CONTINUOUS-TIME AND DISCRETE-TIME SINUSOIDS

DEF:	A sinusoidal signal has the standard form $x(t) = A\cos(\omega_o t + \phi)$.
Where:	$A \ge 0 =$ amplitude; $\omega_o \ge 0 =$ frequency; $ \phi \le \pi =$ phase (shift).
Freq:	$f_o = \omega_o/(2\pi)$ =circular or cyclic frequency in Hertz=cycles per second.
Note:	Sinusoid $x(t) = A\cos(2\pi f_o t + \phi)$ has cyclic frequency f_o Hertz.
Period:	$T = \frac{1}{t_0} = \frac{2\pi}{\omega_0} \rightarrow x(t) = x(t+T)$ for all t using $\cos(x) = \cos(x+2k\pi)$.
DC:	DC (constant) signals: $\omega_o = f_o = 0; T = \infty$ (low-frequency limit).
RMS(x) =	$\sqrt{\frac{1}{T}} \int_0^T A^2 \cos^2(\omega_o t + \phi) dt = \sqrt{\frac{1}{T}} \int_0^T \frac{A^2}{2} (1 + \cos(2\omega_o t + 2\phi)) dt = \frac{A}{\sqrt{2}}$
	using $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$ and $M(\cos(t)) = 0$ (by inspection).
DC:	$\omega_o = 0 \to x(t) = A \cos \phi \to RMS(x) = A \cos \phi \ge 0 \text{ (note } A \ge 0\text{)}.$
Note:	Can convert other forms to this standard form. Some examples:
1.	$x(t) = -3\cos(7t + 0.1) = 3\cos(7t \pm \pi + 0.1) \text{ using } -\cos(x) = \cos(x \pm \pi).$
2.	$x(t) = 3\sin(7t + 0.1) = 3\cos(7t - \frac{\pi}{2} + 0.1)$ using $\sin(x) = \cos(x - \frac{\pi}{2})$.
3.	$x(t) = -3\cos(-7t + 0.1) = 3\cos(7t \pm \pi - 0.1) \text{ using } \cos(-x) = \cos(x).$
$\mathbf{x}(\mathbf{t})$:	Continuous-time sinusoids are periodic with period $T = \frac{1}{f} = \frac{2\pi}{\omega}$.
x [n]:	Discrete-time sinusoids are NOT periodic UNLESS f_o is rational. $\omega_o = 2\pi \frac{K}{K} \Leftrightarrow r[n]$ has period T provided $\frac{K}{K}$ is reduced to lowest terms
Why?	$A\cos(\omega, n + \phi) = A\cos(\omega, (n + T) + \phi) \Leftrightarrow \omega, T = 2\pi k \Leftrightarrow f = \frac{\omega_0}{k} = \frac{k}{k}$
EX:	$\omega_o = 2\pi \to T = 1; \omega_o = (2.02)\pi \to T = 100; \omega_0 = 2 \to \text{nonperiodic.}$
Freq.:	$A\cos(\omega_o n + \phi) = A\cos([\omega_o + 2k\pi]n + \phi) \rightarrow \omega_o$ itself is periodic.
	As μ increases from 0 to π oscillation rate increases
	As ω_0 increases from 0 to π , oscillation rate increases.
	As ω_o increases from π to 2π , oscillation rate decreases.
Huh?	As ω_o increases from π to 2π , oscillation rate increases. Frequency range $\pi \leq \omega_o \leq 2\pi \Leftrightarrow -\pi \leq \omega_o \leq 0$ since ω_o periodic.
Huh? WLOG:	As ω_o increases from π to 2π , oscillation rate increases. As ω_o increases from π to 2π , oscillation rate decreases. Frequency range $\pi \leq \omega_o \leq 2\pi \Leftrightarrow -\pi \leq \omega_o \leq 0$ since ω_o periodic. Restrict discrete-time frequencies to range $-\pi \leq \omega_o \leq \pi$.
Huh? WLOG: Note:	As ω_o increases from π to 2π , oscillation rate increases. As ω_o increases from π to 2π , oscillation rate decreases. Frequency range $\pi \leq \omega_o \leq 2\pi \Leftrightarrow -\pi \leq \omega_o \leq 0$ since ω_o periodic. Restrict discrete-time frequencies to range $-\pi \leq \omega_o \leq \pi$. $\omega_o = 0 \to \cos(\omega_o n) = 1; \omega_o = \pm \pi \to \cos(\omega_o n) = (-1)^n$.
Huh? WLOG: Note:	As ω_o increases from π to 2π , oscillation rate increases. Frequency range $\pi \leq \omega_o \leq 2\pi \Leftrightarrow -\pi \leq \omega_o \leq 0$ since ω_o periodic. Restrict discrete-time frequencies to range $-\pi \leq \omega_o \leq \pi$. $\omega_o = 0 \to \cos(\omega_o n) = 1; \omega_o = \pm \pi \to \cos(\omega_o n) = (-1)^n.$ SUM OF MULTIPLE SINUSOIDS
Huh? WLOG: Note: If:	As ω_o increases from π to 2π , oscillation rate increases. Frequency range $\pi \leq \omega_o \leq 2\pi \Leftrightarrow -\pi \leq \omega_o \leq 0$ since ω_o periodic. Restrict discrete-time frequencies to range $-\pi \leq \omega_o \leq \pi$. $\omega_o = 0 \to \cos(\omega_o n) = 1; \omega_o = \pm \pi \to \cos(\omega_o n) = (-1)^n.$ SUM OF MULTIPLE SINUSOIDS $x(t)$ has period T_x and freq. $f_x; y(t)$ has period T_y and freq. $f_y;$
Huh? WLOG: Note: If: And:	As ω_o increases from π to 2π , oscillation rate increases. As ω_o increases from π to 2π , oscillation rate decreases. Frequency range $\pi \leq \omega_o \leq 2\pi \Leftrightarrow -\pi \leq \omega_o \leq 0$ since ω_o periodic. Restrict discrete-time frequencies to range $-\pi \leq \omega_o \leq \pi$. $\omega_o = 0 \to \cos(\omega_o n) = 1; \omega_o = \pm \pi \to \cos(\omega_o n) = (-1)^n$. SUM OF MULTIPLE SINUSOIDS $x(t)$ has period T_x and freq. $f_x; y(t)$ has period T_y and freq. $f_y;$ T_x/T_y is a rational number (otherwise $x(t) + y(t)$ not periodic);
Huh? WLOG: Note: If: And: Then:	As ω_o increases from π to 2π , oscillation rate increases. Frequency range $\pi \leq \omega_o \leq 2\pi \Leftrightarrow -\pi \leq \omega_o \leq 0$ since ω_o periodic. Restrict discrete-time frequencies to range $-\pi \leq \omega_o \leq \pi$. $\omega_o = 0 \to \cos(\omega_o n) = 1; \omega_o = \pm \pi \to \cos(\omega_o n) = (-1)^n$. SUM OF MULTIPLE SINUSOIDS $x(t)$ has period T_x and freq. $f_x; y(t)$ has period T_y and freq. $f_y;$ T_x/T_y is a rational number (otherwise $x(t) + y(t)$ not periodic); $x(t) + y(t)$ has period T_{x+y} =Least Common Multiple of T_x and $T_y;$

