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SIGNAL STATISTICS AND DETECTION

Professor Andrew E. Yagle, EECS 206 Instructor, Fall 2005

Dept. of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

I. Abstract

The purpose of this document is to introduce EECS 206 students to signal statistics and their application

to problems in signal detection and time delay estimation. It will be useful for the first couple of laboratories.

A. Table of contents by sections:

1. Abstract (you’re reading this now)

2. Definitions (what do rms and variance mean?)

3. Properties (to be used in Sections 5-9 below)

4. Histograms (real-world statistics computation)

5. Application: Reading your CD’s pits

6. Application: Are the whales mating?

7. Application: Time-delay estimation

8. Application: Unknown signal in unknown noise

9. Application: Frequency and phase tracking

II. Definitions

This section defines various statistical properties of signals, and gives simple examples of how to compute

them directly from the signal itself.

A. Basic Properties of Signals

First, a quick review of intervals. We define the following four cases:

• The closed interval [a, b] = {t : a ≤ t ≤ b}; The half-open interval (a, b] = {t : a < t ≤ b};
• The half-open interval [a, b) = {t : a ≤ t < b}; The open interval (a, b) = {t : a < t < b}.

If a or b is ±∞, use a half-open or open interval. Never write (even implicitly) “t = ∞”–this is uncouth!

Now let x(t) be a continuous-time signal. We define the following basic properties of x(t):

• The support of x(t) is the interval [a, b] = {t : a ≤ t ≤ b} such that x(t) = 0 for all t < a and for all t > b.

• x(t) can be zero somewhere within the support [a, b]. x(t) is zero everywhere outside the support [a, b].

• The duration of x(t) having support [a, b] is b − a. The duration of x(t) is “how long it lasts”;

• A unit step u(t) has support [0,∞). A sinusoid A cos(ωt + θ) has support (−∞,∞) and duration→ ∞.

• The maximum of x(t) is its largest value. The minimum of x(t) is its smallest value.
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Special case: Consider x(t) =

{ 2
t+1 − 1 for 0 < t < ∞
0 for otherwise

The support of x(t) is (0,∞) and its duration→ ∞,

but x(t) does not have a minimum or maximum value. We say that its infimum=-1 and its supremum=1,

even though there is no value of t for which x(t) actually attains these values (remember x(0) = 0).

B. Statistical Properties of Signals

Let x(t) be a real-valued signal with support [a, b]. We define the following statistical properties of x(t):

• Mean: M(x) = x̄(t) = 1
b−a

∫ b

a x(t)dt=average value of x(t).

• Mean Square: MS(x) = M(x2) = x2(t) = 1
b−a

∫ b

a
x2(t)dt ≥ 0.

• rms: rms(x) =
√

MS(x) =
√

1
b−a

∫ b

a
x2(t)dt ≥ 0. “rms” stands for Root-Mean-Square.

• Variance: σ2
x = MS(x − M(x)) = 1

b−a

∫ b

a [x(t) − M(x)]2dt ≥ 0. Remember M(x) is a number.

• Easier to compute: σ2
x = M [(x − M(x))2)] = M(x2) + [M(x)]2 − 2M(x)M(x) = MS(x) − (M(x))2 ≥ 0.

• Standard Deviation: σx =
√

σ2
x; we can always compute this since σ2

x ≥ 0.

• Energy: E(x) =
∫ b

a
x2(t)dt ≥ 0. Note that energy=duration×MS(x).

• Average power=MS(x) as defined above. Instantaneous power=x2(t).

• Note the units: Power=ENERGY

TIME
. EX: Watts= JOULES

SECONDS
.

C. Periodic Signals

If x(t) is a periodic signal, then x(t) = x(t + T ) = x(t + 2T ) = . . . for all time t (NOT just for t ≥ 0). T

is the period of x(t). The official EECS 206 lecture notes call T the fundamental period and let any integer

multiple of T be “a period” of x(t). The idea is that if a signal is periodic with period T , it can also be

regarded as periodic with period kT for any integer k. While this is true, don’t try it during a job interview!

