EXAMPLES OF FIR DIGITAL FILTERS **FIR:** FIR=Finite Impulse Response: h[n] has finite duration and support. Form: $y[n] = b_o x[n] + b_1 x[n-1] + b_2 x[n-2] + \ldots + b_M x[n-M]$. Order=M. **h**[**n**]: $h[n] = b_n$ for $0 \le n \le M$; h[n] = 0 otherwise. Assume h[n] is real here. Frequency $H(e^{j\omega}) = b_0 + b_1 e^{-j\omega} + b_2 e^{-j2\omega} + \ldots + b_M e^{-jM\omega}$. response: $e^{j\omega_o n} \to \overline{|FIR|} \to H(e^{j\omega_o})e^{j\omega_o n}$, implying $\cos(\omega_o n) \to \overline{|FIR|} \to |H(e^{j\omega_o})| \cos(\omega_o n + arg[H(e^{j\omega_o})])$ **Properties** $H(e^{j\omega})$ periodic in ω with period 2π . of $H(e^{j\omega})$: Conjugate symmetry: $H(e^{-j\omega}) = H^*(e^{j\omega})$. **Implies:** Gain is even function: $|H(e^{j\omega})| = |H(e^{-j\omega})|$. **Phase** is odd function: $arg[H(e^{-j\omega})] = -arg[H(e^{j\omega})].$ Notch $h[n] = \overline{\{\underline{1}, -2\cos(\omega_o), 1\}} \rightarrow H(e^{j\omega}) = [2\cos(\omega) - 2\cos(\omega_o)]e^{-j\omega}.$ filter: Implement using $y[n] = x[n] - 2\cos(\omega_o)x[n-1] + x[n-2]$. **Does:** Eliminates component at a single frequency ω_o from input. Why? Eliminate interference at a single frequency, e.g., 60 Hz "hum." **Comb** $h[n] = \{\underline{1}, 1, 1...1\} \to H(e^{j\omega}) = \frac{e^{-j\omega(M+1)}-1}{e^{-j\omega}-1} = \frac{\sin(\frac{M+1}{2}\omega)}{\sin(\frac{\omega}{2})}e^{-j\omega M/2}.$ filter: Implement using $y[n] = x[n] + x[n-1] + \ldots + x[n-\tilde{M}]$. Does: Eliminates components at frequencies $\pm \frac{2\pi}{M+1}, \pm \frac{4\pi}{M+1} \ldots \pm \frac{M\pi}{M+1}$. Why? Eliminate interference at harmonics of a single frequency $2\pi/(M+1)$. e.g., Sawtooth wave interference with period (M+1) has these harmonics. Ideal $h[n] = \frac{\sin(Bn)}{\pi n} \to H(e^{j\omega}) = 1$ for $0 < |\omega| < B; = 0$ for $B < |\omega| < \pi$. **LPF:** Implement using $y[n] = \sum_{i=-\infty}^{\infty} \frac{\sin(Bi)}{\pi i} x[n-i]$; truncate the sum. **Does:** Low-pass filter; eliminates frequencies above B (periodic; period 2π). **Why?** Filter out high-frequency noise from a low-frequency signal (smooth). APPLICATION TO ELECTROCARDIOGRAM (HEART) SIGNALS **Given:** $x(t) = \text{EKG signal; periodic (you hope!) at 60 <math>\frac{\text{BEATS}}{\text{MINUTE}} = 1 \frac{\text{BEAT}}{\text{SECOND}}$. Goal: Filter out 60 Hz interference from electrical outlet wires in lab. **Signal** x(t) period=1 second \rightarrow fundamental=1 Hz \rightarrow harmonics=2,3... Hz. **Huh?** $x(t) = \underbrace{c_0}_{\text{DC}} + \underbrace{c_1 \cos(2\pi t + \theta_1)}_{\text{FUNDAMENTAL}} + \underbrace{c_2 \cos(4\pi t + \theta_2)}_{\text{1ST HARMONIC}} + \underbrace{c_3 \cos(6\pi t + \theta_3)}_{\text{2ND HARMONIC}} \dots$ **Sample** at 1 kHz $\rightarrow \Delta = 0.001$ second $\rightarrow t = 0.001n \rightarrow x[n] = x(t = 0.001n)$. **Spectrum** of sampled signal x[n] = x(0.001n) is periodic in f with period 1 kHz. **Notch** $y[n] = x[n] - 2\cos(2\pi \frac{60}{1000})x[n-1] + x[n-2]$ eliminates 60 Hz "hum."

