FOURIER SERIES OF PERIODIC SIGNALS

THEOREM: Let \(x(t) \) be a bounded periodic signal with period \(T \).
Then \(x(t) \) can be expanded as a weighted sum of sinusoids with angular frequencies that are integer multiples of \(\omega_0 = \frac{2\pi}{T} \):

\[
x(t) = a_0 + a_1 \cos(\omega_0 t) + a_2 \cos(2\omega_0 t) + a_3 \cos(3\omega_0 t) + \ldots
+n \cos(\omega_0 t) + a_2 \sin(2\omega_0 t) + a_3 \sin(3\omega_0 t) + \ldots
\]

This is the *trigonometric Fourier series expansion* of \(x(t) \).

Or, we can use only cosines with phase shifts:

\[
x(t) = a_0 + c_1 \cos(\omega_0 t - \phi_1) + c_2 \cos(2\omega_0 t - \phi_2) + c_3 \cos(3\omega_0 t - \phi_3) + \ldots
\]

PROOF: Take a high-level math course to see this done properly.

NOTE: A Fourier series is a mathematical version of a *prism*.

COMPUTATION OF FOURIER SERIES COEFFICIENTS:

THEOREM: Coefficients \(a_n, b_n, c_n \) and \(\phi_n \) can be computed using:

\[
a_n = \frac{2}{T} \int_{t_0}^{t_0+T} x(t) \cos(n\omega_0 t) dt
\]

\[
b_n = \frac{2}{T} \int_{t_0}^{t_0+T} x(t) \sin(n\omega_0 t) dt
\]

For \(n = 0 \) we have: \(a_0 = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) dt = \text{average value of } x(t) \).

For cosines with phase shifts: \(c_n = \sqrt{a_n^2 + b_n^2}; \phi_n = \tan^{-1}\left(\frac{b_n}{a_n}\right), n \neq 0 \)
using \(a_n \cos(\omega t) + b_n \sin(\omega t) = \sqrt{a_n^2 + b_n^2} \cos(\omega t - \tan^{-1}\left(\frac{b_n}{a_n}\right)) \) (\(a_n > 0 \)).

Derive using phasors: \(a_n + b_n e^{-j\pi/2} = a_n - jb_n = \sqrt{a_n^2 + b_n^2} e^{-j\tan^{-1}\left(\frac{b_n}{a_n}\right)} \).

EXAMPLE OF FOURIER SERIES DECOMPOSITION:

\[
x(t) = \begin{cases} \pi/4 & \text{for } (2k\pi) < t < (2k + 1)\pi \quad \text{Square wave with period} \\ -\pi/4 & \text{for } (2k - 1)\pi < t < (2k\pi) \quad T = 2\pi \rightarrow \omega_0 = \frac{2\pi}{2\pi} = 1 \end{cases}
\]

\[
a_n = \frac{2}{2\pi} \int_{-\pi}^{\pi} x(t) \cos(n\omega_0 t) dt = 0 \text{ by inspection: Set } t_0 = -\frac{T}{2} = -\pi.
\]

\[
b_n = \frac{2}{2\pi} \int_{0}^{2\pi} x(t) \sin(nt) dt = \frac{1}{\pi} [\int_{0}^{\pi} \left(\frac{\pi}{4}\right) \sin(nt) dt + \int_{\pi}^{2\pi} \left(-\frac{\pi}{4}\right) \sin(nt) dt]
\]

\[= \begin{cases} \frac{1}{n}, & \text{if } n \text{ is odd;} \\ 0, & \text{if } n \text{ is even.} \end{cases} \rightarrow x(t) = \sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \ldots
\]

PARSEVAL’S THEORM FOR THIS EXAMPLE

Average \(\frac{1}{T} \int_{0}^{T} |x(t)|^2 dt = \frac{1}{2\pi} \int_{0}^{2\pi} |x(t)|^2 dt = \frac{\pi^2}{16} \). This agrees with:

Power:

\[
a_0^2 + \frac{1}{2} \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{2} \sum_{k=\text{odd}}^{\infty} (\frac{1}{k})^2 = \frac{1}{2} (1 + \frac{1}{3^2} + \frac{1}{5^2} + \ldots) = \frac{\pi^2}{16}.
\]
PROOF OF THEOREM: First we need the following lemma:

LEMMA: The sine and cosine functions are orthogonal functions:
\[
\int_{t_0}^{t_0+T} \cos(i \omega_0 t) \cos(j \omega_0 t) dt = \int_{t_0}^{t_0+T} \sin(i \omega_0 t) \sin(j \omega_0 t) dt = \begin{cases} T/2, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}
\]
\[
\int_{t_0}^{t_0+T} \cos(i \omega_0 t) \sin(j \omega_0 t) dt = 0 \quad \text{even if } i = j.
\]
These assume \(i, j > 0 \).

PROOF OF LEMMA: Adding and subtracting the cosine addition formula \(\cos(x \pm y) = \cos(x) \cos(y) \mp \sin(x) \sin(y) \) gives the formulae
\[
2 \cos(x) \cos(y) = \cos(x - y) + \cos(x + y)
\]
\[
2 \sin(x) \sin(y) = \cos(x - y) - \cos(x + y).
\]

Setting \(x = i \omega_0 t \) and \(y = j \omega_0 t \) and \(\int_{t_0}^{t_0+T} dt \) gives
\[
2 \int_{t_0}^{t_0+T} \cos(i \omega_0 t) \cos(j \omega_0 t) dt = \int_{t_0}^{t_0+T} [\cos((i + j) \omega_0 t) + \cos((i - j) \omega_0 t)] dt.
\]
Since the integral of a sinusoid with nonzero frequency over an integer number \(i \pm j \) of periods is zero, the first part of the lemma follows. The other two parts follow similarly. QED.

PROOF: Multiply the Fourier series by \(\cos(n \omega_0 t) \) and \(\int_{t_0}^{t_0+T} dt \):
\[
\int_{t_0}^{t_0+T} x(t) \cos(n \omega_0 t) dt = \int_{t_0}^{t_0+T} a_0 \cos(n \omega_0 t) dt \\
+ \int_{t_0}^{t_0+T} a_1 \cos(n \omega_0 t) \cos(\omega_0 t) dt + \int_{t_0}^{t_0+T} a_2 \cos(n \omega_0 t) \cos(2 \omega_0 t) dt + \ldots \\
+ \int_{t_0}^{t_0+T} b_1 \cos(n \omega_0 t) \sin(\omega_0 t) dt + \int_{t_0}^{t_0+T} b_2 \cos(n \omega_0 t) \sin(2 \omega_0 t) dt + \ldots \\
= 0 + 0 + \ldots + 0 + a_n \frac{T}{2} + 0 + \ldots \text{ from which the } a_n \text{ formula follows.}
\]
The formulae for \(a_0 \) and \(b_n \) follow similarly. QED.

COMMENTS:

1. \(t_0 \) is arbitrary; all integrals are over one period.
2. \(\omega_0 = \frac{2\pi}{T} \) is angular frequency in \(\text{Radian} \over \text{Second} \); this is \(\frac{1}{T} \) Hertz.
3. The sinusoid at frequency \(\omega_0 \) is called the fundamental; the sinusoid at frequency \(n \omega_0 \) is the \(n^{\text{th}} \) harmonic. Harmonics are also called overtones (not used much anymore). Some say the \(n^{\text{th}} \) harmonic is at frequency \((n + 1) \omega_0 \).
4. The more terms (i.e., harmonics) we keep in the Fourier series, the better the approximation the truncated series is to \(x(t) \).
5. If \(x(t) \) has a discontinuity at \(t = t_1 \), the Fourier series converges to \(\frac{1}{2}(x(t_1^-) + x(t_1^+)) \), where \(x(t^-) \) and \(x(t^+) \) are the values of \(x(t) \) on either side of the discontinuity.