Periodic signals have the following properties:

• Support=(−∞,∞) and duration → ∞; Energy → ∞ (unless x(t) = 0 for all t);

• All of the above definitions (except energy) still apply: just use [a,b]=one period.

D. Simple Examples

Problem #1: x(t) =

{

2t for 0 ≤ t ≤ 3

0 otherwise
. Compute the basic and statistical properties of x(t).

Solution #1: Plug:

• Support=[0,3]. Duration=3-0=3. Min=0. Max=6. All by inspection.

• Mean=M(x) = 1
3−0

∫ 3

0
(2t) dt = 3. Mean square=MS(x) = 1

3

∫ 3

0
(2t)2dt = 12.

• Variance=σ2
x = MS(x − M(x)) = 1

3

∫ 3

0 (2t − 3)2dt = 3 (hard way–that integral requires too much work).

• Variance=σ2
x = MS(x)−(M(x))2 = 12−(3)2 = 3 (easy–both MS(x) and M(x) are much easier integrals).

• STANDARD

DEVIATION
= σx =

√
3. rms=Root-Mean-Square=

√

MS(x) =
√

12.

• Energy=duration×MS(x)=(3)(12) = 36.

Use of the Cauchy Principal Value (anyone who spells this “principle” will be sent to the “principal”!):
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• Problem #2: Compute the mean M(x) of x(t) = 1 + e−|t|.

• Solution #2: The signal has support=(−∞,∞) and duration → ∞.

• So M(x) = 1
∞
∫∞
−∞(1 + e−|t|)dt. Uh-oh! NOW what do you do?

• Use the Cauchy Principal Value: compute for support=[−T, T ] and let T → ∞:

• M(x) = LIM
T→∞

1
2T

∫ T

−T
(1 + e−|t|)dt = LIM

T→∞
2

2T

∫ T

0
(1 + e−t)dt = LIM

T→∞
1
T (T + 1 − e−T ) = 1

• We used: Symmetry to get rid of |t|; the limit should be evident since e−T is bounded by one.

We actually won’t be doing this in EECS 206; toy problems like this don’t happen in the real world.

Discrete-time signals: Just use sums instead of integrals, but there is one major change in duration.

• Problem #3: x[n] = {3, 1, 4, 2, 5}. Compute the basic and statistical properties of x[n].

• The underline denote time n = 0: 3 means that x[0] = 3. Then x[1] = 1, x[2] = 4, etc.

• Note: Duration of signal with support [a, b] is duration=(b − a + 1) , not (b − a)!

• Why? The number of integers between a and b inclusive is (b − a + 1), not (b − a).

• Solution #3: Just use sums instead of integrals in above definitions–makes things easier!

• Support=[0,4]. Duration=4 − 0 + 1 = 5. Min=1. Max=5. All by inspection.

• Mean=M(x) = 1
5 (3 + 1 + 4 + 2 + 5) = 3. Mean square=MS(x) = 1

5 (32 + 12 + 42 + 22 + 52) = 11.

• Variance=σ2
x = MS[x − M(x)] = 1

5 [(3 − 3)2 + (1 − 3)2 + (4 − 3)2 + (2 − 3)2 + (5 − 3)2] = 2 (hard way).

• Variance=σ2
x = MS(x) − (M(x))2 = 11 − (3)2 = 2 (the easy way).

• STANDARD

DEVIATION
= σx =

√
2. rms=Root-Mean-Square=

√

MS(x) =
√

11.

• Energy=(32 + 12 + 42 + 22 + 52) = 55. Average power=MS(x)=11.

III. Properties

Why bother with even more math? Because we will use ALL of these in the applications below.

