CONTINUOUS AND DISCRETE TIME SIGNALS; A/D AND D/A

- Continuous-time signals: x(t), t real. EX: speech, seismogram.
- **Discrete-time** signals: x[n], n integer. EX: stock market closes.

A/D: Analog-to-Digital conversion: $x[n] = x(t = n\Delta)$: Sampling.

D/A: Digital-to-Analog conversion: $x(t) = \sum x[n]\phi(t - n\Delta)$: Interpolate

D/A: Do this for some basis function $\phi(t)$ (to be determined).

QUICK MATLAB DEMOS

load handel;soundsc(y);plot(y);z=y(1:2:length(y));soundsc(z)
N=1:8192; X=cos(N); soundsc(X); Y=cos(2*N); soundsc(Y)
Z=cos(N/1000);plot(Z);W=cos(2*N/1000);plot(W) (subplot)
M=2:8192;soundsc(y(M)+y(M-1)) (crude lowpass filtering)

BASIC SIGNAL PROPERTIES AND DEFINITIONS

Support: $[t_1, t_2] \Leftrightarrow x(t) \neq 0$ only for $t_1 \leq t \leq t_2 \Leftrightarrow x(t) = 0$ for $t < t_1$ or $t > t_2$. Duration: x(t) has support $[t_1, t_2] \Leftrightarrow x(t)$ has duration $t_2 - t_1$.

Duration: x[n] has support $[N_1, N_2] \Leftrightarrow x[n]$ has duration $N_2 - N_1 + 1!$

Min;Max: MIN(x(t))=minimum value of x(t); MAX(x(t))=its maximum value.

Mean: $M(x) = \bar{x}(t) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x(t) dt$. Discrete time: $\frac{1}{N_2 - N_1 + 1} \sum_{n=N_1}^{N_2} x[n]$.

Periodic: x(t) = x(t+T) for all $t \to M(x) = \frac{1}{T} \int_{t_o}^{t_o+T} x(t) dt$ for any t_o

MEAN SQUARE: $MS(x) = \overline{x^2}(t) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x^2(t) dt$. **rms:** $RMS(x) = \sqrt{MS(x)}$.

Variance: $\sigma_x^2 = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} (x(t) - M(x))^2 dt = MS(x - M(x)) = MS(x) - (M(x))^2$. STANDARD DEVIATION: $\sigma_x = \sqrt{\sigma_x^2}$. Use $\sigma_x^2 = MS(x) - (M(x))^2$ for easier computation.

Note: Energy=E(x)= $\int_{t_1}^{t_2} x^2(t) dt$. Avg. Power=MS(x)= $\frac{1}{t_2-t_1} \int_{t_1}^{t_2} x^2(t) dt$.

Units: Power= $\frac{\text{ENERGY}}{\text{TIME}}$. EX: Watts= $\frac{\text{JOULES}}{\text{SECONDS}}$. $x^2(t)$ =instantaneous power.

EXAMPLE: BASIC SIGNAL PROPERTIES

GOAL: $x(t) = \begin{cases} 2t & \text{for } 0 \le t \le 3; \\ 0 & \text{otherwise} \end{cases}$. Compute above quantities for this signal. Support=[0,3]. Duration=3-0=3. Min=0. Max=6. Mean= $\frac{1}{3-0}\int_0^3 2t \, dt = 3$. Mean square= $\frac{1}{3}\int_0^3 (2t)^2 dt = 12$. Variance= $\frac{1}{3}\int_0^3 (2t-3)^2 dt$ (hard) = $12 - (3)^2 = 3$ (easy). STANDARD DEVIATION = $\sqrt{3}$. rms=Root-Mean-Square= $\sqrt{12}$. Energy=36.

