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ABSTRACT

Uniparallel execution and its uses

by

Kaushik Veeraraghavan

Chair: Jason N. Flinn

We introduce uniparallelism: a new style of execution that allows multithreaded

applications to benefit from the simplicity of uniprocessor execution while scaling

performance with increasing processors.

A uniparallel execution consists of a thread-parallel execution, where each thread

runs on its own processor, and an epoch-parallel execution, where multiple time

intervals (epochs) of the program run concurrently. The epoch-parallel execution runs

all threads of a given epoch on a single processor; this enables the use of techniques

that are effective on a uniprocessor. To scale performance with increasing cores,

a thread-parallel execution runs ahead of the epoch-parallel execution and generates

speculative checkpoints from which to start future epochs. If these checkpoints match

the program state produced by the epoch-parallel execution at the end of each epoch,

the speculation is committed and output externalized; if they mismatch, recovery can



be safely initiated as no speculative state has been externalized.

We use uniparallelism to build two novel systems: DoublePlay and Frost. Double-

Play benefits from the efficiency of logging the epoch-parallel execution (as threads

in an epoch are constrained to a single processor, only infrequent thread context-

switches need to be logged to recreate the order of shared-memory accesses), allowing

it to outperform all prior systems that guarantee deterministic replay on commodity

multiprocessors.

While traditional methods detect data races by analyzing the events executed

by a program, Frost introduces a new, substantially faster method called outcome-

based race detection to detect the effects of a data race by comparing the program

state of replicas for divergences. Unlike DoublePlay, which runs a single epoch-

parallel execution of the program, Frost runs multiple epoch-parallel replicas with

complementary schedules, which are a set of thread schedules crafted to ensure that

replicas diverge only if a data race occurs and to make it very likely that harmful

data races cause divergences. Frost detects divergences by comparing the outputs

and memory states of replicas at the end of each epoch. Upon detecting a divergence,

Frost analyzes the replica outcomes to diagnose the data race bug and selects an

appropriate recovery strategy that masks the failure.



CHAPTER 1

Introduction

As the scaling of clock frequency has reached the boundary of physical limitations,

to improve performance, the semiconductor industry has switched from developing

uniprocessors with a single processing unit to multicores and multiprocessors that

package multiple processing units. These multicore and multiprocessor designs are

becoming ubiquitous in the servers, desktops, laptops and cellphones we use today,

and the trend of increasing processor counts is expected to continue in the foreseeable

future [88].

One common way to exploit the hardware parallelism of multicore and multi-

processor machines is to run multithreaded programs, which split their execution

into distinct threads that communicate via shared memory. These threads run con-

currently on the available processors and scale performance with increasing cores.

Multithreaded programs are increasingly used in a wide range of domains including

scientific computing, network servers, desktop applications, and mobile devices.

Unfortunately, it has proven very difficult to write correct multithreaded programs.

For instance, there were several cases of radiation overdoses involving the Therac-25

radiation therapy machine in which a high-power electron beam was activated instead

of a low-power beam due to a data race [47]. Similarly, the Northeast blackout of 2003

was partly blamed on a data race bug in GE’s energy management software—this bug

1



affected 45 million residents in the US and 10 million in Canada [68].

The systems community has proposed many solutions to improve the reliability of

multithreaded programs. These solutions include software testing frameworks [81, 56]

and data race detectors [78, 26, 75, 82] that attempt to identify bugs during the soft-

ware development process, and deterministic replay systems that record a programs

execution for offline debugging [85, 41, 89] and forensic analysis [24]. Researchers

have also proposed alternate approaches such as transactional memory [83], which

attempts to simplify how developers write multithreaded programs and deterministic

execution [7, 2], which tries to guarantee that a multithreaded program will always

generate the same output for a given input.

While techniques like deterministic replay and data race detection can improve

program reliability, they are often too expensive for practical use on multithreaded

programs executing on a multiprocessor. The primary cause for the slowdown is the

overhead of tracking shared memory dependencies. Specifically, on a multiproces-

sor, threads of the program execute concurrently on different processors and might

simultaneously update shared memory. Not only are these shared memory accesses

expensive to instrument and track, but they also happen very frequently. Determin-

istic replay solutions can add up to 9X overhead to program execution if they log and

replay shared memory dependencies [25]. The state-of-the-art dynamic data race de-

tection tools add about 8.5X overhead for managed code [29] and about 30X overhead

for non-managed code (e.g., programs written in languages like C/C++) [82].

The key insight in this thesis is that there exist many techniques that are difficult

or slow to achieve on a multiprocessor, but are easy and efficient on a uniprocessor.

For instance, deterministic replay on uniprocessors imposes little overhead [74] and is

available in commercial products by companies like VMware. When a multithreaded

program runs on a uniprocessor, only one thread of the program executes at any

given time. Hence, only the schedule with which threads are multiplexed on the

processor needs to be tracked to recreate the order of shared memory accesses. As

thread context-switches are much more infrequent than shared memory accesses, these

techniques add significantly lesser overhead on a uniprocessor.
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We exploit our insight by proposing uniparallelism: a new model of execution that

achieves the benefits of executing on a uniprocessor, while still allowing application

performance to scale with increasing processors. This dissertation demonstrates the

utility of uniparallelism by addressing two challenging problems. First, we use uni-

parallelism to implement a software-only deterministic replay system that can record

multithreaded execution on a commodity multiprocessor and guarantee offline replay.

Next, we use uniparallelism to implement a replication system that can detect data

races at low overhead and also increase system availability by masking the effects of

harmful data races at runtime. Note that uniparallelism is implemented within the

operating system so applications benefit without requiring any modification.

1.1 Uniparallel execution

We observe that there are (at least) two ways to run a multithreaded program

on multiple processors, which we call thread parallelism and epoch parallelism. With

thread parallelism, the threads of a multithreaded program run on multiple proces-

sors. This traditional method of parallelization can achieve good scalability. With

epoch parallelism, multiple time intervals (epochs) of the program run concurrently.

This style of parallelism has also been called Master/Slave Speculative Parallelism by

Zilles [108] and Predictor/Executor by Süßkraut [87].

A uniparallel execution consists of a single thread-parallel execution and one or

more epoch-parallel executions of the same program. Each epoch-parallel execution

runs all threads of a given epoch on a single processor at a time; this enables the use

of techniques that only run efficiently on a uniprocessor. Unlike a traditional thread-

parallel execution that scales with the number of cores by running different threads

on different cores, an epoch-parallel execution achieves scalability in a different way:

by running different epochs of the execution concurrently on multiple cores. To run

future epochs before prior epochs have completed, epoch-parallel execution requires

the ability to predict future program states. These predictions are generated by

running a thread-parallel execution concurrently.
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Figure 1.1: Uniparallel execution

Consequently, for CPU-bound workloads, uniparallel execution requires at least

twice the number of cores as a traditional execution (for one thread-parallel execution

and one epoch-parallel execution), leading to an approximately 100% increase in CPU

utilization and energy usage (assuming energy-proportional hardware). If the tech-

nique requires additional epoch-parallel executions, the utilization cost of uniparallel

execution for CPU-bound workloads increases proportionally (e.g., a 200% increase

for two epoch-parallel executions).

1.1.1 Starting a uniparallel run

Figure 1.1 depicts the uniparallel execution of a program with 4 threads, with

one thread-parallel and one epoch-parallel execution. Each execution uses multiple

cores. The execution on the left is the thread-parallel execution that runs threads

concurrently on the cores allocated to it. The thread-parallel execution is partitioned

into time intervals that we call epochs. At the beginning of each epoch, a copy-on-
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write checkpoint of the state of the thread-parallel execution is created.

The execution on the right is the epoch-parallel execution that runs each epoch

on one of the cores allocated to it. All threads of a given epoch run on the same

core. We achieve good performance by running different epochs of the same process

concurrently. As shown in Figure 1.1, both the thread-parallel execution and the

epoch-parallel execution start running the first epoch [Ep 0] simultaneously from the

same initial state. However, the thread-parallel execution runs the epoch much faster

because it uses more cores. When the thread-parallel execution reaches the start of the

second epoch, we checkpoint the process state and use that state to start running the

second epoch [Ep 1] in the epoch-parallel execution. By the time the thread-parallel

execution is running the fourth epoch [Ep 3], the epoch-parallel execution is able to

fully utilize the four cores allocated to it. From this point on, the epoch-parallel

execution can utilize its allotment of cores to achieve speedup from parallelization

roughly equivalent to that achieved by the thread-parallel execution.

1.1.2 Releasing program output

The two types of executions can be viewed as follows. Each epoch of the epoch-

parallel executions runs on a single core, so we can apply any of the simple and efficient

uniprocessor techniques to the execution. The thread-parallel execution allows the

epoch-parallel executions to achieve good performance and scale with the number of

cores. The thread-parallel execution provides a hint as to what the future state of the

process execution will be at each epoch transition. As long as this hint is correct, the

state of the process at the beginning of each epoch in the epoch-parallel execution

will match the state of the process at the end of the previous epoch. This means that

the epochs can be pieced together to form a single, natural execution of the process.

This process is akin to splicing movie segments together to form a single coherent

video.

But, what if the hint is incorrect? For instance, a data race could cause an epoch-

parallel execution to write an incorrect value to a shared data structure. In such
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an instance, two epochs of an epoch-parallel execution cannot be pieced together

to form a single natural run; the logged run will contain unnatural transitions in

program values at epoch boundaries akin to artifacts in a bad video splice. To detect

such events, the process state (memory values and registers) of the thread-parallel

and each of the epoch-parallel runs are compared at each epoch transition.

If the state of the executions mismatch, one of several recovery strategies is em-

ployed. One option is to declare the state of one of the executions as correct and

accept its result, which we refer to as committing that execution. Another option is

to mark this epoch as suspect and roll back the epoch to the last checkpoint before

the divergence and run additional executions to learn more about why the epoch lead

to divergences. We describe both recovery strategies in detail in Section 4.3.2.