A. Correlation

Three more definitions: the correlation between two real-valued signals is:

C(x, y) =

∫ ∞

−∞
x(t)y(t)dt. If period = T, then : C(x, y) =

∫ T

0

x(t)y(t)dt

C(x, y) =

∞
∑

n=−∞
x[n]y[n]. If period = N, then : C(x, y) =

N−1
∑

n=0

x[n]y[n] (1)

and the normalized correlation or correlation coefficient is:

CN (x, y) = ρ(x, y) =
C(x, y)

√

C(x, x)C(y, y)
=

C(x, y)
√

E(x)E(y)
(2)

Note that if either x or y has finite support, then the range of integration or summation in the definition of

C(x, y) becomes a finite interval, which is the intersection of the supports of x and y.

Two signals x and y are uncorrelated or orthogonal if their correlation C(x, y) = 0.
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B. Properties

All of these assume that x and y are real-valued and have the same support.

• Means: M(x + y) = M(x) + M(y): Mean of the sum is the sum of the means.

• Proof: M(x + y) = 1
b−a

∫ b

a [x(t) + y(t)] dt = 1
b−a

∫ b

a x(t) dt + 1
b−a

∫ b

a y(t) dt = M(x) + M(y).

• Mean-Square: MS(x + y) = MS(x) + MS(y) if x and y are uncorrelated (i.e., C(x, y) = 0).

• Proof: MS(x + y) = M [(x + y)2] = M(x2) + M(y2) + 2M(xy) = MS(x) + MS(y) + 2 C(x,y)
duration

.

• Correlation: C(x, x) = E(x); C(x, y) = C(y, x); C(x + y, z) = C(x, z) + C(y, z). Proof: C(x, y) definition.

• Correlation: |CN (x, y)| ≤ 1 with equality if y = ax for some constant a. Proof:

0 ≤
∫

(

x
√

E(x)
− y
√

E(y)

)2

dt =

∫

x(t)2dt

E(x)
+

∫

y(t)2dt

E(y)
−2

∫

x(t)y(t)dt
√

E(x)
√

E(y)
= 2−2

C(x, y)
√

E(x)
√

E(y)
→ CN (x, y) ≤ 1.

0 ≤
∫

(

x
√

E(x)
+

y
√

E(y)

)2

dt =

∫

x(t)2dt

E(x)
+

∫

y(t)2dt

E(y)
+2

∫

x(t)y(t)dt
√

E(x)
√

E(y)
= 2+2

C(x, y)
√

E(x)
√

E(y)
→ CN (x, y) ≥ −1.

C. Interpretation

The property |CN (x, y)| ≤ 1 means that CN (x, y) can be regarded as a measure of similarity of x and y:

To determine whether two signals x and y are similar, compute CN (x, y). The closer this is to unity (one),

the more alike are the signals x and y. In fact, consider two finite-duration real-valued discrete-time signals

x[n] and y[n], each having support [1, N ]. Let x = [x[1], x[2] . . . x[N ]} and y = [y[1], y[2] . . . y[N ]}. Then:

C(x, y) =

N
∑

n=1

x[n]y[n] = x · y = ||x|| · ||y|| cos θ =
√

||x||2
√

||y||2 cos θ =
√

C(x, x)C(y, y) cos θ (3)

which implies that

CN (x, y) =
C(x, y)

√

C(x, x)C(y, y)
= cos θ (4)

• CN (x, y) is the cosine of the “angle” θ between the two signals x and y;

• If y = ax, then x and y are in the same direction, and θ = 0 → CN (x, y) = cos(0) = 1;

• If x and y are uncorrelated, then x and y are perpendicular and θ = 90o → CN (x, y) = cos(90o) = 0.

• This is why uncorrelated signals are also called orthogonal signals!

• A good example of how an abstract concept (the angle between two signals?!) can be useful and insightful.

IV. Histograms

In the real world, we don’t know what a noise signal is. But often (see below), we don’t need to know

it; we only need to know its above statistical properties. We can obtain good estimates of them from a

histogram of the signal, as we now demonstrate.
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A. What is a Histogram?

