	EE(CS 206 LECTURE NOTES Fall	2005	
		EXAMPLES OF DISCRETE-TIME SIGNALS		
	1.	$\delta[n] = \begin{cases} 1 & \text{for } n = 0\\ 0 & \text{for } n \neq 0 \end{cases} \text{ (impulse); } u[n] = \begin{cases} 1 & \text{for } n \ge 0\\ 0 & \text{for } n < 0 \end{cases} \text{ (step).}$		
	2.	$a = a e^{j\omega_o}; c = c e^{j\theta_o} \to ca^n = c a ^n [\cos(\omega_o n + \theta_o) + j\sin(\omega_o n + \theta_o)]$	$+\theta_{o})].$	
-	3.	Given x[n]: $x[n] = x_e[n] + x_o[n]$ =even part+odd part		
		where $x_e[n] = \frac{1}{2}(x[n] + x[-n])$ and $x_o[n] = \frac{1}{2}(x[n] - x[-n])$.		
-	4.	$x[n] = \{3, \underline{1}, 4, 6\} \Leftrightarrow x[n] = 3\delta[n+1] + 1\delta[n] + 4\delta[n-1] + 6\delta[n-2].$		
_	5.	$x[n] = \sum_{i} x[n]\delta[n-i] = x[n] * \delta[n]$ (sifting property of impulse)	•	
Dela	ay:	x[n-D] is $x[n]$ shifted right (later) if $D > 0$; left (earlier) if D	< 0.	
Fo	ld:	x[-n] is $x[n]$ flipped/folded/reversed around $n = 0$ (vertical axi	.s).	
Bo	th:	$x[N-n]$ is $x[-n]$ shifted right if $N > 0$ (since $x[0]$ is now at $n \in \mathbb{R}$	= N).	
DISCRETE-TIME SINUSOIDS				
Cor	nt.:	$x(t) = A\cos(\omega_o t + \phi)$ has amplitude=A, period= $T = \frac{2\pi}{\omega_o}$, phase	$=\phi$	
\mathbf{Dis}	5 с.:	$x[n] = A\cos(\omega_o n + \phi)$ (n is an integer) isn't even periodic un	nless	
		$\frac{\omega_o}{2\pi} = f_o = \frac{K}{T}$ is rational. Period=T if fraction $\frac{K}{T}$ lowest terms.		
Fre	eq.:	$A\cos(\omega_o n + \phi) = A\cos([\omega_o + 2k\pi]n + \phi) \rightarrow \omega_o$ itself is periodic	3.	
		As ω_o increases from 0 to π , oscillation rate increases.		
		As ω_o increases from π to 2π , oscillation rate decreases.		
Hu	ıh?	Frequency range $\pi \leq \omega_o \leq 2\pi \Leftrightarrow -\pi \leq \omega_o \leq 0$ since ω_o periodic		
WLO	G:	Restrict discrete-time frequencies to range $-\pi \leq \omega_o \leq \pi$.		
No	te:	$\omega_o = 0 \to \cos(\omega_o n) = 1; \omega_o = \pm \pi \to \cos(\omega_o n) = (-1)^n.$		
SAMPLING AND ALIASING				
$\mathbf{EX} \neq$	#1:	$x(t) = \sin(t)$ has maximum frequency 1 $\frac{\text{RADIAN}}{\text{SECOND}}$.		
\mathbf{B}	ut:	Sample every $\Delta = \pi \to x[n] = x(t = n\pi) = \sin(n\pi) = 0!$		
$\mathbf{EX} \neq$	#2:	$x(t) = \cos(2\pi t) + 2\cos(6\pi t)$ (1 Hz & 3 Hz).		
\mathbf{B}	ut:	Sample every $\Delta = \frac{1}{5}$ (5 Hz sampling rate)		
	\rightarrow	$x[n] = x(t = \frac{n}{5}) = \cos(\frac{2\pi}{5}n) + 2\cos(\frac{6\pi}{5}n) = \cos(\frac{2\pi}{5}n) + 2\cos(\frac{4\pi}{5}n)$	n).	
Hu	ıh?	$y(t) = \cos(2\pi t) + 2\cos(4\pi t)$ sampled at 5 Hz \rightarrow same sampled si	gnal!	
-		The 3 Hz sinusoid is aliased to a 2 Hz sinusoid by sampling at	5 Hz.	
Fo	ld:	Original 3 Hz folded across $5/2=2.5$ Hz becomes aliased 2 Hz.		
_		5/2=folding frequency since freqs. above it are folded along it.	,	
	Q :	How can you tell whether a sampled signal is aliased?		
	A:	Increase the sampling rate as much as possible. Then:		
	•	If the form of the signal doesn't change, it is not aliased.		
	•	If reduce sampling rate, at some freq. the form of the signal cha	inges.	
		That is the Nyquist sampling rate. Often a good idea to oversa	mple.	

EECS 206LECTURE NOTESFall 2005QUANTIZATION OF SIGNALS: DIGITAL VS. DISCRETE-TIME:

Quantize the sampled $x[n] = x(t = n\Delta)$ (see over for Δ) to 2^B levels:

- Let $\delta = (MAX(x[n]) MIN(x[n]))/2^B$ for quantization using B bits.
- Then for each n: $\hat{x}[n] = MIN(x[n])$ OR $\hat{x}[n] = MIN(x[n]) + \delta$ OR...
- OR $\hat{x}[n] = MAX(x[n]) \delta$ OR $\hat{x}[n] = MAX(x[n]) \sim$ histogram bins.
- Note: Sampling is invertible: Can reconstruct x(t) from x[n]
- Quantization **not** invertible: Can't reconstruct x[n] from $\hat{x}[n]$.

• MSE=
$$\frac{1}{N+1}\sum_{n=0}^{N} (x[n] - \hat{x}[n])^2 = \frac{\delta^2}{12} = \frac{1}{12} (MAX(x[n]) - MIN(x[n]))^2 \frac{1}{2^{2B}}.$$

•
$$-A \le x[n] \le A \to \delta = \frac{2A}{2^B} \to MSE = \frac{\delta^2}{12} = \frac{A^2/3}{2^{2B}}$$
. For sinusoids:

• Signal-to-Quantization-Noise Ratio=SQNR=
$$\frac{A^2/2}{MSE} = \frac{3}{2}2^{2B}$$
.

- Let a digital communication link be used to transmit a signal x(t).
- **Q:** Continuous signal x(t) is 8-bit quantized and sampled at 8192 Hz.
- A: Bit rate=(8 bits/sample)(8192 samples/sec)=65536 bps (bits/sec).

SAMPLING SIGNAL

INTERPOLATION