Since the thread and epoch-parallel executions may produce different output, the

uniparallel execution is prevented from externalizing any output (e.g., console or net-

work messages) until which execution to commit is decided upon. Our implementation

of uniparallelism uses speculative execution [61] to defer when output is released.

1.1.3 Protecting against divergences

A divergence between the thread-parallel and epoch-parallel executions can slow

performance substantially because it may lead to squashing the execution of several

subsequent epochs or the need to run additional executions to decide on an epoch

outcome. Uniparallel execution uses online replay [46] to reduce the frequency of such

divergences and their resulting slowdown.

During the thread-parallel execution, the ordering and results of all system calls

and low-level synchronization operations in libc are logged. When an epoch-parallel

execution executes a system call or synchronization operation, the logged result is re-

turned instead of executing the operation. If needed, thread execution is also delayed

to match the order of operations in the log. Further, signals are logged and delivered

only on kernel entry or exit, making their effects deterministic. These actions are

sufficient to ensure that the thread-parallel and epoch-parallel executions are iden-
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tical (and, hence, do not diverge) for any epochs that are free of data races [73].

The only situation in which the thread-parallel and epoch-parallel executions might

diverge is when the program contains a data race, causing two threads to execute

unsynchronized, conflicting operations on a shared memory address.

1.1.4 When should one use uniparallelism?

The cost of uniparallelism is that there are multiple executions and therefore an

increased utilization of hardware resources. Uniparallelism affects the throughput

but not the latency as the uniprocessor execution of a time interval can be started as

soon as a checkpoint is available. In our evaluation, we find that uniparallelism adds

an average throughput overhead of less than 28% if there are spare cores available

on the machine. If all cores can be productively used by the application, uniparal-

lelism incurs a much higher overhead because it splits the cores between the multiple

executions of the program. In this case, we find that deterministic replay imposes

a 2X overhead, while data race detection requires 3X, proportional to the number

of replicas. However, even in the absence of spare cores, both techniques still per-

form substantially better running in the uniparallel execution model than in other

state-of-the-art systems.

We believe the advent of multicore processors makes the increased hardware uti-

lization of uniparallelism a worthwhile tradeoff: the number of cores per computer is

expected to grow exponentially, and scaling applications to use these extra cores is

notoriously difficult.

1.2 Deterministic record and replay

Our first test of the uniparallel execution model was in a deterministic record

and replay system. Our goal was to reduce the overhead of logging multithreaded

execution on commodity multiprocessors while guaranteeing offline replay. To achieve

this, we employ uniparallelism to run a thread-parallel and an epoch-parallel execution

of the program concurrently. The epoch-parallel execution, which is the run being

7



recorded, constrains all threads for a given epoch to a single processor. This simplifies

logging because threads in the same epoch never simultaneously access the same

memory and because different epochs operate on different copies of the memory.

Thus, rather than logging the order of shared memory accesses, we need only log

the order in which threads in an epoch are timesliced on the processor. The main

overhead of this approach is the use of more cores to run two instances of the program

during logging.

We implement these ideas in DoublePlay, a new system that takes advantage of

spare cores to log multithreaded programs on multiprocessors at low overhead and

guarantees being able to replay them deterministically. We evaluate the performance

of DoublePlay on a variety of parallel client, server, and scientific benchmarks. We

find that, with spare cores, DoublePlay increases run time by an average of 15%

with two worker threads and 28% with four worker threads, and that DoublePlay can

replay the run later without much additional overhead. On computers without spare

cores, DoublePlay adds approximately 100% overhead for CPU-bound applications

that can scale to 8 cores. This compares favorably with other software solutions that

provide guaranteed deterministic replay.

1.3 Detecting and surviving data races

A data race occurs when two threads concurrently access the same shared memory

location without being ordered by a synchronization operation, and at least one of

the accesses is a write. Data races are responsible for many concurrency bugs. As

data races often only manifest during rare thread interleavings, they might be missed

during development only to materialize in production.

In the second part of this thesis we describe Frost1, a new system that protects

a program from data race bugs at runtime by combining uniparallelism and com-

plementary schedules. Frost uses uniparallelism to split the program into epochs of

1Our system is named after the author of the poem “The Road Not Taken”. Like the character
in the poem, our second replica deliberately chooses the schedule not taken by the first replica.
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execution; multiple replicas of each epoch are run as distinct epoch-parallel execu-

tions that differ only in the complementary schedule they follow. Complementary

schedules are a set of thread schedules constructed to ensure that replicas diverge

only if a data race occurs and to make it very likely that harmful data races cause

divergences.

Complementary schedules work by exploiting a sweet spot in the space of possible

thread schedules. First, Frost runs an additional thread-parallel execution. Apart

from generating checkpoints from which future epochs can be started (thus enabling

Frost to scale performance with increasing processors by running multiple epochs

simultaneously), the thread-parallel execution can also be logged to ensure that all

replicas of an epoch see identical inputs and use thread schedules that obey the same

program ordering constraints imposed by synchronization events and system calls.

This guarantees that replicas that do not execute a pair of racing instructions will not

diverge [73]. Second, while obeying the previous constraint, Frost attempts to make

the thread schedules executed by two replicas as dissimilar as possible. Specifically,

Frost tries to maximize the probability that any two instructions executed by different

threads and not ordered by a synchronization operation or system call are executed in

opposite orders by the replicas. For all harmful data races we have studied in actual

applications, this strategy causes replica divergence.

Frost enforces complementary schedules by constraining each epoch-parallel exe-

cution to a single processor and switching between threads only at synchronization

points (i.e., it uses non-preemptive scheduling). In addition to permitting tight control

over the thread schedules, running threads on a single processor without preemptions

prevents bugs that require preemptions (e.g., atomicity violations) from manifesting,

thereby increasing availability.

To distinguish buggy replicas from correct ones, Frost introduces outcome-based

race detection which compares the output and memory state of replicas executed with

complementary schedules, to detect the occurrence of a data race. For production

systems, Frost also helps diagnose the type of data race bug and select a recovery

strategy that masks the failure and ensures forward progress. Our evaluation of Frost

9



on 11 real data race bugs shows that Frost both detects and survives all of these data

races with a reasonable overhead of 3—12% if there are sufficient cores or idle CPU

cycles to run all replicas.

1.4 Thesis

My thesis is:

Uniparallelism allows applications to benefit from the simplicity

of uniprocessor execution while scaling performance with increas-

ing processors. With operating system support for uniparallelism,

techniques that are easy to achieve on a uniprocessor but difficult

or slow on a multiprocessor, such as guaranteed deterministic re-

play, data race detection, and data race survival, can be deployed

with reasonable overhead on production software systems running

on commodity multiprocessors without any application modifica-

tion.

1.5 Roadmap

The rest of this manuscript validates the thesis.

Chapter 2 provides background information about the design and implementa-

tion of the Respec online multiprocessor replay system [46]. Our implementation of

uniparallelism uses Respec to log the thread-parallel execution. The epoch-parallel

execution is treated as an online replay of the logged thread-parallel run to minimize

the likelihood of divergence.

Chapter 3 describes the design, implementation and evaluation of DoublePlay,

an efficient deterministic record and replay system for multithreaded programs run-

ning on multiprocessors. DoublePlay significantly lowers the overhead of logging by

recording a epoch-parallel execution instead of the traditional thread-parallel execu-

tion. Additionally, since the epoch-parallel schedule is verified using online replay,

later offline replays are guaranteed to succeed.
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Chapter 4 describes the design, implementation and evaluation of Frost, an on-

line data race detection and survival system for multithreaded programs running on

multiprocessors. Frost uses uniparallel execution to run replicas with tightly con-

trolled complementary schedules that detect data races and mask their harmful ef-

fects. Uniparallel execution ensures that the overhead of Frost is low enough for use

in production environments.

Chapter 5 describes related work. Chapter 6 describes future work and summa-

rizes the contribution of this thesis.
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CHAPTER 2

Background

Uniparallelism leverages our prior work on the Respec online replay system to

ensure that the thread-parallel and epoch-parallel executions remain in sync. This

section motivates the need for online replay and summarizes the design and imple-

mentation of the Respec system, a full description of which can be found in the paper

by Lee et al. [46].

2.1 Introduction

This chapter describes Respec, a new way to support deterministic replay of a

shared memory multithreaded program execution on a commodity multiprocessor.

Respec’s goal is to provide fast execution in the common case of data-race-free exe-

cution intervals and still ensure correct replay for execution intervals with data races

(albeit with additional performance cost). Respec targets online replay in which the

recorded and replayed processes execute concurrently. Respec does not address deter-

ministic replay of a process after the original execution completes; therefore, it cannot

be used for offline debugging, intrusion analysis, and other activities that must take

place after an execution finishes. Chapter 3 describes how DoublePlay builds upon

Respec to provide this capability.

Respec is based on two insights. First, Respec can optimistically log the order

of memory operations less precisely than the level needed to guarantee deterministic
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replay, while executing the recorded execution speculatively to guarantee safety. Af-

ter a configurable number of misspeculations (that is, when the information logged

is not enough to ensure deterministic replay for an interval), Respec rolls back exe-

cution to the beginning of the current interval and re-executes with a more precise

logger. Second, Respec can detect a misspeculation for an interval by concurrently

replaying the recorded interval on spare cores and checking if its system output and

final program states (architectural registers and memory state) matches those of the

recorded execution. We argue in Section 2.2.1 that matching the system output and

final program states of the two executions is sufficient for most applications of replay.

Respec works in the following four phases:

First, Respec logs most common, but not all, synchronization operations (e.g.,

lock and unlock) executed by a shared memory multithreaded program. Logging and

replaying the order of all synchronization operations guarantees deterministic replay

for the data-race-free portion of programs [73], which is usually the vast majority of

program execution.