EEC	CS 206 LECTURE NOTES	Fall 2005	
SIGNAL HISTOGRAMS			
Given:	Discrete-time signal $x[n]$ with finite support= $[N_1, N_2]$.		
	If given continuous-time signal $x(t)$, sample it: $x[n] =$	· · · ·	
	Horizontal axis runs from $MIN(x[n])$ to $MAX(x[n])$ (
-	Horizontal axis divided up into M bins, for some integ	<i>,</i>	
	Each of M bins has width $\frac{1}{M}(MAX(x[n]) - MIN(x[n]))$		
Set-up:	Vertical axis is a bar graph: $\#$ values of $x[n]$ in that bin.		
$\underbrace{\mathbf{EXAMPLE: SIGNAL HISTOGRAM}}_{(\pi) \to 0}$			
Given:	$x[n] = \begin{cases} \cos(\frac{\pi}{4}n) & \text{for } 0 \le n \le 7; \\ 0 & \text{otherwise} \end{cases} \cdot \frac{x[n] \text{ STEM PLOT}}{1 \varphi \varphi}$	x[n] HISTOGRAM	
	Plot histogram using $M = 10$ bins. 0.5	+	
Values:	x[n] takes on only these 3 values:	2	
	0 (twice); $\sqrt{2}/2$ (4 times); 1(twice). $0 \\ 0 \\ 5 \\ 10$	0 0.5 1	
So what?	Can estimate mean, variance, etc. from histogram: do	n't need $x[n]$.	
	Approximate all values of $x[n]$ in a bin by center value		
EX $\#1:$	$M(x) \approx \frac{1}{8}(2(0.05) + 4(0.75) + 2(0.95)) = 0.6125.$		
Whereas:	$M(x) = \frac{1}{8}\left(1 + \frac{\sqrt{2}}{2} + 0 + \frac{\sqrt{2}}{2} + 1 + \frac{\sqrt{2}}{2} + 0 + \frac{\sqrt{2}}{2}\right) = 0.60$)35.	
EX #2:	$MS(x) \approx \frac{1}{8}(2(0.05)^2 + 4(0.75)^2 + 2(0.95)^2) = 0.507.$		
Whereas:	$MS(x) = \frac{1}{8}\left(1^2 + \left(\frac{\sqrt{2}}{2}\right)^2 + 0^2 + \left(\frac{\sqrt{2}}{2}\right)^2 + 1^2 + \left(\frac{\sqrt{2}}{2}\right)^2 + 0^2\right)$	$+\left(\frac{\sqrt{2}}{2}\right)^2) = 0.5.$	
SIGNAL SIMILARITY MEASURE: CORRELATION			
DEF:	The Correlation between $x(t)$ and $y(t)$ is $C(x, y) = \int$	$\int_{t_1}^{t_2} x(t)y(t)dt.$	
WHY?	Cauchy-Schwarz inequality: $ C(x,y) \leq \sqrt{E(x)}\sqrt{E(x)}$	\overline{y} . That is:	
	$(\int_{t_1}^{t_2} x(t)y(t)dt)^2 \leq (\int_{t_1}^{t_2} x^2(t)dt)(\int_{t_1}^{t_2} y^2(t)dt).$ Derivatio	n: Don't ask.	
OR:	Correlation coefficient $\rho(x,y)$: $ \rho(x,y) = \frac{C(x,y)}{\sqrt{E(x)E(y)}} $	$\frac{1}{\sqrt{2}} \leq 1.$	
	The closer this is to one, the more alike are $x(t)$ and y		
	$C(x,y) = \pm \sqrt{E(x)E(y)} \Leftrightarrow x(t) = \pm ay(t)$ for some con	stant $a > 0$.	
	SIGNAL SIMILARITY APPLICATION: TIME DELAY		
Given:	Observe $y(t) = x(t - D) + n(t)$ where $n(t)$ =unknown m	ioise.	
-	x(t)=known signal with small support (i.e., a short pulse).		
Goal:	Estimate unknown time delay D from noisy data $\{y(t)\}$	}.	
	Correlate $y(t)$ with various delayed (by τ) versions of		
	$C(x(t-\tau), y(t)) = \int x(t-\tau)y(t)dt$. View this as a function of τ .		
	Look for a sharp peak at $\tau = D$ in $C(x(t - \tau), y(t))$ as		
Note:	See an example of this later in my lecture notes under	"Applications."	