COURSE: EECS 452
TITLE: Digital Signal Processing Design Laboratory
PREREQUISITES: EECS 280 & 306 or Graduate

CATALOG DESCRIPTION: Architectures of single-chip DSP processors. Laboratory exercise using two state-of-the-art fixed-point processors; A/D and D/A conversion, digital waveform generators, and real-time FIR and IIR filters. Central to this course is a team project in real-time DSP design (including software and hardware).

COURSE OBJECTIVES:
1. To teach students the basics of using DSP chips to perform real-time digital signal processing;
2. To teach students how quantization and aliasing (due to sampling) affect real-time signal processing;
3. To teach students how to work in a team, how to produce a DSP chip design, and present their results.

TOPICS COVERED:
1. Aliasing and quantization
2. Sigma-Delta A/D and D/A
3. DSP chip architectures and programming language
4. FIR and IIR filter design
5. DSP chip programming and design for real-time DSP

COURSE OUTCOMES [Program Outcomes Addressed]
1. Ability to analyze the effects of quantization and aliasing in a real-time DSP system; [1,13]
2. Ability to design, using Matlab-based filter design techniques, FIR and IIR digital filters; [1,3,11,13]
3. Ability to design-test, to verify, to evaluate, and to benchmark a real-time DSP system; [2,3,5,11,13]
4. Ability to design DSP hardware in small teams, & present orally & in writing design results. [3,4,5,7]

ASSESSMENT (Course outcomes)
1. Weekly problem sets [1,2]
2. In-class exams [1,2]
3. Project oral & written reports [3,4]

CLASS/LABORATORY SCHEDULE:
- **LECTURES:** 3 per week @ 50 minutes.
- **LABORATORY:** 1 per week @ 3 hours.

PROGRAM OUTCOMES ADDRESSED: 1,2,3,4,5,7,11
PROFESSIONAL COMPONENT ADDRESSED: 13
PREPARED BY: Andrew E. Yagle on Nov. 25, 2004

COURSE DESCRIPTION: University of Michigan, College of Engineering, ELECTRICAL ENGINEERING PROGRAM