Second, Respec detects when logging synchronization operations is insufficient to

reproduce an interval of the original run. Respec concurrently replays a recorded in-

terval on spare cores and compares it with the original execution. Since Respec’s goal

is to reproduce the visible output and final program states of the original execution,

Respec considers any deviation in system call output or program state at the end of

an interval to be a failed replay. Respec permits the original and replayed execution

to diverge during an interval, as long as their system output and the program memory

and register states converge by the end of that interval.

Third, Respec uses speculative execution to hide the effects of failed replay in-

tervals and to transparently rollback both recorded and replayed executions. Respec

uses operating system speculation [61] to defer or block all visible effects of both

recorded and replayed executions until it verifies that these two executions match.

Fourth, after rollback, Respec retries the failed interval of execution by serializing

the threads and logging the schedule order, which guarantees that the replay will

succeed for that interval.
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2.2 Replay guarantees

Replay systems provide varying guarantees. This section discusses two types of

guarantees that are relevant to Respec: fidelity level and online versus offline replay.

2.2.1 Fidelity level

Replay systems differ in their fidelity of replay and the resulting cost of providing

this fidelity. One example of differing fidelities is the abstraction level at which replay

is defined. Prior machine-level replay systems reproduce the sequence of instructions

executed by the processor and consequently reproduce the program state (architec-

tural registers and memory state) of executing programs [15, 24, 102]. Deterministic

replay can also be provided at higher levels of a system, such as a Java virtual ma-

chine [18] or a Unix process [85], or lower levels of a system, such as cycle accuracy

for interconnected components of a computer [77]. Since replay is deterministic only

above the replayed abstraction level, lower-level replay systems have a greater scope

of fidelity than higher-level replay systems.

Multiprocessor replay adds another dimension to fidelity: how should the replay-

ing execution reproduce the interleaving of instructions from different threads. No

proposed application of replay requires the exact time based ordering of all instruc-

tions to be reproduced. Instead, one could reproduce data from shared memory reads,

which, when combined with the information recorded for uniprocessor deterministic

replay, guarantees that each thread executes the same sequence of instructions. Re-

producing data read from shared memory can be implemented in many ways, such as

reproducing the order of reads and writes to the same memory location, or logging

the data returned by shared memory reads.

Replaying the order of dependent shared memory operations is sufficient to re-

produce the execution of each thread. However, for most applications, this degree of

fidelity is exceedingly difficult to provide with low overhead on commodity hardware.

Logging the order or results of conflicting shared memory operations is sufficient but

costly [25].
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Logging higher-level synchronization operations is sufficient to replay applications

that are race-free with respect to those synchronization operations [73]. However,

this approach does not work for programs with data races. In addition, for legacy

applications, it is exceedingly difficult to instrument all synchronization operations.

Such applications may contain hundreds or thousands of synchronization points that

include not just Posix locks but also spin locks and lock-free waits that synchronize

on shared memory values. Further, the libraries with which such applications link

contain a multitude of synchronization operations. GNU glibc alone contains over 585

synchronization points, counting just those that use atomic instructions. Instrument-

ing all these synchronization points, including those that use no atomic instructions,

is difficult.

Further, without a way to correct replay divergence, it is incorrect to instrument

only some of the synchronization points, assuming that uninstrumented points admit

only benign data races. Unrelated application bugs can combine with seemingly be-

nign races to cause a replay system to produce an output and execution behavior that

does not match those of the recorded process. For instance, consider an application

with a bug that causes a wild store. A seemingly benign data race in glibc’s memory

allocation routine may cause an important data structure to be allocated at different

addresses. During a recording run, the structure is allocated at the same address as

the wild store, leading to a crash. During the replay run, the structure is allocated at

a different address, leading to an error-free execution. A replay system that allowed

this divergent behavior would clearly be incorrect. To address this problem, one can

take either a pessimistic approach, such as logging all synchronization operations or

shared memory addresses, or an optimistic approach, such as the rollback-recovery

Respec uses to ensure that the bug either occurs in both the recorded and replayed

runs or in neither.

The difficulty and inefficiency of pessimistic logging methods led us to explore a

new fidelity level for replay, which we call externally deterministic replay. Externally

deterministic replay guarantees that (1) the replayed execution is indistinguishable

from the original execution from the perspective of an outside observer, and (2) the
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replayed execution is a natural execution of the target program, i.e., the changes

to memory and I/O state are produced by the target program. The first criterion

implies that the sequence of instructions executed during replay cannot be proven to

differ from the sequence of instructions executed during the original run because all

observable output of the two executions are the same. The second criterion implies

that each state seen during the replay was able to be produced by the target program;

i.e. the replayed execution must match the instruction-for-instruction execution of one

of the possible executions of the unmodified target system that would have produced

the observed states and output. Respec exploits these relaxed constraints to efficiently

support replay that guarantees identical output and natural execution even in the

presence of data races and unlogged synchronization points.

We assume an outside observer can see the output generated by the target system,

such as output to an I/O device or to a process outside the control of the replay

system. Thus, we require that the outputs of the original and replayed systems match.

Reproducing this output is sufficient for many uses of replay. For example, when using

replay for fail-stop fault tolerance [15], reproducing the output guarantees that the

backup machine can transparently take over when the primary machine fails; the

failover is transparent because the state of the backup is consistent with the sequence

of output produced before the failure. For debugging [28, 41], this guarantees that all

observable symptoms of the bug are reproduced, such as incorrect output or program

crashes (reproducing the exact timing of performance bugs is outside our scope of

observation).

We also assume that an outside observer can see the final program state (memory

and register contents) of the target system at the end of a replay interval, and thus

we require that the program states of the original and replayed systems match at the

end of each replay interval.

Reproducing the program state at the end of a replay interval is mandatory when-

ever the program states of both the recording and replaying systems are used. For

example, when using replay for tolerating non-fail-stop faults (e.g., transient hard-

ware faults), the system must periodically compare the state of the replicas to detect
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latent faults. With triple modular redundancy, this comparison allows one to bound

the window over which at most one fault can occur. With dual modular redundancy

and retry, this allows one to verify that a checkpoint has no latent bugs and therefore

is a valid state from which to start the retry.

Another application of replay that requires the program states of the original

and replayed systems to match is parallelizing security and reliability checks, as in

Speck [62]. Speck splits an execution into multiple epochs and replays the epochs in

parallel while supplementing them with additional checks. Since each epoch starts

from the program state of the original run, the replay system must ensure that the

final program states of the original and replayed executions match, otherwise the

checked execution as a whole is not a natural, continuous run.

Note that externally deterministic replay allows a more relaxed implementation

than prior definitions of deterministic replay. In particular, externally deterministic

replay does not guarantee that the replayed sequence of instructions matches the

original sequence of instructions, since this sequence of instructions is, after all, not

directly observable. We leverage this freedom when we evaluate whether the replayed

run matches the original run by comparing only the output via system calls and the

final program state. Reducing the scope of comparison helps reduce the frequency of

failed replay and subsequent rollback.

2.2.2 Online versus offline replay

Different uses of deterministic replay place different constraints on replay speed.

For some uses, such as debugging [28, 41] or forensics [24], replay is performed after

the original execution has completed. For these offline uses of replay, the replay

system may execute much slower than the original execution [67].

For other uses of replay, such as fault tolerance and decoupled [20] or parallel

checks [62], the replayed execution proceeds in parallel with the original execution.

For these online uses of replay, the speed of replayed execution is important because it

can limit the overall performance of the system. For example, to provide synchronous
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safety guarantees in fault tolerance or program checking, one cannot release output

until the output is verified [48].

In addition to the speed of replay, online and offline scenarios differ in how often

one needs to replay an execution. Repeated replay runs are common for offline uses

like cyclic debugging, so these replay systems must guarantee that the replayed run

can be reproduced at will. This is accomplished either by logging complete informa-

tion during the original run [24], or by supplementing the original log during the first

replayed execution [67]. In contrast, online uses of replay need only replay the run a

fixed number of times (usually once).

Respec is designed for use in online scenarios. It seeks to minimize logging and

replay overhead so that it can be used in production settings with synchronous guar-

antees of fault tolerance or program error checking. Respec guarantees that replay

can be done any number times when a program is executing. If replay needs to be

repeated offline, Respec could store the log in permanent storage. The recorded log

would be sufficient for deterministically replaying race-free intervals offline. For offline

replay of racy intervals, a replay search tool [1, 67, 45] could be used.

2.3 Design

This section presents the design of Respec, which supports online, externally de-

terministic replay of a multithreaded program execution on a multiprocessor.

2.3.1 Overview

Respec provides deterministic replay for one or more processes. It replays at the

process abstraction by logging the results of system calls and low-level synchroniza-

tion operations executed by the recording process and providing those logged results

to the replayed process in lieu of re-executing the corresponding system calls and

synchronization operations. Thus, kernel activity is not replayed.

Figure 2.1 shows how Respec records a process and replays it concurrently. At the

start, the replayed process is forked off from the recorded process. The fork ensures
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Figure 2.1: An execution in Respec with two epochs.

deterministic reproduction of the initial state in the replayed process. Respec check-

points the recording process at semi-regular intervals, called epochs. The replayed

process starts and ends an epoch at exactly the same point in the execution as the

recording process.

During an epoch, each recorded thread logs the input and output of its system

calls. When a replayed thread encounters a system call, instead of executing it, it

emulates the call by reading the log to produce return values and address space modifi-

cations identical to those seen by the recorded thread. To deterministically reproduce

the dependencies between threads introduced by system calls, Respec records the to-

tal order of system call execution for the recorded process and forces the replayed

process to execute the calls in the same order.

To reproduce non-deterministic shared memory dependencies, Respec optimisti-

cally logs just the common user-level synchronization operations in GNU glibc. Rather
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than enforcing a total order over synchronization operations, Respec enforces a partial

order by tracking the causal dependencies introduced by synchronization operations.