- Note: Always works for sinusoids; rarely fails for general periodic signals. How? (1) Reduce $\frac{T_x}{T_y} = \frac{M}{N}$ to lowest terms. (2) $T_{x+y} = NT_x = MT_y$. Why? $\frac{T_x}{T_y} = \frac{M}{N} \rightarrow x(t+T_{x+y}) + y(t+T_{x+y}) = x(t+NT_x) + y(t+MT_y)$.
- **EX:** $x(t) = \cos(0.3\pi t) + \cos(\frac{2}{3}\pi t) \to f_o = \frac{3}{20}, \frac{1}{3} \to f_{x+y} = \frac{1}{60} \to T_{x+y} = 60.$

ELEMENTARY SIGNAL OPERATIONS: TRANSLATION

Value: y(t) = x(t) + c shifts plot of x(t) up by c if c > 0 (down if c < 0). Value: y(t) = cx(t) scales vertical axis of plot by factor c.

Time: y(t) = x(t-d) shifts plot of x(t) right by d if d > 0 (left if d < 0).

Time: y(t) = x(dt) scales horizontal axis of plot by factor d.

Time: y(t) = x(-t) reverses: flips plot about t = 0 axis.

Note: For discrete time signals x[n], d must be an integer!

EX #1: y(t) = x(t-2) delays x(t) by 2: y(2) = x(0), y(3) = x(1).

EX #2: y(t) = x(2t) shrinks x(t) by 2: y(1) = x(2), y(2) = x(4).

Means: If $x(t) = \cos(\omega_o t)$, this doubles frequency & halves period.

EX #3: y(t) = x(-t): If x(t) audio, then y(t) is x(t) backwards!

Play Beatles records backwards to find hidden messages? Doppler.

COMBINING SIGNAL OPERATIONS

• One of the trickiest topics in EECS 206! Be very careful.

• Two methods are available. Pick one and stick with it.

Why? See lecture notes. Reread at least three times.

• First Method: Shift then Scale

1. Put problem into the form y(t) = x(at - b).

2. Shift x(t) by b. $b > 0 \rightarrow$ shift right. $b < 0 \rightarrow$ shift left.

3. Scale result of #2 in time by a. $a > 1 \rightarrow$ compress. $0 < a < 1 \rightarrow$ expand. $a < 0 \rightarrow$ time reversal: flip plot around t = 0 axis.

• Second Method: Scale then Shift

- 1. Put problem into the form y(t) = x(c(t-d)).
- 2. Scale x(t) in t by c. $c > 1 \rightarrow$ compress in time. $0 < c < 1 \rightarrow$ expand. $c < 0 \rightarrow$ time reversal: flip plot around t = 0 axis.
- 3. Shift result of #2 in time by d. $d > 0 \rightarrow$ shift right. $d < 0 \rightarrow$ shift left.

EX:
$$x(t) = 5\cos(3t+2)$$
. $y(t) = 4x(2t-1)$. $y(3) = 4x(6-1) = 20\cos(17)$.

Result: $y(t) = 20\cos(3(2t-1)+2) = 20\cos(6t-1)$. Frequency doubles.

DEF: Linear combination z(t) of x(t) and y(t):

z(t) = ax(t) + by(t) for two constants a and b.

- **NOT:** tx(t) + 3y(t) is NOT a linear combination of x(t) and y(t).
- **EX:** Audio mixing; summing Fourier series (later in EECS 206).

DEF: Concatenation
$$z(t)$$
 of finite-support $x(t)$ and $y(t)$

- x(t) has support $[0, T_x] \to z(t) = x(t)$ for $0 \le t \le T_x$.
- y(t) has support $[0, T_y] \rightarrow z(t) = y(t T_x)$ for $T_x \leq t \leq (T_x + T_y)$.
- z(t) has support $[0, T_x + T_y] \Leftrightarrow z(t) = 0$ for t < 0 or $t > (T_x + T_y)$.