Procedure for constructing the histogram of a known real-valued finite-duration discrete-time signal x[n]:

1. Determine L = min(x) (L for Lower) and M = max(x) (M for Maximum);

2. Divide up the interval [L, M ] into N subintervals, each of length M−L
N ;

3. These N subintervals are called bins. Typical values of N : 20,50,100.

4. Count the number of times the value of x[n] lies in a given bin. Repeat for each bin;

5. Plot: Vertical axis=#times value of x[n] lies in a bin. Horizontal axis: bins.

A toy example, from the official lecture notes, of computing a histogram:

• Problem: Plot the histogram of x[n] = | cos(π
4 n)| using 10 bins.

• x[n] = | cos(π
4 n)| = {. . . 1,

√
2

2 , 0,
√

2
2 , 1,

√
2

2 , 0,
√

2
2 , 1 . . .};

• So x[n] is periodic with period=4 (not 8, due to the absolute value);

• In one period: x[n] has value 0 once, value
√

2
2 twice, and value 1 once;

• L = min(x) = 0; M = max(x) = 1; each bin has width 1−0
10 = 0.1;

• Plot histogram: x[n] value lies in [0, 0.1] bin once, [0.7, 0.8] bin twice, and [0.9, 1] bin once (below left).

• Matlab: X=abs(cos(pi/4*[0:3]));subplot(421),hist(X,10). Doesn’t tell us anything useful.

A more realistic example (although we still have to know the signal):

• Problem: Plot the histogram of y[n] = cos( π
100n) using 20 bins;

• y[n] has period=200→an average of ten values in each bin;

• L = min(y) = −1; M = max(y) = 1; each bin has width 1−(−1)
20 = 0.1;

• Plot histogram: See below right. Matlab: X=cos(pi/100*[0:199]);subplot(422),hist(X,20)

• Note that y[n] spends most of its time near its peak values of ±1. So what? See below.

0 0.5 1
0

1

2

−1 −0.5 0 0.5 1
0

20

40

B. What are Histograms for?

In real-world applications, our signal processing task (whatever it is) is complicated by the presence of

noise added to our data. Noise can be defined (in EECS 206) as an undesired and unknown signal whose

effects we wish to eliminate from our data.

If we knew what the noise signal was, we could just subtract it from our data and get rid of it. But since

we don’t know what it is, we can’t do that! So what do we do?
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We will see in the sections below that we can perform our signal processing tasks fairly effectively if we

know only the statistical properties of the noise, not the noise signal itself. But how do we compute these

statistical properties if we don’t know the signal?

The answer is to compute the histogram of the noise during some time when we are not performing any

tasks, and then use the histogram to compute the statistical properties of the noise. We will see how to do

this below. The point is that even though the noise signal will be different when we are performing a task,

the noise statistics will be the same (or almost the same).

Another reason to use histograms is for coding a signal. For example, the second histogram above revealed

that y[n] spent most of its time near its peaks. That means it is more important to represent the peak values

accurately than the values near zero, since the peak values occur more often.

Detailed derivations of all of the algorithms below are given in EECS 401 and EECS 455.

C. Using Histograms to Compute Statistical Properties

Again, the simplest way to illustrate this is to use a simple example. Consider again the signal x[n] =

| cos(π
4 n)|. We can estimate its mean directly from its histogram by assuming that the two values in the

[0.7, 0.8] bin are both in the middle of the bin at 0.75. Of course this is not true, but since a value is just as

likely to lie above the bin midpoint as below it, the errors will tend to cancel out. We obtain:

M(x) : fromhistogram = 0.612 =
1

4
[1(0.05) + 2(0.75) + 1(0.95)]

M(x) : its actual value = 0.604 =
1

4
[1 +

√
2/2 + 0 +

√
2/2]

MS(x) : fromhistogram = 0.507 =
1

4
[1(0.05)2 + 2(0.75)2 + 1(0.95)2]

MS(x) : its actual value = 0.500 =
1

4
[1 + (

√
2/2)2 + 0 + (

√
2/2)2] (5)

For more realistic problems, the results are even better than they are for this small toy example.