The replayed process is forced to execute synchronization operations in an order that

obeys the partial ordering observed for the recording process. Enforcing the recorded

partial order for synchronization operations ensures that all shared memory accesses

are ordered, provided the program is race free.

Replay, however, could fail when an epoch executes an unlogged synchronization

or data race. Respec performs a divergence check to detect such replay failures. A

naive divergence check that compares the states of the two executions after every

instruction or detects unlogged races would be inefficient. Thus, Respec uses a faster

check. It compares the arguments passed to system calls in the two executions and, at

the end of each epoch, it verifies that the memory and resister state of the recording

and replayed process match. If the two states agree, Respec commits the epoch,

deletes the checkpoint for the prior epoch, and starts a new epoch by creating a new

checkpoint. If the two states do not match, Respec rolls back recording and replayed

process execution to the checkpoint at the beginning of the epoch and retries the

execution. If replay again fails to produce matching states, Respec uses a more

conservative logging scheme that guarantees forward progress for the problem epoch.

Respec also rolls back execution if the synchronization operations executed by the

replayed process diverge from those issued by the recorded process (e.g., if a replay

thread executes a different operation than the one that was recorded) since it is

unlikely that the program states will match at the end of an epoch.

Respec uses speculative execution implemented by Speculator [61] to support

transparent application rollback. During an epoch, the recording process is prevented

from committing any external output (e.g., writing to the console or network). In-

stead, its outputs are buffered in the kernel. Outputs buffered during an epoch are

only externalized after the replayed process has finished replaying the epoch and the

divergence check for the epoch succeeds.
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2.3.2 Divergence Checks

Checking intermediate program state at the end of every epoch is not strictly

necessary to guarantee externally deterministic replay. It would be sufficient to check

just the external outputs during program execution. However, checking intermediate

program state has three important advantages. First, it allows Respec to commit

epochs and release system output. It would be unsafe to release the system out-

put without matching the program states of the two processes because, it might be

prohibitively difficult to reproduce the earlier output if the recorded and replayed

processes diverge at some later point in time. For example, a program could contain

many unlogged data races, and finding the exact memory order to reproduce the

output could be prohibitively expensive. Second, intermediate program state checks

reduce the amount of execution that must rolled back when a check fails. Third, they

enable other applications such as fault tolerance, parallelizing reliability checks, etc.,

as discussed in Section 2.2. Though intermediate program state checks are useful,

they incur an additional overhead proportional to the amount of memory modified

by an application. Respec balances these tradeoffs by adaptively configuring the

length of an epoch interval. It also reduces the cost of checks by parallelizing them

and only comparing pages modified in an epoch.

Respec’s divergence check is guaranteed to find all instances when the replay is

not externally deterministic with respect to the recorded execution. But, this does

not mean that execution of an unlogged race will always cause the divergence check to

fail. For several types of unlogged races, Respec divergence check will succeed. This

reduces the number of rollbacks necessary to produce an externally deterministic

replay.

First, the replayed process might produce the same causal relationship between

the racing operations as in the recorded execution. Given that Respec logs a more

conservative order between threads (a total order for system calls and even the partial

order recorded for synchronization operations is stricter than necessary as discussed

in Section 2.4.3.1), the replayed process is more likely to reproduce the same memory
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A race that produces the same program state irrespective of the order between the racing
memory operations. Although the number of reads executed by the replayed process is dif-
ferent from the recorded process causing a transient divergence, the executions eventually
converge to the same program state.

order.

Second, two racing memory operations might produce the same program state,

either immediately or sometime in future, irrespective of the order of their execution.

This is likely if the unlogged race is a synchronization race or a benign data race [59].

For example, two racing writes could be writing the same value, the write in a read-

write race could be a silent write, etc. Another possibility is that the program states

in the two processes might converge after a transient divergence without affecting

system output. Note that a longer epoch interval would be beneficial for such cases,

as it increases the probability of checking a converged program state.

Figure 2.2 shows an epoch with an unlogged synchronization race that does not

cause a divergence check to fail. The second thread waits by iterating in a spin

loop until the first thread sets the variable x. Because there is no synchronization

operation that orders the write and the reads, the replayed process might execute a

different number of reads than the recorded process. However, the program states of

the replayed and recorded processes eventually converge, and both processes would

produce the same output for any later system call dependent on x. Thus, no rollback

is triggered.
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An execution with a data race that causes the replayed process to produce a memory
state different from that of the recorded process. The divergence check fails and the two
processes are rolled back to an earlier checkpoint.

However, for harmful races that should happen rarely, Respec’s divergence check

could trigger a rollback. Figure 2.3 shows an epoch with a harmful data race where

the writes to a shared variable y are not ordered by any logged synchronization oper-

ation. The replayed execution produces a memory state different from the recorded

execution. This causes the divergence check to fail and initiate a recovery process.

This example also shows why it is important to check the intermediate program states

before committing an epoch. If we commit an epoch without matching the program

states, the two executions would always produce different output at the system call

following the epoch. Yet, the replay system could not roll back past the point where

the executions diverged in order to retry and produce an externally deterministic

replay.

2.4 Implementation

2.4.1 Checkpoint and multithreaded fork

Rollback and recovery implementations often use the Unix copy-on-write fork

primitive to create checkpoints efficiently [32, 61]. However, Linux’s fork works

poorly for checkpointing multithreaded processes because it creates a child process

with only a single thread of control (the one that invoked fork). We therefore created

a new Linux primitive, called a multithreaded fork, that creates a child process with
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the same number of threads as its parent.

Not all thread states are safe to checkpoint. In particular, a thread cannot be

checkpointed while executing an arbitrary kernel routine because of the likelihood of

violating kernel invariants if the checkpoint is restored (this is possible because kernel

memory is not part of the checkpoint). For example, the restarted thread would

need to reacquire any kernel locks held prior to the checkpoint since the original

checkpointed process would release those locks. It would also need to maintain data

invariants; e.g., by not incrementing a reference count already incremented by the

original process, etc.

Consequently, Respec only checkpoints a thread when it is executing at a known

safe point: kernel entry, kernel exit, or certain interruptible sleeps in the kernel that

we have determined to be safe. The thread that initiates a multithreaded fork creates

a barrier on which it waits until all other threads reach a safe point. Once all threads

reach the barrier, the original thread creates the checkpoint, then lets the other

threads continue execution. For each thread, the multithreaded fork primitive copies

the registers pushed onto the kernel stack during kernel entry, as well as any thread-

level storage pointers. The address space is duplicated using fork’s copy-on-write

implementation.

Respec uses the multithreaded fork primitive in two circumstances: first, to create

a replayed process identical to the one being recorded, and second, to create check-

points of the recorded process that may later be restored on rollback. In the first

case, the recorded process simply calls the multithreaded fork primitive directly. In

the second case, the checkpointing code also saves additional information that is not

copied by fork such as the state of the file descriptors and pending signals for the

child process. The child process is not put on the scheduler’s run queue unless the

checkpoint is restored; thus, unless a rollback occurs, the child is merely a vessel

for storing state. Respec deletes checkpoints once a following checkpoint has been

verified to match for the recorded and replayed processes.

Respec checkpoints the recorded process at semi-regular intervals, called epochs. It

takes an initial checkpoint when the replayed process is first created. Then, it waits
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for a predetermined amount of time (the epoch interval) to pass. After the epoch

interval elapses, the next system call by any recorded thread triggers a checkpoint.

After the remaining threads reach the multithreaded fork barrier and the checkpoint

is created, all threads continue execution. The recorded process may execute several

epochs ahead of the replayed process. It continues until either it is rolled back (due

to a failed divergence check) or its execution ends.

Respec sets the epoch interval adaptively. There are two reasons to take a check-

point. First, a new checkpoint bounds the amount of work that must be redone on

rollback. Thus, the frequency of rollback should influence the epoch interval. Respec

initially sets the epoch interval to a maximum value of one second. If a rollback

occurs, the interval is reduced to 50ms. Each successful checkpoint commit increases

the epoch interval by 50ms until the interval reaches its maximum value. The sec-

ond reason for taking a checkpoint is to externalize output buffered during the prior

epoch (once the checkpoint is verified by comparing memory states of the recorded

and replayed process). To provide acceptable latency for interactive tasks, Respec

uses output-triggered commits [63] to receive a callback when output that depends

on a checkpoint is buffered. Whenever output occurs during an epoch, we reduce

that epoch’s interval to 50ms. If the epoch has already executed for longer than

50ms, a checkpoint is initiated immediately. Note that the actual execution time of

an epoch may be longer than the epoch interval due to our barrier implementation;

a checkpoint cannot be taken until all threads reach the barrier.

2.4.2 Speculative execution

The recorded process is not allowed to externalize output (e.g., send a network

packet, write to the console, etc.) until both the recorded and replayed processes

complete the epoch during which the output was attempted and the states of the

two processes match. A conservative approach that meets this goal would block the

recorded process when it attempts an external output, end the current epoch, and

wait for the replayed process to finish the epoch. Then, if the process states matched,
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the output could be released. This approach is correct, but can hurt performance by

forcing the recorded and replayed process to execute in lockstep.

A better approach is available given operating system support for speculative

execution. One can instead execute the recorded thread speculatively and either buffer

the external output (if it is asynchronous) or allow speculative state to propagate

beyond the recorded process as long as the OS guarantees that the speculative state

can be rolled back and that speculative state will not causally effect any external

output. We use Speculator [61] to do just that.

In particular, Speculator allows speculative state to propagate via fork, file sys-

tem operations, pipes, Unix sockets, signals, and other forms of IPC. Thus, additional

kernel data structures such as files, other processes, and signals may themselves be-

come speculative without blocking the recorded process. External output is buffered

within the kernel when possible and only released when the checkpoints on which

the output depends are committed. External inputs such as network messages are

saved as part of the checkpoint state so that they can be restored after a rollback.

