + \theta) dt} = \frac{A}{\sqrt{2}} \] if \(\omega \neq 0 \). \(\omega = 0 \rightarrow \text{DC value} \).

Frequency: \(\omega = \text{circular frequency in} \frac{\text{radians}}{\text{second}} \);
Frequency: \(\omega = 2\pi f \) where \(f \)= frequency in Hertz \(\frac{\text{cycles}}{\text{second}} \).
Period: \(T = \frac{1}{f} = \frac{2\pi}{\omega} \). Sinusoid repeats every \(T \): \(x(t) = x(t + T) \).
Phase: \(\theta = \text{phase (shift) in radians or degrees} \). 1 radian= \(\frac{180}{\pi} \approx 57.3^\circ \).

Example: Voltage in wall socket: \(v(t) = 170 \cos(377t + \theta) \) for some \(\theta \).
Amplitude: \(A_{\text{usual}} = 170 \) volts; \(A_{pp} = 340 \) volts; \(A_{rms} = 120 \) volts.
Frequency: \(T = \frac{1}{60} \) seconds; \(f = 60 \) Hz; \(\omega = 377 \frac{\text{radians}}{\text{second}} \).
where: Approximating \(170 \approx 120\sqrt{2} \) and \(377 \approx 2\pi 60 \) (quite close).