EECS 206

LECTURE NOTES Fall 2005

TRANSFER (ALSO KNOWN AS SYSTEM) FUNCTIONS

DEF:
Poles:

Zeros:

H(z) = N(2)/D(z) = Y (2)/X(z)
Roots of D(z) = 0. ARMA: > alily[n —i] =
Roots of N(z) = 0. Impulse response: d[n| —

= B(z)/A(z) as defined below.
=2 bljlzln — g].
|h[n]] — hln].

Transfer functions are associated with zero initial conditions.

EX #1:

hln] = 2"u[n]+4"u[n] — H(z) = Z5+ 25 = 257 62 ZEROS: {0,3}

EX #2:

where:

2z not z 1

Zeros:
Poles:
Note:

: H(Z) — 1—4z"1 22 — 22 —4z

1421
1-3z—142z—2"

= Z{1,-4} =1—-42"1.

22—62+8" POLES: {2,4}"
y[n]

A(z)

—3y[n — 1]+ 2y[n — 2] = z[n]
= Z{1,-3,2} =1-3271 42272

—4xn—1] — H(z) =
and B(z)

Ty s el Use this to compute poles+zeros.

22—3z42"
Solve N(z) = 22 —42 =0 — z = {0,4}. Common mistake: cite only 4.
Solve D(z) = 2% — 32+ 2 =0 — z = {1,2}. Use Matlab’s roots.

H(z) = 0 for z=any zero while H(z) — oo for z=any pole.

There are 5 ways to describe an LTI system: (1) h[n]; (2) H(z);
(3) Difference equation (4) Any input-output pair (5) Poles+zeros.
Using transfer functions, can go from any of these to any other:

INPUT-— .
OUTPUT"

ARMA:

Input z[n] — |h[ ]| moutput yn] <= H(z) < h[n]=
Z{h[n]}
POLE
—~—

ZERO
B()/A(z) O] =

Y (2)/X(2)
<— H(z)
—~—~

2. alily[n —i]=3_ bljlz[n — j]

plot.

EX #3:
Soln:

— @ — y[n] = %(—2)”u[n] + %u[n] Find h[n].

o 22/3 z/3 22 z
Y (2) = Z2 + 2B = 2 H(2) = £ .hin] = uln).

First term of y[n]=forced response. Second term=natural response.

Y& = H(z) = 27 = =L — yln] —yln—1] = afn].

X(z) =

Difference eqn.:

EX #4:
Soln:

234722
23—22422-3"

— and cross-multiply:

Find difference equation implementing H(z) =
Write H(z) = 22 = L7z

X(z)  1—z7142z-2-32
YV(2)(1 -2t 4222-3273) = X(2)(1 + 7271

y[n] —yln — 1] + 2y[n — 2] — 3y[n — 3] = z[n] + Tz[n — 1].

) —difference equation:

EX #5:
Soln:

Find step response of system with zero at 1, pole at 3, and H(0) = 1.
H(E) =355 V) = 241 = V() = 0] = 3-37uln).

{6 - 1) =32} - 94555 — bl i 1) et

— y[n] —3z[n—1].

IMPULSE
RESPONSE
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POLES & ZEROS AND FREQUENCY RESPONSE

Given: Locations of zeros {z;...zp/} and poles {p; ...pn} of a filter.
Goal: Shape of gain function=|H (w)|=magnitude of frequency response.

H(z): H(z) = 52:2322:;3(@:% (ignore any constant in front).

H(w): |H(w)| = [le™ = z|...[e7 = zp|]/[|e?* = p1 ... |e’* = pw]].
What does each of these terms contribute to gain |H (w)|?

Zeros: Let n'" zero z, = ¢’“». Then e’ — z,| = 0 at w = w,.
e Gain |H(w,)| = 0 if there is a zero at ¢/“° (on the unit circle |z| = 1).
e Gain |H(w,)| =~ 0 if there’s a zero at Ae?“>, A ~ 1 (near the unit circle).

Poles: Let n!" pole p,, = Ae/*», A ~ 1. Then |ejw1_pn| = |A1_1| at w = w,,.

e Gain |H(w,)| is large if there is a pole at Ae?*e (near |z| = 1).

1. Start on the unit circle at w =0 — z = /¥ = 1.

2. Trace along the unit circle counterclockwise (increasing w)
3. When pass a zero at Ae/“m A ~ 1, gain dips at wh,.

4. When pass a pole at Ae/“», A ~ 1, gain peak at w,.

5

.

. Onunitcirclez =e’*: 2=1—-DCiz2=j vw=35;2=-1—>w=m.

EX: Zeros: {et/7/4 ¢Ti™/2 ¢i™} Poles: {0.8¢*77/3,0.8¢T727/3}  Gain:

1. Note gain dips to zero at w = £7 = +0.785 and w = +5 = +1.57,

2. Note peaks at w = +% = +1.05 and w = :I:%7T =+2.10

3. The closer a zero or pole is to unit circle, the sharper the peak or dip.
4. The closer pole is to unit circle, the longer h[n] takes to decay to zero.
5. Need all poles inside the unit circle for the system to be BIBO stable.