If propagation of speculative state or buffering of output is not possible (e.g., if the

recorded thread makes an RPC to a remote server), the recorded thread ends the cur-

rent epoch, blocks until the replayed thread catches up and compares states, begins

a new epoch, and releases the output. We currently use this approach to force an

epoch creation on all network operations, which ensures that an external computer

never sees speculative state. Respec allows multiple pairs of processes to be recorded

and replayed independently, with the exception that two processes that write-share

memory must be recorded and replayed together.

2.4.3 Logging and replay

Once a replayed process is created, it executes concurrently with its recorded

process. Each recorded thread logs the system calls and user-level synchronization

operations that it performs, while the corresponding replayed thread consumes the

records to recreate the results and partial order of execution for the logged operations.
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Conceptually, there is one logical log for each pair of recorded and replayed

threads. Yet, for performance and security reasons, our implementation uses two

physical logs: a log in kernel memory contains system call information and a user-

level log contains user-level synchronization operations. If we logged both types of

operations in the kernel’s address space, then processes would need to enter kernel

mode to record or replay user-level synchronization operations. This would intro-

duce unacceptable overhead since most synchronization operations can be performed

without system calls using a single atomic instruction. On the other hand, logging all

operations in the application’s address space would make it quite difficult to guarantee

externally deterministic replay for a malicious application’s execution. For instance,

a malicious application could overwrite the results of a write system call in the log,

which would compromise the replayed process’s output check.

2.4.3.1 User-level logging

At user-level, we log the order of the most common low-level synchronization oper-

ations in glibc, such as locks, unlocks, futex waits, and futex wakes. The Posix thread

implementation in glibc consists of higher-level synchronization primitives built on

top of these lower-level operations. By logging only low-level operations, we reduce

the number of modifications to glibc and limit the number of operation types that

we log. Our implementation currently logs synchronization primitives in the Posix

threads, memory allocation, and I/O components of glibc. An unlogged synchroniza-

tion primitive in the rest of glibc, other libraries, or application code could cause the

recorded and replayed processes to diverge. For such cases, we rely on rollback to

re-synchronize the process states. As our results show, logging these most common

low-level synchronization points is sufficient to make rollbacks rare in the applications

we have tested.

However, for an application that heavily uses handcrafted synchronizations our

approach might lead to frequent rollbacks. A simple solution would be to require

programmers to annotate synchronization accesses so that we could instrument and

log them. In fact, recently proposed Java [52] and C++0x [13] memory models already
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require programmers to explicitly annotate synchronization accesses using volatile

and atomic keywords.

Respec logs the entry and exit of each synchronization operation. Each log record

contains the type of operation, its result, and its partial order with respect to other

logged operations. The partial order captures the total order of all the synchronization

operations accessing the same synchronization variable and the program order of the

synchronization operations executed in the same thread.

To record the partial order, we hash the address of the lock, futex, or other

data structure being operated upon to one of a fixed number of global record clocks

(currently 512). Each recorded operation atomically increments a clock and records

the clock’s value in a producer-consumer circular buffer shared between the recorded

thread and its corresponding replayed thread. Thus, recording a log record requires

at most two atomic operations (one to increment a clock and the other to coordinate

access to the shared buffer). This allows us to achieve reasonable overhead even for

synchronization operations that do not require a system call.

Using fewer clocks than the number of synchronization variables reduces the mem-

ory cost, and also produces a correct but stricter partial order than is necessary to

faithfully replay a process. A stricter order is more likely to replay the correct or-

der of racing operations and thereby reduce the number of rollbacks, as discussed in

Section 2.3.2.

When a replayed thread reaches a logged synchronization operation, it reads the

next log record from the buffer it shares with its recorded thread, blocking if necessary

until the record is written. It hashes the logged address of the lock, futex, etc.

to obtain a global replay clock and waits until the clock reaches the logged value

before proceeding. It then increments the clock value by one and emulates the logged

operation instead of replaying the synchronization function. It emulates the operation

by modifying memory addresses with recorded result values as necessary and returning

the value specified in the log. Each synchronization operation consumes two log

records, one on entry and one on exit, which recreates the partial order of execution

for synchronization operations.
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Respec originally used only a single global clock to enforce a total order over all

synchronization operations, but we found that this approach reduced replay perfor-

mance by allowing insufficient parallelism among replayed threads. We found that the

approach of hashing to a fixed number of clocks greatly increased replay performance

(by up to a factor of 2–3), while having only a small memory footprint. Potentially,

we could use a clock for each lock or futex, but our results to date have shown that

increasing beyond 512 clocks offers only marginal benefits.

2.4.3.2 Kernel logging

Respec uses a similar strategy to log system calls in the kernel. On system call

entry, a recorded thread logs the type of call and its arguments. For arguments that

point to the application’s address space, e.g., the buffer passed to write, Respec logs

the values copied into the kernel during system call execution. On system call exit,

Respec logs the call type, return value, and any values copied into the application

address space. When a replayed thread makes a system call, it checks that the call

type matches the next record in the log. It also verifies that the arguments to the

system call match. It then reads the corresponding call exit record from its log,

copies any logged values into the address space of the replayed process and returns

the logged return value.

Respec currently uses a single clock to ensure that the recorded and replayed

process follow the same total order for system call entrance and exit. This is con-

servative but correct. Enforcing a partial order is possible, but requires us to reason

about the causal interactions between pairs of system calls; e.g., a file write should

not be reordered before a read of the same data.

Using the above mechanism, the replayed process does not usually perform the

recorded system call; it merely reproduces the call’s results. However, certain system

calls that affect the address space of the application must be re-executed by the

calling process. When Respec sees log records for system calls such as clone and exit,

it performs these system calls to create or delete threads on behalf of the replayed

process. Similarly, when it sees system calls that modify the application address space
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such as mmap2 and mprotect, it executes these on behalf of the replayed process to

keep its address space identical with that of the recorded process. This replay strategy

does not recreate most kernel state associated with a replaying process (e.g., the file

descriptor table), so a process cannot transition from replaying to live execution. To

support such a transition, the kernel could deterministically re-execute native system

calls [24] or virtualized system calls [66].

When the replayed process does not re-execute system calls, we do not need to

worry about races that occur in the kernel code; the effect on the user-level address

space of any data race that occurred in the recorded process will be recreated. For

those system calls such as mmap2 that are partially re-created, a kernel data race

between system calls executed by different threads may lead to a divergence (e.g.,

different return values from the mmap2 system call or a memory difference in the

process address space). The divergence would trigger a rollback in the same manner

as a user-level data race.

Because signal delivery is a source of non-determinism, Respec does not interrupt

the application to deliver signals. Instead, signals are deferred until the next system

call, so that they can be delivered at the same point of execution for the recorded

and replayed threads. A data races between a signal handler and another thread is

possible; such races are handled by Respec’s rollback mechanism.

2.4.4 Detecting divergent replay

When Respec determines that the recorded and replayed process have diverged,

it rolls back execution to the last checkpoint in which the recorded and replayed pro-

cess states matched. A rollback must be performed when the replayed process tries

to perform an external output that differs from the output produced by the recorded

process; e.g., if the arguments to a write system call differ. Until such a mismatch

occurs, we need not perform a rollback. However, for performance reasons, Respec

also eagerly rolls back the processes when it detects a mismatch in state that makes

it unlikely that two processes will produce equivalent external output. In particu-
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lar, Respec verifies that the replayed thread makes system calls and synchronization

operations with the same arguments as the recorded thread. If either the call type

or arguments do not match, the processes are rolled back. In addition, at the end

of each epoch, Respec compares the address space and registers of the recorded and

replayed processes. Respec rolls the processes back if they differ in any value.

Checking memory values at each epoch has an additional benefit: it allows Respec

to release external output for the prior epoch. By checking that the state of the

recorded and the replayed process are identical, Respec ensures that it is possible

for them to produce identical output in the future. Thus, Respec can commit any

prior checkpoints, retaining only the one for which it just compared process state. All

external output buffered prior to the retained checkpoint is released at this time. In

contrast, if Respec did not compare process state before discarding prior checkpoints,

it would be possible for the recorded and replayed process to have diverged in such a

way that they could no longer produce the same external output. For example, they

might contain different strings in an I/O buffer. The next system call, which outputs

that buffer, would always externalize different strings for the two processes.

Respec leverages kernel copy-on-write mechanisms to reduce the amount of work

needed to compare memory states. Since the checkpoint is an (as-yet-unexecuted)

copy of the recorded process, any modifications made to pages captured by the check-

point induce a copy-on-write page fault, during which Respec records the address of

the faulted page. Similarly, if a page fault is made to a newly mapped page not

captured by the checkpoint, Respec also records the faulting page. At the end of

each epoch, Respec has a list of all pages modified by the recorded process. It uses

an identical method to capture the pages modified by a replayed process; instead of

creating a full checkpoint, however, it simply makes a copy of its address space struc-

tures to induce copy-on-write faults. Additionally, Respec parallelizes the memory

comparison to reduce its latency.

In comparing address spaces, Respec must exclude the memory modified by the re-

play mechanism itself. It does this by placing all replay data structures in a special re-

gion of memory that is ignored during comparisons. In addition, it allocates execution
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stacks for user-level replay code within this region. Before entering a record/replay

routine, Respec switches stacks so that stack modifications are within the ignored

region. Finally, the shared user-level log, which resides in a memory region shared

between the recorded and replayed process, is also ignored during comparisons.

2.4.5 Rollback

Rollback is triggered when memory states differ at the end of an epoch or when

a mismatch in the order or arguments of system calls or synchronization operations

occurs. Such mismatches are always detected by the replayed process, since it executes

behind the recorded process. Respec uses Speculator to roll back the recorded process

to the last checkpoint at which program states matched. Speculator switches the

process, thread, and other identifiers of the process being rolled back with that of the

checkpoint, allowing the checkpoint to assume the identity of the process being rolled

back. It then induces the threads of the recorded process to exit. After the rollback

completes, the replayed process also exits.