V. Application: Reading your CD’s Pits

A. Introduction

When a CD is burned (and some of them should be! :)), what happens physically is that a strong laser

carves pits (or not) into its surface, along a track. The presence or absence of a pit designates a bit value

of 0 or 1. Groups of 16 bits each represent a single 16-bit binary number elvis[n], which in turn come from

sampling the continuous-time audio signal elvis(t) 44,100 times per second. This will be discussed in much

more detail later in EECS 206 when we discuss sampling of signals.

When a CD is read, a weaker laser illuminates the track on the CD, either being reflected (or not) back

to the CD reader. Again, the presence or absence of a pit designates a bit value of 0 or 1. Groups of 16 bits

each represent a single 16-bit binary number elvis[n], etc.

This omits error-correcting codes, which recover bits missing because you spilled coffee on your CD.
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However, the basic problem is to ensure that the sequence of bits (0 or 1) read by your CD player is the

same as the sequence Elvis recorded in the studio. Reading laser reflections from pits or absence of pits is

complicated by an additive and unknown noise signal v(t). What can we do?

B. Algorithm

Let y(t) be the strength of the laser reflection back to the CD reader, as a function of time t. 44,100 16-bit

numbers per second results in a bit every T = 1
16

1
44,100 = 1.4µsec. Then we can proceed as follows:

• Partition y(t) into blocks. Each block is T seconds long and treated separately.

• Within each block, the ideal reflected signal x(t) would be either x(t) = 0 or x(t) = 1 (after scaling).

• But due to the additive noise v(t), the actual signal is y(t) = x(t) + v(t), so y(t) = v(t) or y(t) = v(t) +1.

• So: within the kth block, compute M̂(y) = 1
T

∫ (k+1)T

kT y(t) dt= mean value of data in kth block.

• If M̂(y) > 1
2 , decide x(t) = 1 within the kth block, i.e., the kth bit=1.

• If M̂(y) < 1
2 , decide x(t) = 0 within the kth block, i.e., the kth bit=0.

• Repeat for each block, generating a sequence of estimated bits that is close to the actual sequence.

C. Performance

How well does this work? We make the following assumptions (all of which are very good):

• Each bit is equally likely to be 0 or 1: Pr[x(t)=0]=Pr[x(t)=1]= 1
2 .

• Knowing the value of a bit tells you nothing about the value of any other bit.

• The noise signal v(t) is zero-mean: M(v) = 0. Then M(y) = M(x) + M(v)=1 or 0.

• The noise signal v(t) is uncorrelated with delayed versions of itself: C(v(t)v(t − D)) = 0 for D 6= 0.

• The statistical properties of the noise signal v(t) do not change over time.

Within each block, there are two ways we can be wrong:

• Pr[choose x(t)=1 when x(t)=0]=Pr[M̂(y) > 1
2 ]=Pr[M̂(v) + 0 > 1

2 ]=Pr[M̂(v) > + 1
2 ] (false alarm)

• Pr[choose x(t)=0 when x(t)=1]=Pr[M̂(y) < 1
2 ]=Pr[M̂(v) + 1 < 1

2 ]=Pr[M̂(v) < − 1
2 ] (undetected)

Then the probability of error is (using Pr[x(t)=0]=Pr[x(t)=1]= 1
2 )

• Pr[error]= 1
2Pr[choose x(t)=1 when x(t)=0]+ 1

2Pr[choose x(t)=0 when x(t)=1]

• Note that without the factor of 1
2 , we could get Pr[error]> 1!

• Simplifies to: Pr[error] = 1
2Pr[|M̂(v)| > 1

2 ], where M̂(v) = 1
T

∫ T

0
v(t) dt and v(t) is the actual noise.