EEG	CS 206	LECTURE NO	TES	Fall 2005
ARMA DIFFERENCE EQUATIONS				
MA: Huh? Note:	$y[n] = b_0 x[n] + b_1 x[n + b_1 x[$	$-1] + \ldots + b_q x[r]$ atted average of q [n] * x[n] where b	[n-q] (Moving Avera + 1 most recent inpu $b[k] = b_k, 0 \le k \le q.$	ge) ts.
AR: Huh? Note:	$y[n] + a_1y[n-1] + \ldots + a_py[n-p] = x[n]$ (AutoRegression) Present output=weighted sum of p most recent outputs . Compute $y[n]$ recursively from its p most recent values.			
ARMA:	$\sum_{i=0}^{p} a_i y[n-i] =$	$\sum_{i=0}^{q} b_i x[n-i] \langle$	$ \left(\begin{array}{c} MA \Leftrightarrow FIR (Finite) \\ AR \rightarrow IIR (Infinite) \\ ARMA \rightarrow IIR (Resp$	(mpulse) Impulse) ponse)
Notor	Difference equation	OVING AVERAGE	on in continuous tim	<u></u>
note.	$\left(\frac{d^p}{dt^p} + a_1 \frac{d^{p-1}}{dt^{p-1}} + \ldots + a_p\right) y(t) = \left(\frac{d^q}{dt^q} + b_1 \frac{d^{q-1}}{dt^{q-1}} + \ldots + b_q\right) x(t).$			
Note:	Coefficients a_i and b_i are not directly analogous here to a_i and b_i above.			
Note:	Linear time-invariant in both cases since all coefficients indpt. of time.			
EXAMPLES OF IIR FILTERS				
1.	$h[n] = ba^n u[n] \Leftrightarrow H(z)$	$) = b \frac{z}{z-a} \frac{z^{-1}}{z^{-1}} \Leftrightarrow g$	y[n] - ay[n-1] = bx[n]] $[1^{st}$ -order].
2.	$h[n] = (c_1 p_1^n + c_2 p_2^n) u[$	$[n] \Leftrightarrow H(z) = \frac{c_1 z}{z - p}$	$\frac{z}{p_1} + \frac{c_2 z}{z - p_2} = \frac{(c_1 + c_2)z^2}{z^2 - (p_1 + c_2)z^2}$	$\frac{-(c_1p_2+c_2p_1)z}{p_2)z+(p_1p_2)}$
\Leftrightarrow	$y[n] - (p_1 + p_2)y[n-1] +$	$(p_1p_2)y[n-2] =$	$(c_1+c_2)x[n]-(c_1p_2+c_2)x[n]$	$c_2 p_1) x[n-1]$
2a.	$h[n] = 2\cos(\omega_o n)u[n] = y[n] - 2\cos(\omega_o)y[n-1]$	$= (e^{j\omega_o n} + e^{-j\omega_o})$ $+ y[n-2] = 2z$	${n \choose n} u[n] [(2,1)^{nd} - \operatorname{ord} x[n] - 2\cos(\omega_o)x[n - 1]$	er ARMA] 1].
2b.	$h[n] = 6(\frac{1}{2})^n u[n] + 8(\frac{1}{2})^n u[n]$	$(\frac{1}{3})^n u[n]$ can be in	nplemented by: $[8(\frac{1}{2})]$	$+6(\frac{1}{3}) = 6$]
	$y[n] - \frac{5}{6}y[n-1] + \frac{1}{6}y[n-1]$	[n-2] = 14x[n] -	$6x[n-1] [(2,1)^{nd}$ -ord	ler ARMA].
SO WHY BOTHER TO USE IIR FILTERS?				
Goal:	Eliminate 60 Hz "hum	" in a continuou	s-time signal sampled	d at 250 Hz.
FIR:	Notch: $y[n] = x[n] - 2$	$2\cos(2\pi\frac{60}{250})x[n-1]$	(-1] + x[n-2]. See be	elow left.
IIR:	ARMA: $y[n] - 1.98 \cos(n)$	$s(2\pi \frac{60}{250})y[n-1]$	+0.98y[n-2][(2,2)]	nd -order]
	=x[n]	$-2\cos(2\pi\frac{60}{250})x[r$	[n-1] + x[n-2]. See	below right.
Point:	The IIR filter has a mi	<i>uch</i> sharper freque	ency response than th	e FIR filter.