Immediately after a checkpoint is restored, the recorded thread creates a new

replayed process. It also creates a new checkpoint using Speculator (since the old one

was consumed during the rollback). Both the recorded and replayed threads then

resume execution.

Given an application that contains many data races, one can imagine a scenario

in which it is extremely unlikely for two executions to produce the same output. In

such a scenario, Respec might enter a pathological state in which the recorded and

replayed processes are continuously rolled back to the same checkpoint. We avoid

this behavior by implementing a mechanism that guarantees forward progress even

in the presence of unbounded data races. This mechanism is triggered when we roll

back to the same checkpoint twice.

During retry, one could use a logger that instruments all memory accesses and

records a precise memory order. Instead we implemented a simpler scheme. We ob-

serve that the recorded and replayed process will produce identical results for even
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a racy application as long as a single thread is executed at a time and thread pre-

emptions occur at the same points in thread execution. Therefore, Respec picks only

one recorded thread to execute; this thread runs until either it performs an operation

that would block (e.g., a futex wait system call) or it executes for the epoch interval.

Then, Respec takes a new checkpoint (the other recorded threads are guaranteed to

be in a safe place in their execution since they have not executed since the restoration

of the prior checkpoint). After the checkpoint is taken, all recorded threads continue

execution. If Respec later rolls back to this new checkpoint, it selects a new thread

to execute, and so on. Respec could also set a timer to interrupt user-level processes

stuck in a spin loop and use a branch or instruction counter to interrupt the replayed

process at an identical point in its execution; such mechanisms are commonly used in

uniprocessor replay systems [24]. Thus, Respec can guarantee forward progress, but

in the worst case, it can perform no better than a uniprocessor replay system. Fortu-

nately, we have not yet seen a pathological application that triggers this mechanism

frequently.

2.5 Summary

This chapter describes the Respec multiprocessor online replay system. Respec

ensures that two concurrent executions of the same process are externally determinis-

tic, which we define to mean that the two executions execute the same system calls in

the same order, and that the program state (values in the address space and registers)

of the two processes are identical at the end of each epoch of execution. As the next

chapter describes, Respec provides the basic infrastructure that DoublePlay extends

using uniparallelism to guarantee deterministic offline multiprocessor replay.
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CHAPTER 3

DoublePlay: parallelizing sequential logging and

replay

This chapter describes how uniparallel execution can be used to create a practi-

cal deterministic replay system for recording the execution of a production software

system running on commodity multiprocessors while guaranteeing offline replay.

3.1 Introduction

Deterministic replay systems record the execution of a hardware or software sys-

tem for later replay. As the execution is deterministic for the most part, deterministic

replay systems need only log and reproduce the non-deterministic events encountered

during recording.

The specific set of what non-deterministic events need to be recorded depends of

the abstraction at which deterministic replay operates. In this thesis, we are interested

in Operating System-level replay which requires that system level non-deterministic

events be captured. As OS-level non-deterministic events such as interrupts, system

calls and signals are rare, recording a uniprocessor execution is very efficient. If the

program is multithreaded, it is still the case that only one thread runs on the processor

at any instance so the order of shared memory updates can be recreated by logging

the schedule with which threads are context switched on the processor.

On multiprocessors, however, shared-memory accesses add a high-frequency source
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of nondeterminism, and logging and replaying these accesses can drastically reduce

performance. Many ideas have been proposed to reduce the overhead of logging

and replaying shared-memory, multithreaded programs on multiprocessors, but all

fall short in some way. Some approaches require custom hardware [100, 57, 55, 35].

Other approaches cannot replay programs with data races [73] or are prohibitively

slow for applications with a high degree of sharing [25]. Some recent approaches

provide the ability to replay only while the recording is in progress [46] or sacrifice

the guarantee of being able to replay the recorded execution without the possibility

of a prohibitively long search [67, 1, 98, 107].

In this chapter, we describe a new way to guarantee deterministic replay on

commodity multiprocessors. Our method combines the simplicity and low record-

ing overhead of logging a multithreaded program on a uniprocessor with the speed

and scalability of executing that program on a multiprocessor.

Our insight is that one can use the simpler and faster mechanisms of single-

processor record and replay, yet still achieve the scalability offered by multiple cores,

by using an additional execution to parallelize the record and replay of an applica-

tion. Our goal is for the single-processor execution to be as fast as a traditional

parallel execution, but to retain the ease-of-logging of single-processor multithreaded

execution.

We accomplish this goal by using uniparallelism to run a thread-parallel and an

epoch-parallel execution of the program concurrently. Unlike traditional approaches

which log the thread-parallel execution, we log the epoch-parallel execution. As the

epoch-parallel execution is constrained so all threads for a given epoch execute on

a single processor, we can reuse the well studied technique of uniprocessor replay.

Thus, rather than logging the order of shared-memory accesses, we need only log the

order in which threads are context-switched on the processor.

Uniparallelism scales effectively by running different epochs concurrently on sepa-

rate processors. As described in Section 1.1.1, we treat the thread-parallel execution

as a predictor of future state and checkpoint its execution at the start of each epoch.

Each of the epoch-parallel executions is started from a checkpoint and operates on
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its own copy of memory allowing multiple epochs to be logged in parallel.

This approach supports deterministic replay on commodity multiprocessors with-

out needing to log shared-memory accesses. Replaying multithreaded programs on

multiprocessors thus becomes as easy as replaying multithreaded programs on unipro-

cessors, while still preserving the speed and scalability of parallel execution. The main

overhead of this approach is the use of more cores to run two instances of the program

during logging.

To demonstrate these ideas, we implement a system called DoublePlay that can

take advantage of spare cores to log multithreaded programs on multiprocessors at

low overhead and guarantee being able to replay them deterministically.

The rest of this chapter is organized as follows. Sections 3.2 and 3.3 describe the

design and implementation of DoublePlay. Section 3.4 reports on how DoublePlay

performs for a range of client, server and scientific parallel benchmarks. Section ??

describes our future work, and Section 3.5 concludes.

3.2 Design

The goal of DoublePlay is to efficiently record the execution of a process or group

of processes running on a multiprocessor such that the execution can later be deter-

ministically replayed as many times as needed. DoublePlay is implemented inside

the Linux operating system, and its boundary of record and replay is the process ab-

straction. The operating system itself is outside the boundary of record and replay,

so DoublePlay records the results and order of system calls executed by the process

and returns this data to the application during replay.

Figure 3.1 shows an overview of how DoublePlay records process execution. Dou-

blePlay uses uniparallelism so it simultaneously runs two executions of the program

being recorded. The execution on the left is the thread-parallel execution and the one

on the right is the epoch-parallel execution. As described in Section 1.1, the thread-

parallel execution is checkpointed at the start of each epoch and the checkpoint is

used to start running the corresponding epoch in the epoch-parallel execution.
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Figure 3.1: Overview of DoublePlay record and replay

During recording, DoublePlay saves three items that are sufficient to guarantee

that the process execution can be replayed deterministically in the future. First,

DoublePlay records the initial state of the process at the start of recording. Second,

DoublePlay records the order and results of system calls, signals, and low-level syn-

chronization operations in GNU libc. Finally, DoublePlay records the schedule of

thread execution (i.e., when context switches between threads occur) of the epoch-

parallel execution. Note that since each epoch is executed on a single core in the

epoch-parallel execution, DoublePlay does not need to record the ordering or results

of any shared memory operations performed by multiple threads; the three items

above are sufficient to exactly recreate identical operations during replay.

The two executions can be viewed as follows. The epoch-parallel execution is

the actual execution of the program that is being recorded. Because each epoch of

the epoch-parallel execution runs on a single core, DoublePlay can use the simple

and efficient mechanisms for uniprocessor deterministic replay to record and replay

its execution. The thread-parallel execution allows the epoch-parallel execution to

achieve good performance and scale with the number of cores.
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Each checkpoint captures the state of the thread-parallel execution at an epoch

transition. DoublePlay compares the process state (i.e., register and memory values)

of the epoch-parallel run to the corresponding checkpoint at each epoch transition.

As described in Section 1.1, we reduce the change of divergence of the thread-

parallel and epoch-parallel executions by combining speculative execution [61] and

online replay [46]. The thread-parallel execution runs speculatively so all of its output

is buffered. We log a subset of the non-deterministic events in the thread-parallel

execution (e.g., the order of synchronization operations), and use this log to guide

the execution of the epoch-parallel execution down a similar path. At the end of each

epoch, we check that the epoch-parallel execution has arrived at a matching state

as the subsequent thread-parallel checkpoint. If yes, we commit the speculation and

release program output.

In case of divergence, we abort all epochs that started after the divergence and

initiate rollback. In Section 3.3.4, we discuss two different implementations for rolling

back execution state. The first is a simpler design that rolls both executions back

to the start of the epoch that diverged and restarts execution. The second is more

complicated, but guarantees forward progress; it rolls both executions back to the

state of the epoch-parallel execution at the divergence and restarts both executions

from that state.

At any subsequent time, DoublePlay can replay a recorded execution by (1) restor-

ing the initial state of the recorded process, (2) replaying it on a single core using the

logged system calls, signals, and synchronization operations, and (3) using the same

schedule of thread execution that was used during the epoch-parallel execution.

3.3 Implementation

DoublePlay uses Respec (see Chapter 2 during recording to coordinate the thread-

parallel and epoch-parallel executions. From the point of view of Respec, the thread-

parallel execution is the original execution and the epoch-parallel execution is the

cloned execution. DoublePlay makes several enhancements to the basic Respec in-
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frastructure in order to support offline replay, which we describe in the following

sections.

3.3.1 Enabling concurrent epoch execution

DoublePlay needs to run multiple epochs concurrently, while Respec runs only a

single epoch at a time. DoublePlay therefore makes multiple copies of the thread-

parallel execution by calling the multi-threaded fork primitive before starting the

execution of each individual epoch. This primitive creates a new process whose state

is identical to that of the thread-parallel execution at that point in its execution.