• Don’t confuse M(v) (=0 by assumption) and M̂(v) (computed from the actual noise v(t))

• They should be close to each other (due to ergodicity) but there is a small chance that |M̂(v)| > 1
2 .

The point is that we can estimate Pr[|M̂(v)| > 1
2 ] from the histogram of v without knowing v. And we can

obtain the histogram of v(t) by simply recording y(t) = v(t) when x(t) = 0 (no CD in the player at all),

computing the histogram of y(t), and assuming the statistical properties of v(t) don’t change over time.
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VI. Application: Are the whales mating?

A. Introduction

Suppose a marine biologist wants to know if the whales are mating. We know the sound w(t) whales

make when they are mating (don’t ask how). But when we lower a hydrophone into the water, we hear

y(t) =

{

w(t) + v(t) if whales aremating;

v(t) if whales notmating
, where v(t) is additive noise that drowns out the desired w(t).

The problem is to determine whether w(t) is present or absent in our heard signal y(t).

We could just compute and threshold M̂(y) as above. This would work (poorly) if M(w) > 0 and

M(v) = 0; in fact, this is what we are doing when w(t) = 1 (which it isn’t). But we should be able to take

advantage of our knowledge of w(t) to do better than that.

B. Algorithm

We make the following assumptions:

• The noise v(t) is zero-mean: M(v) = 0;

• v(t) is uncorrelated with delayed versions of itself: C(v(t)v(t − D)) = 0 for D 6= 0.

We already know that C(w, w) = E(w) ≥ 0. Then we can:

• Compute Ĉ(w, y) =
∫

w(t)y(t) dt from the data y(t) and the known signal w(t);

• Ĉ(w, y) =
∫

w(t)y(t) dt =

{

C(w, w) + C(w, v) ≈ E(w) if whales aremating;

C(w, v) ≈ 0 if whales notmating
;

• If Ĉ(w, y) > 1
2E(w), decide the whales are mating.

• If Ĉ(w, y) < 1
2E(w), decide the whales aren’t mating.

• The threshold 1
2E(w) assumes that it is equally likely that the whales are/aren’t mating.

• We can adjust this threshold to bias this algorithm either way, if desired.

C. Performance

Again, there are two ways we can be wrong:

• Pr[choose whales mating when they are not]=Pr[ Ĉ(w, v) > 1
2E(w)] = Pr[Ĉ(w, v) > 1

2E(w)]

• Pr[choose whales not mating when they are]=Pr[C(w, w) + Ĉ(w, v) < 1
2E(w)] = Pr[Ĉ(w, v) < − 1

2E(w)]

• Pr[error] = 1
2Pr[|Ĉ(w, v)| > 1

2E(w)] where Ĉ(w, v) =
∫

w(t)v(t) dt.

• We can compute the probabilities for C(w, v) from the histogram of v:

• Compute a derived histogram for C(w, v) by changing bins for v to bins for C(w, v), a function of v.

This is called a matched filter since the data are correlated with the signal to be detected. We will see later

in the term that this can be computed by filtering the data through a system with impulse response w(−t).
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VII. Application: Time-Delay Estimation

A. Introduction

The basic idea behind radar and sonar is to transmit a signal s(t), which reflects off something (a bird, a

plane, a submarine, two mating whales) and returns to the sender. The signal s(t) is a pulse having short

duration, since the same antenna is used for transmitting and receiving, so that s(t) must end before the

reflected and delayed signal s(t − D) arrives.

There is additive noise, so detecting the reflected and delayed s(t) is not trivial. We observe

y(t) = s

(

t − 2d

c

)

+ v(t) (6)

where d=distance to target and c=speed of light (radar) or sound in water (sonar) along path. Note that

the time delay is the two-way travel time, since the pulse s(t) must travel to the target and back again.

