MEAN AND HISTOGRAM APPLICATIONS

Recording a	CD: Laser carv	ves pits, showir	ng bits $0 \text{ or } 1$	1, from:
Music $x(t) \rightarrow$	$ rac{\mathbf{ANTIALIAS}}{\mathbf{FILTER}} ightarrow$	$\left \frac{\mathrm{SAMPLE}}{\mathrm{@44.1kHz}} \right \rightarrow$	$\left { { { { { { { { { U } A N } - } } } } } \atop { { { T I Z E R } } } } } ight $ –	→ 011001100011

Playing a CD: Laser reads pits, outputing bits 0 or 1. However: We observe y(t) = x(t) + v(t) where x(t)=0 or 1 and v(t) = noise. x(t) switches back and forth from 0 to 1, which are equally likely.

Problem: Given data $\{y(t)\}$, compute x(t)=0 or 1. Solution:

- 1. Partition y(t) into blocks, each T seconds long $(T \approx 1 \mu \text{sec})$. Within each block, x(t) is constant (either x(t)=0 or x(t)=1).
- 2. Within each block, compute mean $M(y) = \frac{1}{T} \int_{BLOCK} y(t) dt$.
- 3. If $M(y) > \frac{1}{2}$, decide x(t) = 1 within that block. If $M(y) < \frac{1}{2}$, decide x(t) = 0 within that block.

How well does this work? Compute probability of error: $\Pr[\text{error}] = 0.5 \Pr[\text{choose 1 when } x(t) = 0] + 0.5 \Pr[\text{choose 0 when } x(t) = 1]$ First error is "false alarm"; second error is "fail to detect." The (unknown) mean of v(t) is $M(v) = \frac{1}{T} \int_{BLOCK} v(t) dt$. Pr[choose 1 when x(t)=0]=Pr[M(v)> $+\frac{1}{2}$] since it is known that Pr[choose 0 when x(t)=1]=Pr[M(v)< $-\frac{1}{2}$] M(y) = M(x) + M(v)

Problem: How do we compute probabilities when we don't know v(t)? **Solution:** We don't *need* to know v(t), only its *distribution*! Observe v(t) for awhile, sample it, and compute its *histogram*. Use histogram to estimate distribution of v(t) when v(t) unknown. If we think v(t) has a Gaussian distribution, we estimate its variance by computing $\sigma_v^2 = \frac{1}{T} \int_0^T v(t)^2 dt - (\frac{1}{T} \int_0^T v(t) dt)^2$ from data $\{v(t)\}$.

Problem: Suppose we don't know x(t) either, only its distribution! Want to decide if x(t) is present or absent (i.e., x(t)=0) from $\{y(t)\}$. Called "detection of unknown signal in unknown noise." Sounds hard! **Solution:** Yet, if x(t) and v(t) have correlation C(x, v) = 0, we can:

1. Within each block, compute rms $RMS(y) = \sqrt{\frac{1}{T} \int_{BLOCK} y(t)^2 dt}$.

2. If RMS(y) > threshold, decide x(t) present within that block. If RMS(y) < threshold, decide x(t) absent within that block.

This works because $\sigma_y^2 = \sigma_x^2 + \sigma_v^2$ if their correlation C(x, v) = 0. Threshold is set using distribution (estimated using histogram) of y(t). This is something like what you will be doing in labs one and two.