Each time a new process is created, DoublePlay does not let it begin execution, but

instead places it in an epoch queue ordered by process creation time.

The DoublePlay scheduler is responsible for deciding when and where each pro-

cess will run. Currently, the scheduler uses a simple policy that reserves half of the

available cores for the thread-parallel execution and half for the epoch-parallel execu-

tion. It uses the Linux sched setaffinity system call to constrain process execution to

specific cores. As long as cores remain available, the scheduler pulls the next process

from the epoch queue, allocates a core to it, constrains it to execute on only that

core, and wakes up the process. When the process completes executing the epoch, it

informs the scheduler that the core is now free, and the scheduler allocates the core

to the next process in the epoch queue.

Even though DoublePlay starts execution of the epochs in the epoch-parallel ex-

ecution in sequential order, there is no guarantee that epoch execution will finish in

order, since some epochs are much shorter than others. DoublePlay uses an adaptive

algorithm to vary epoch lengths. It sets the epoch length to 50ms after a rollback.

Each epoch without a rollback increases the epoch length by 50ms up to a maximum

of one second. Further, by leveraging output-triggered commits [63], DoublePlay

ends an epoch immediately if a system call requires synchronous external output and

no later than 50ms after asynchronous external output. Network applications have

much external output, so they have many short epochs even with few rollbacks.
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Even though epochs may finish out-of-order, DoublePlay ensures that they commit

or rollback in sequential order. When a epoch completes execution, DoublePlay

performs a divergence check by comparing its memory and register state to that of

the checkpoint associated with the next epoch. Once this check passes, DoublePlay

allows the process to exit and allocates its processor to another epoch. If all prior

epochs have been committed, DoublePlay also commits the epoch and discards the

checkpoint for that epoch. Otherwise, it simply marks the epoch as completed. After

all prior epochs commit, DoublePlay will commit that epoch.

In its strictest form of verification, DoublePlay considers a divergence check to

fail if (1) a thread in the epoch-parallel execution calls a different system call from

the one called by the corresponding thread in the thread-parallel execution, (2) the

two threads call different libc synchronization operations, (3) the two threads call

the same system call or synchronization operation, but with different arguments,

or (4) the registers or memory state of the two executions differ at the end of the

epoch. In Section 3.3.5, we describe how we loosen these restrictions slightly to reduce

unnecessary rollbacks.

When a divergence check fails, DoublePlay terminates all threads executing the

current epoch and any future epochs in the epoch-parallel execution, as well as all

threads of the thread-parallel execution, by sending them kill signals. However, epochs

started prior to the one that failed the divergence check may still be executing for the

epoch-parallel execution. DoublePlay allows these epochs to finish and complete their

divergence checks. If these checks succeed, DoublePlay restarts the thread-parallel

execution from the failed epoch. If a check for one of the prior epochs fails, it restarts

execution from the earliest epoch that failed.

3.3.2 Replaying thread schedules

DoublePlay guarantees deterministic offline replay by executing each epoch on a

single core using the same thread schedule that was used during recording by the

epoch-parallel execution. There are two basic strategies for providing this property.
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One strategy is to use the same deterministic scheduler during epoch-parallel execu-

tion and offline replay. The second strategy is to log the scheduling decisions made

during epoch-parallel execution and replay those decisions deterministically during

offline replay.

To implement these strategies, we added a custom scheduler layer that chooses

exactly one thread at a time to be run by the Linux scheduler and blocks all other

threads on a wait queue. When the DoublePlay scheduler decides to execute a new

thread, it blocks the previously-executing thread on the wait queue and unblocks

only the thread that it chooses to run. It would also have been possible to imple-

ment these strategies by modifying the Linux scheduler, but this would have required

instrumenting all scheduling decisions made in Linux.

To implement the first strategy (the deterministic scheduler), DoublePlay assigns

a strict priority to each thread based on the order in which the threads are cre-

ated. DoublePlay always chooses to run the highest-priority thread eligible to run

that would preserve the total ordering of system calls and the partial ordering of

synchronization operations.

To preserve system call ordering, the thread-parallel execution assigns a sequence

number to every system call entry or exit when it is added to the circular buffer. A

thread in the epoch-parallel execution only consumes an entry if it has a sequence

number one greater than the entry last consumed. Thus, a high-priority thread

whose next entry is several sequence numbers in the future must block until low-

priority threads consume the intervening entries. Similarly, DoublePlay uses multiple

sequence numbers to represent the partial order of user-level synchronization oper-

ations. Specifically, the address of each lock or futex accessed in a synchronization

operation is hashed to one of 512 separate counters, each of which represents a sep-

arate sequence number. Note that once a low-priority thread consumes an entry in

either buffer, a higher-priority thread may become eligible to run. In this instance,

DoublePlay immediately blocks the low-priority thread and unblocks the high-priority

thread. For any given set of system calls and synchronization operations, this algo-

rithm produces a deterministic schedule. That is, context switches always occur at
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the same point in each thread’s execution.

This first strategy is relatively easy to implement and requires no additional log-

ging. However, it is difficult to allow preemptions in this strategy, because doing so

would require inserting preemptions deterministically [64]. Allowing preemptions has

two benefits: it allows the uniparallel execution to reproduce any bug that manifests

on sequentially-consistent hardware, and it maintains liveness in the presence of spin

locks.

To allow preemptions, we implemented a second strategy for replaying thread

schedules deterministically, which is to log the preemptions that occur during epoch-

parallel execution and replay those decisions deterministically during offline replay.

In order to deterministically reproduce preemptions, we record the instruction pointer

and branch count of a thread when it is preempted during epoch-parallel execution.

The branch count is necessary because the instruction could be inside a loop, and we

must replay the preemption on the correct iteration [54]. These branch counts are

maintained per thread and obtained using hardware performance monitoring counters

configured to count branches executed in user-space [15]. We compensate for return

from interrupt (iret) branches, which would otherwise cause interrupts to perturb

the branch count non-deterministically. After recording the instruction pointer and

branch count, we unblock the next thread. In offline replay, we preempt a thread

when it reaches the recorded instruction pointer and branch count and allow the next

thread to run.

All deterministic replay systems perturb the execution that is being recorded, and

DoublePlay is no exception. Most deterministic replay systems perturb the execution

by significantly slowing events that may represent interprocessor communication (such

as shared memory accesses) and thereby changing the thread interleaving relative to

an unrecorded execution. DoublePlay avoids this type of perturbation; instead, it

perturbs the execution by timeslicing threads onto a single processor and controlling

preemptions. Being able to control and limit preemptions makes it easy to replay

the epoch-parallel execution; it also makes possible new strategies for detecting and

avoiding races [90]. However, DoublePlay’s execution strategy makes executions with
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numerous, fine-grained interleaving impossible without injecting numerous preemp-

tions. Thus, while DoublePlay with preemptive scheduling is able to produce any

execution that is possible with an unlogged, thread-parallel run 1, a particular exe-

cution may be more or less likely in DoublePlay than in an unlogged, thread-parallel

run. However, this does not limit applications of DoublePlay in production systems

where reproducibility is the required guarantee. When using deterministic replay for

debugging, DoublePlay and other deterministic replay systems change the likelihood

of encountering particular bugs. Users who want to systematically explore the entire

space of legal thread interleavings may want to combine deterministic replay with a

system for controlling preemptions, such as CHESS [56]. In fact, to orchestrate a

thread interleaving, CHESS executes each test run on a uniprocessor, which can be

accelerated by using DoublePlay’s thread-parallel execution.

3.3.3 Offline replay

To support offline replay, DoublePlay records the system calls and synchronization

operations executed during an epoch in a set of log files (for simplicity, DoublePlay

uses a separate log for each thread). After committing each epoch, DoublePlay marks

the entries belonging to that epoch as eligible to be written to disk. It then writes

the marked records out asynchronously while other epochs are executing. Note that

DoublePlay only has to record the results of synchronization operations and system

calls, since the arguments to those calls will be deterministically reproduced by any

offline replay process. This reduces log size considerably for system calls such as

write. Signals are logged with the system calls after which they are delivered.

If a rollback occurs, DoublePlay deallocates any records in the circular buffer

that occurred after the point in the thread-parallel execution to which it is rolling

back (these records cannot have been written to disk since the epoch has not yet

committed). It also ensures that all entries that precede the rollback point are written

1More precisely, DoublePlay with preemptive schedule can produce any execution that is possible
with an unlogged, thread-parallel run on a sequentially consistent memory system. Executions that
require a weaker consistency model between processors cannot occur in DoublePlay, since the epoch-
parallel execution runs all threads for an epoch on a single processor.
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to disk before restoring the checkpoint. The checkpoint includes the sequence numbers

at the point in execution where the checkpoint was taken, so subsequent entries will

have the correct sequence number. Thus, there is no indication of the divergence or

the rollback in the logs on disk.

DoublePlay saves the initial state of the process when recording began. To per-

form an offline replay, it starts from this initial copy. DoublePlay currently runs the

offline replay on a single processor and uses the scheduling algorithm described in

Section 3.3.2 to constrain the order of thread execution for the offline replay process.

When an offline replay thread executes a system call or synchronization operation,

DoublePlay returns the results recorded in its log file. The only system calls that

DoublePlay actually executes are ones that modify the process address space such as

mmap and clone. DoublePlay delivers recorded signals at the same point in process

execution that they were delivered during recording.

3.3.4 Forward recovery

We implemented two different rollback strategies in DoublePlay. Initially, we

decided to roll both executions back to the checkpoint at the beginning of the epoch

that failed the divergence check. Both executions would restart from this point. If the

divergence check again failed, we would roll back and try again. However, we saw some

executions in which a given epoch would roll back several times in a row before the

divergence check succeeded, presumably because it contained one or more frequently

diverging data races. Frequent rollbacks imposed a substantial performance overhead

for some applications; in the worst case, a program with many frequent races could

potentially even fail to make forward progress.