The next page shows three plots. The middle plot is the noisy y(t). If this were an air traffic radar, and

you had to decide where the plane is, how comfortable would you be? What if your grandmother were on

the plane, coming to visit you? The top plot shows pulse s(t) with its actual delay; was that your guess?

B. Algorithm

We make the following assumptions:

• s(t) is uncorrelated with delayed versions of itself:
∫

s(t)s(t − D) dt ≈ 0 for D 6= 0;

• v(t) is uncorrelated with delayed versions of itself:
∫

v(t)v(t − D) dt = 0 for D 6= 0.

We already know C(s, s) = E(s) ≥ 0. Then we can do the following:

• Compute the running correlation R̂C(t) =
∫

y(τ)s(τ − t) dτ as a function of delay t;

• R̂C(t) =
∫

y(τ)s(τ − t) dτ =
∫

[s(τ − D) + v(τ)]s(τ − t) dτ (note τ is a dummy variable)

• =
∫

s(τ − D)s(τ − t) dτ +
∫

v(τ)s(τ − t) dτ ≈
∫

s(τ)s(τ + D − t) dτ (neglecting
∫

v(τ)s(τ − t) dτ)

• R̂C(t) ≈ E(s) at t = D; and R̂C(t) ≈ 0 for t 6= D;

• In summary: Compute R̂C(t) and look for a peak. The location t of the peak is an estimate of D;

• Time delay estimation can be interpreted as matched filtering (see above):

• For each possible value of the time delay D, see whether the correlation with delayed s(t) exceeds threshold.

• The “noise” in R̂C(t) is
∫

v(τ)s(τ − t) dτ (compare this to C(w, v) in the previous section);

The third plot is a plot of running correlation RC(t). Note the spike, which indicates very accurately

what the delay is, and thus where the plane is! In the real world, the spike is not that sharp, since s(t) is

not completely uncorrelated with delayed versions of itself, and there are many other considerations in radar

and sonar. But don’t you feel better about your grandmother on the plane?
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VIII. Application: Unknown Signal in Unknown Noise

A. Introduction

Say what? How the heck are you supposed to do that? Yet you can, with some assumptions.

Suppose we want to know whether the whales are mating, but we don’t know w(t) (maybe we’re prudes).

All we know is that w(t) is zero-mean, so we can’t even use the algorithm we used for CD pits. We do know

the energies of v(t) and w(t), and we know that v(t) and w(t) are uncorrelated (the assumption).

B. Algorithm

We make the following assumptions:

• The unknown noise v(t) is zero-mean: M(v) = 0;

• The unknown signal w(t) is zero-mean: M(w) = 0;

• The unknown signal and noise are uncorrelated: C(v, w) = 0.

We already know that MS(v + w) = MS(v) + MS(w) since C(v, w) = 0. Then we can do this:
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• Compute M̂S(y) = 1
T

∫ T

0 y2(t)dt from the data {y(t), 0 ≤ t ≤ T }. Then:

• M̂S(y) =

{

MS(w) + MS(v) if whales aremating;

MS(v) if whales notmating
;

• If M̂S(y) > 1
2MS(w) + MS(v), decide the whales are mating;

• If M̂S(y) < 1
2MS(w) + MS(v), decide the whales aren’t mating;

• Threshold 1
2MS(w) + MS(v) assumes that it is equally likely that the whales are/aren’t mating;

• You can adjust this threshold to bias this algorithm either way, if desired;

• Can also use rms(y) =
√

MS(y) as the signal statistic to be thresholded;

• This actually makes more sense in terms of units, since rms(ay) = |a|rms(y) (linear scaling).

IX. Application: Frequency and phase tracking

A. Introduction

Your FM radio has (and requires) the ability to track changes in frequency and phase, since both of these

drift over time. Doppler radar also has the ability to track changes in frequency between the transmitted

signal s(t) and the received signal (one of the “other considerations” mentioned above). This is how doppler

radar can measure wind speed, and whether a storm is approaching or receding.

