## PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Closed book; 2 sides of  $8.5 \times 11$  "cheat sheet."

## SIGN YOUR NAME HERE:

20 multiple-choice questions, worth 5 points each, for a total of 100 points. **LECTURE** Write your answer to each question in the space to the right of that question. **SESSION** NOTE: Problems vary in difficulty. Some problems are harder than others.

$$\sin\frac{\pi}{6} = \cos\frac{\pi}{3} = \frac{1}{2}; \quad \sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}; \quad \sin\frac{\pi}{3} = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}; \quad \sin\frac{\pi}{2} = \cos(0) = 1.$$

For #1-#4: L=Linear; TI=Time-Invariant; C=Causal; S=BIBO Stable.

NOTE: "Can't tell" means it can't be told, not just that YOU can't tell!

- 1. The system y[n] = nx[n] + 2x[n-1] + 3x[n-2] is: (a) L AND TI (b) L NOT TI (c) TI NOT L (d) NOT L; NOT TI (e) Can't tell
- 2. The system y[n] + 2y[n-1] = 3x[n] + 4x[n-1] is: (a) L AND TI (b) L NOT TI (c) TI NOT L (d) NOT L; NOT TI (e) Can't tell
- 3. The system y[n] = 3x[n+1] + 4x[n] + 3x[n-1] is: (a) C AND S (b) C NOT S (c) S NOT C (d) NOT C; NOT S (e) Can't tell
- 4. The system  $y[n] = \sum_{i=1}^{\infty} x[n-i]/i^2$  is: (a) C AND S (b) C NOT S (c) S NOT C (d) NOT C; NOT S (e) Can't tell
- 5. The period of the discrete-time sinusoid  $4\cos(0.56\pi n + 0.7)$  is: (a) 12.5 (b) 25 (c) 40 (d) 50 (e) Not periodic
- 6. The period of the discrete-time sinusoid  $3\cos(0.3\pi n) + 2\cos(\frac{3\pi}{4}n)$  is: (a) 12.5 (b) 25 (c) 40 (d) 50 (e) Not periodic
- 7. The value of the line spectrum of  $3\cos(\frac{\pi}{6}n+1)+4\cos(\frac{\pi}{3}n+2)$  at  $\omega=-\frac{7\pi}{3}$  is: (a) 0 (b)  $1.5e^{j1}$  (c)  $1.5e^{-j1}$  (d)  $2e^{j2}$  (e)  $2e^{-j2}$
- 8. Average power of  $2 + 4\cos(\frac{\pi}{2}n) + 6\cos(\pi n)$  is: (a) 0 (b) 12 (c) 30 (d) 48 (e) 56

9. The response of y[n] = 2x[n] + 3x[n-1] + 4x[n-2] to  $x[n] = \{5,6\}$  is:
(a)  $\{10, 27, 38, 24\}$  (b)  $\{10, 28, 39, 24\}$  (c)  $\{12, 27, 38, 20\}$  (d)  $\{12, 28, 39, 20\}$ 10. The response of y[n] = 8x[n] + 3x[n-1] + 4x[n-2] to  $x[n] = (-1)^n$  is:

(a)  $(-1)^n$  (b)  $4(-1)^n$  (c)  $9(-1)^n$  (d)  $15(-1)^n$  (e) unstable

- 11. The response of y[n] = 8x[n] + 3x[n-1] + 4x[n-2] to  $x[n] = \cos(\frac{\pi}{2}n)$  is: (a)  $9\cos(\frac{\pi}{2}n)$  (b)  $5\cos(\frac{\pi}{2}n+37^o)$  (c)  $15\cos(\frac{\pi}{2}n)$  (d)  $5\cos(\frac{\pi}{2}n-37^o)$  (e)  $9\sin(\frac{\pi}{2}n)$
- 12. Two systems y[n] = x[n] + 2x[n-1] and y[n] = 3x[n-1] + 4x[n-2] are connected in **parallel**. The combined system has impulse response: (a)  $\{\underline{3}, 10, 8\}$  (b)  $\{\underline{3}, 11, 8\}$  (c)  $\{\underline{4}, 11, 6\}$  (d)  $\{\underline{1}, 5, 4\}$  (e)  $\{\underline{4}, 6\}$
- 13. To perfectly reconstruct  $\sin(5\pi t + 1) + 2\sin(10\pi t + 2)$  from its samples  $x(t = nT_s)$ , we need  $T_s <:$  (a) 5 (b) 1 (c)  $\frac{1}{5}$  (d)  $\frac{1}{10}$  (e)  $\frac{1}{20}$
- 14.  $\sin(80\pi t) + \sin(120\pi t)$  and which of these are identical after sampling at 100 Hz: (a) 0 (b)  $\sin(80\pi t)$  (c)  $\sin(120\pi t)$  (d)  $2\sin(80\pi t)$  (e)  $2\sin(120\pi t)$
- 15. Continuous-time signal  $x(t) = \sin(20\pi t) + \cos(20\pi t)$  is sampled (A-to-D) at 20 Hz. The sampled signal is then *ideally* interpolated (D-to-A). The result is: (a) 0 (b) 1 (c)  $\sin(20\pi t)$  (d)  $\cos(20\pi t)$  (e)  $\sin(20\pi t) + \cos(20\pi t)$
- 16. A signal is sampled at 1024 Hz and quantized to 256 levels. The bit rate in BITS/SEC is:
  (a) 1024 (b) 4096 (c) 8192 (d) 16384 (e) 262144
- 17. The DFT of  $x[n] = \{8, 2, 0, 2\}$  is  $\{X_0, X_1, X_2, X_3\} =:$  (a)  $\{3, 2+j, 2, 2-j\}$  (b)  $\{3, 2-j, 2, 2+j\}$  (c)  $\{3, 1, 2, 1\}$  (d)  $\{3, 2, 1, 2\}$  (e)  $\{3, 2, 2, 2\}$

For #18-#20: x[n] has period=4 and DFT  $X_0 = 2, X_1 = 1 - j, X_2 = 0, X_3 = 1 + j$ .

- 18. x[n] =: (a)  $\{4,4,0,4\}$  (b)  $\{4,4,0,0\}$  (c)  $\{4,0,4,4\}$  (d)  $\{4,4,4,0\}$  (e)  $\{0,0,4,4\}$
- 19. Average power of x[n] is: (a) 0 (b) 8 (c) 12 (d) 32 (e) 48
- 20. The spectral line at  $\omega = -\frac{\pi}{2}$  is: (a) 0 (b) 2 (c) 1 + j (d) 1 j (e) 8

## DID YOU REMEMBER TO SIGN THE HONOR PLEDGE?