EECS 206 LECTURE NOTES Fall 2005

FORWARD OR DIRECT Z-TRANSFORM

DEF:
Huh?
Or:

Z{z[n]} = X(2) = Yo" z[n]z~" (compare to L{z(t)} = [; z(t)e~*'dt).
Finite-duration signal z[n] —polynomial X (z) with coefficients=x[n].
Infinite-duration x[n]=coefficients of Laurent (power) series X (z).

Finite
length
signal

z[n] ={3,1,4,2,5}. Note 2[0] = 3 and finite duration=5—
X(z) = 3+lz_1—|—4z_2—|—2z_3—|—52_4 (322 + 23 +422 +22+5) /2%
Z{6[n — D]} = 2~ P for any integer delay D > 0. Z{6[n]} = 1.

Expon-

ential

Z{a"un]} =3 " a2z =3 (az7)* =1/(1—az"t) = z/(z—a).
BX: Z{(3)"ulnl} = . EX: Z{(~ ) ulnl} = i

Sinu-

soids

Z{cos(won)u [n]} = s Z{e/*"u[n]} + 3 Z{e"7“"y[n]} = (since linear)

1 1 1 . 1—2z" ! cos(wo) 22—z cos(wp)

21—eiwoz—1 + 2 1—e 9w 0z=1 7 1—-2z"1lcos(wg)+2—2 = 22—2zcos(wp)+1"

Linear:

Delay:
EX:
Note:

Z{{3,1,4} +uln|} = 3= Hletd |z o 4232224324 _ RATIONAL

z—1 23 —22 ~ FUNCTION"

If Z{z[n]} = X(2) and D > 0, then Z{x[n — D]} =2z"PX(2).
Z{uln] —uln -2} = Z -2 22 = HEt =140

Note that u[n] — uln — 2] = §[n] + d[n — ], SO these are consistent.

Also:
Note:

Z{lun -1} =377 2— = —log(1l — z7') if you recognize this.
Convolution«<spolynomial multiplication: Z{z[n] * y[n|} = X (2)Y (z).

Eigen-
funcs h
of LTI

Note:

2" — |h[n]| — 2" H(z): 2™ in— scaled 2" out. H(z) =27, h[n]z™".
hin]xz™ = S" hli]z" "t = 2" S" hlilz7t = 2"H(2). H(e&’%) = H(2)|,—¢iw

Note z" plays the same role that e*! plays in continuous time.

H(z)=transfer function. H(e¢’¥) = H(2)|,—.;»=frequency response.

EX:
Soln:
#1:
#1:
#2:
Note:

Compute step response (to u[n]) of LTI system with h[n] = {2, —-3,1}.
We need to compute y[n] = {2,—3,1} x u[n]. Do this two ways:
y[n] = (20[n] — 38[n — 1] + 10[n — 2]) * u[n]. Using u[n] * d[n] = uln],
y[n] = 2uln] — 3u[n — 1] + uln — 2] = {2, —1} (try it!) has duration=2.
Y(2) = H(2)U(z) = (2-3z"'+272) == =2—2"! - y[n] ={2,-1}.

This system has wiped out the step input! This seldom happens.
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APPLICATIONS OF THE z-TRANSFORM
Given: z[n] = 3"u[n| — |y[n] —2y[n — 1] = z[n — 1] — z[n — 2]| — y[n]

Goal: Compute the response y[n] of the system to this particular input.
Z:Y(2)—2271Y(2) = 271X (2) — 272X (2) and X (z) = —%5 here

z—3
ozt s z—1 _ 2 1 _ 3-1. _2-1
- Y@ =t (z=2)(2—3) = z—3  z—2 2=355-1= 35l
n— n— ORCED  lik NATURAL
— y[n] = [2(3)" " = (2)" Huln—1] = RFESPOEISE(gc[ﬁ)Jr REST];’ONSE( hln ])'

Given: z[n] = (3)"u[n] — |LTI| — y[n] = {0,0,1} = §[n — 2]
Goal: Compute the response of this system to 2 cos(Zn).
H(z): pononon = H(2) = Z{yln]}/2{zln]} = 272/[z/(z—3)] = (2= 3)/2*.
hln]: MPULSE _ hlp) = 2-1{(2—1)/2%) = 2-1{=2- 1273} = {0,0,1,~ 1},

H(w): "REQUENCY — [(w) = H(2)|._o = (¢ — 1)/,

H(E) = [ =31/ = G4 P -5/ (-1) = = = P

Sol’'n: 2cos(5n) — |LTI| V3cos(En — Z) = +/3sin(Zn).

n] = ly[n] = z[n] — Fx[n — 1] + 2[n — 2)| — y[n]

7|
Huh? z[n]=cell phone signal. y[n]=multipath due to buildings.

Goal: Compute the inverse filter that recovers z[n] from y[n]:
Huh? z[n] — \h[ | = y[n] — |g[n]| — x[n]. That is, g[n] undoes hln].

Idea: Systems in cascade (series) < hin] x g[n] = d[n] & H(2)G(z) = 1.
Here: hin]={1,-2, 4} > H(z)=1-322"14 4272 = (22 = 32+ ) /7%

— G(2) =1/H(2) = 2*/[2* = Jz + 5] = 2%/[(z = 5)(z = 3)].
— G(z z z z
Z=h i) = Go1/2(-1/4) 2—21/2 popn 1/4 — G(z) =2 =13~ LiTia

using: residues 2 = (1/2)/[(1/2) — (1/4)] and —1 = (1/4)/[(1/4) — (1/2)].
g[n]: g[n] = 2(3)"u[n] — ($)"u[n]=inverse filter for original system.

Note: Stable since zeros of H(z)=poles of G(z) are inside unit circle.

Note: g[0] # 0 since both 2™™erator& o () have the same degrees.

denominator