How can we measure frequency and phase differences between two sinusoids without having to measure it

on an oscilloscope by eye (which is a pain)? Once again, (normalized) correlation comes to our rescue.

B. Computing Phase Difference

Phase Problem: Given the sinusoidal signals x(t) = A cos(ωt+θx) and y(t) = B cos(ωt+θy),−∞ < t < ∞.

We wish to compute the phase difference |θx − θy| from data x(t) and y(t), without an oscilloscope.

Phase Solution: Compute the normalized correlation=correlation coefficient

CN (x, y) = cos(θx − θy) → |θx − θy|. (7)

C. Derivation of Phase Solution

Using the trig identity cos2 x = 1
2 (1 + cos(2x)) and M(sinusoid)=0, we have

E(x) =

∫ T

0

A2 cos2(ωt + θx) =

∫ T

0

A2

2
(1 + cos(2ωt + 2θx)) = T

A2

2
= T

(

A√
2

)2

= T (rms(x))2 (8)

Using the trig identity cos(x) cos(y) = 1
2 cos(x + y) + 1

2 cos(x − y) and M(sinusoid)=0, we have

C(x, y) =

∫ T

0

A cos(ωt + θx)B cos(ωt + θy)dt

=
AB

2

∫ T

0

cos(2ωt + θx + θy)dt +
AB

2

∫ T

0

cos(θx − θy)dt = T
AB

2
cos(θx − θy).
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E(y) = TB2/2 using a derivation analogous to that for E(x) = TA2/2. Plugging in,

CN (x, y) =
C(x, y)

√

E(x)E(y)
=

(TAB/2) cos(θx − θy)
√

(TA2/2)(TB2/2)
= cos(θx − θy). QED. (9)

• CN (x, y) = 1 if θx = θy (in phase); and CN (x, y) = −1 if θx = θy ± π (180o out-of-phase).

• CN (x, y) = 0 if |θx − θy| = π
2 (90o out-of-phase); sin and cos functions are orthogonal over one period;

• QED=“Quod Erat Demonstradum”=Latin phrase meaning ”Thank God that’s over.”

D. Computing Frequency Difference

Frequency Problem: Given sinusoidal signals x(t) = A cos(2πfxt) and y(t) = B cos(2πfyt),−∞ < t < ∞.

We wish to compute the frequency difference |fx − fy| from data x(t) and y(t), without oscilloscope.

Frequency Solution: Compute the normalized correlation=correlation coefficient

CN (x, y) = sinc((fx − fy)T ) → |fx − fy| if |fx − fy| << |fx + fy| (10)

Note that sinc(x) = sin(πx)
πx has its peak at x = 0 and smaller peaks at half-integer values of x.

E. Derivation of Frequency Solution

We have shown that E(x) = T A2

2 and E(y) = T B2

2 , but C(x, y) is different. Using

1

T

∫ T/2

−T/2

cos(ωt)dt =
sin(ωt)

ωT
T/2
−T/2 =

sin(ωT/2)

ωT/2
= sinc(fT ) since ω = 2πf, (11)

we now have

C(x, y) = AB

∫ T/2

−T/2

cos(2πfxt) cos(2πfyt)dt

=
AB

2

∫ T/2

−T/2

cos(2π(fx +fy)t)dt+
AB

2

∫ T/2

−T/2

cos(2π(fx−fy)t)dt = T
AB

2
[sinc((fx +fy)T )+sinc((fx−fy)T )]

(12)

We now assume (quite reasonably) that

(fx + fy) >> (fx − fy) → sinc((fx + fy)T ) << sinc((fx − fy)T ) (13)

in which case plugging in yields

CN (x, y) =
C(x, y)

√

E(x)E(y)
=

(TAB/2)sinc(fx − fy)T
√

(TA2/2)(TB2/2)
= sinc(fx − fy)T (14)

so that we can estimate small frequency differences |fx − fy| from CN (x, y).