After consideration, we realized that this strategy reflected the incorrect view that

the thread-parallel execution was the run being recorded. In fact, the epoch-parallel

execution is the “real” execution being recorded — it is after all the one that is

being executed on a single core with a known thread schedule. The epoch-parallel

execution is also a perfectly legal execution that could have occurred on the thread-
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parallel execution with a particular set of relative speeds among the processors (since

we verify the ending state of the prior epoch matches the starting state of the next

epoch). The thread-parallel execution exists merely as a means for generating hints

about future process state so that multiple epochs can be executed in parallel.

Once we viewed the epoch-parallel execution as the one being recorded, it was clear

that the state of its execution at the time the divergence check fails is a valid execution

state that can be deterministically reproduced offline. Therefore, DoublePlay can use

the epoch-parallel process state at the time the divergence check fails as a checkpoint

from which to restart execution. We call this process forward recovery.

A complication arises because the kernel state is associated only with the thread-

parallel execution (because it is the process that actually executes all system calls),

while the correct process state is associated with the epoch-parallel execution. Dou-

blePlay detects when the thread-parallel and epoch-parallel executions diverge by

comparing the order and arguments of system calls, and the memory and registers

after each epoch. At the point of divergence, the (logical) kernel states of the two

executions are guaranteed to be identical because the executions have issued the same

sequence of system calls up to that point. Because the logical kernel states are iden-

tical, it is correct to merge the kernel state of the thread-parallel execution with the

memory and register state of the epoch-parallel execution.

DoublePlay logs an undo operation for each system call that modifies kernel state,

so that forward (and regular) recovery can roll back kernel state by applying the undo

operations. It can thus roll back the thread-parallel execution’s kernel state to the

system call at which a divergence was detected. It then makes the contents of the

address space of the thread-parallel execution equal to the contents of the address

space of the epoch-parallel execution at the point where the divergence check failed.

For instance, consider a process with a data race that causes the memory states

of the two executions to differ at the end of an epoch. DoublePlay’s divergence check

already compares the address space of the epoch-parallel execution with a checkpoint

of the thread-parallel execution. If any bytes differ, DoublePlay simply copies the

corresponding bytes from the epoch-parallel address space to the checkpoint’s. Dou-
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blePlay then restores the checkpoint to restart the thread-parallel execution; new

epoch-parallel executions will be spawned as it proceeds.

Forward recovery guarantees that DoublePlay makes forward progress, even when

a divergence check fails. All work done by the epoch-parallel execution up until the

divergence check, including at least one data race (the one that triggered the diver-

gence) will be preserved. In the worst case, every epoch may contain frequent data

races, and divergence checks might fail. However, even in this case, DoublePlay should

be able to approach the speed of uniprocessor replay since a single core can always

make progress. In the expected scenario where data races are relatively infrequent,

DoublePlay runs much faster.

3.3.5 Looser divergence checks

In our initial design for DoublePlay, we made the divergence check very strict

because we wanted to detect a divergence as soon as possible in order to minimize

the amount of work thrown away on a rollback. However, once we implemented

forward recovery, we decided that strict divergence checks might no longer be best.

As long as the epoch-parallel execution can continue its execution, any work that it

completes will be preserved after a rollback.

Even with forward recovery, it is still necessary to check memory and register state

at each epoch boundary. If the process state at the end of an epoch of the epoch-

parallel execution does not match the state from which the next epoch execution

starts, the epoch-parallel executions of all subsequent epochs are invalid and must be

squashed. However, strict divergence checks are not necessarily required within an

epoch.

As long as the external output of the epoch-parallel execution continues to match

the external output of the thread-parallel execution, then the system calls and syn-

chronization operations performed by the two executions can be allowed to diverge

slightly. On the other hand, if one of these operations can affect state external to

the process, then the state changes cannot be made visible to an external entity
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and all subsequent results from system calls and synchronization operations must be

consistent with the divergence.

Based on this observation, we modified DoublePlay to support three slightly looser

forms of divergence checks within an epoch. First, if a thread’s circular buffer contains

a system call with no effect outside that thread, but the epoch-parallel execution omits

that system call, we allow it to skip over the extra record in the buffer. Examples of

such system calls are getpid and nanosleep.

Second, if a thread executes a system call that produces output for an external

device such as the screen or network, the epoch-parallel execution is allowed to execute

the same system call with different output. Because DoublePlay buffers such output

in the kernel until after both executions have completed the system call, no external

entity observes this output prior to the execution of the call by the epoch-parallel

execution. Because that execution is logically the “real” execution, we simply release

its output, rather than the output from the thread-parallel execution, to external

observers. The observers therefore see the same output during recording and offline

replay. The output produced by the thread-parallel execution can be viewed as an

incorrect hint that is later corrected.

Third, if a thread executes a set of self-canceling synchronization operations or

system calls during the thread-parallel execution, but omits them in the epoch-parallel

execution, then all members of the set can be skipped. By self-canceling, we mean

two or more operations that when executed together have no effect on state external

to the thread. For example, lock and unlock operations for the same low-level lock

are a self-canceling pair. If the thread-parallel execution performed both operations,

then the epoch-parallel execution can achieve the same effect by performing neither.

Looser divergence checks have two benefits. First, the epoch parallel execution can

run longer before a rollback is needed. Second, a rollback can sometimes be avoided

all together when the divergence in process state is transitory. For example, one

application we tested (pbzip2) has a benign race in which one thread spins waiting

for another to set a value. Since the thread calls nanosleep periodically, the spin

loop executes different numbers of iterations in different executions. With strict
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divergence checks, such behavior leads to rollbacks. However, with looser divergence

checks, the epoch-parallel execution continues past this loop. While different calls

to nanosleep leave temporary differences on the thread’s stack, these differences

are soon overwritten by subsequent system calls. Thus, unless the epoch boundary

happens immediately after the spin loop, the divergence in program state heals and

no rollback is needed.

3.4 Evaluation

Our evaluation answers the following questions:

• What is the overhead of DoublePlay record and replay for common applications

and benchmarks?

• How often do applications roll back, and what is the effect of rollback on replay

time?

• Do our optimizations, namely forward recovery and loose replay, reduce over-

head for applications with data races?

3.4.1 Methodology

We used two different 8-core computers to parallelize our evaluation. The first has

a 2GHz 8-core Xeon processor with 3GB of RAM, while the second has a 2.66GHz

8-core Xeon with 4GB of RAM. Both computers run CentOS Linux version 5.3.

The kernel is a stock Linux 2.6.26 kernel, modified to include DoublePlay. We also

modified the GNU glibc library version 2.5.1 to support DoublePlay. We use our first

strategy for replaying thread schedules, i.e. the deterministic scheduler that runs

threads according to a strict priority.

We evaluated DoublePlay with 9 benchmarks: five parallel applications (pfscan,

pbzip2, aget, the Apache web server, and the mysql database server) and 4 SPLASH-

2 [99] benchmarks (fft, radix, ocean, and water). We report three values for each
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experiment: the original execution time of the application running on a stock system,

the execution time during DoublePlay recording, and the execution time for Double-

Play offline replay. The record time measures the time for both the thread-parallel

and epoch-parallel executions to finish.

DoublePlay periodically writes out the kernel and user-level replay logs to a file to

disk so they can be used for offline replay. We report the size of the log and include

the time taken to write the log out to disk in our recording cost.

We evaluate the benchmarks in the following manner. We use pbzip2 to compress a

311MB log file in parallel. We use pfscan to search in parallel for a string in a directory

with 952MB of log files. We extended the benchmark to perform 100 iterations of the

search so that we could measure the overhead of deterministic replay over a longer

run while ensuring that data is in the file cache (otherwise, our benchmark would

be disk-bound). Aget is a bandwidth-stealing application that takes advantage of

I/O parallelism by opening multiple connections to a remote server. We used aget

to retrieve a 21MB file over a local network from a server configured to limit each

connection to a maximum download bit rate of 1MB/sec. We tested Apache using ab

(Apache Bench) to simultaneously send 100 requests from eight concurrent clients over

a local network. We evaluate mysql using sysbench version 0.4.12. This benchmark

generates 3000 total database queries on a 9GB myISAM database; 2000 queries are

read-only, 600 are updates, and 400 are other types such as table lock and unlock.

Since mysql uses a separate worker thread to handle each client, we vary the number

of concurrent clients depending on the number of worker threads we are evaluating

in each trial.

For each benchmark, we vary the number of worker threads from one to eight for

the original execution. DoublePlay uses two cores per worker thread, so we measure

its performance with up to four worker threads. Many benchmarks have additional

control threads which do little work during the execution; we do not count these in

the number of threads. Pbzip2 uses two additional threads: one to read file data and

one to write the output; these threads are also not counted in the number of threads

shown. Unless otherwise mentioned, all results are the mean of five trials.
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3.4.2 Record and replay performance

Several factors may lead to performance overhead in DoublePlay. The dominant

potential source of overhead is DoublePlay’s use of two replicas, which will increase

runtime if there are insufficient spare processors to absorb this increased utilization.

In addition to processor utilization, the extra replica may contend for cache or mem-

ory bandwidth. Other sources of overhead include the need to log and replay syn-

chronization operations and system calls, wait for epochs to finish on all processors,

compare memory pages, and rollback in case of data races. DoublePlay also increases

the amount of memory used by the application. Each processor used in the epoch-

parallel execution operates on a copy-on-write replica of the address space. Thus,

the average instantaneous memory overhead of DoublePlay is the number of pages

written to during an epoch multiplied by the number of epochs running in parallel.

Table 3.1 shows the overall performance results for DoublePlay. The first three

columns show the application or benchmark executed, the number of worker threads

used, and the execution time of the application without DoublePlay. The next seven

columns give statistics about DoublePlay execution: the number of user-level syn-

chronization operations logged, system calls logged, epochs executed, memory pages

compared, size of the DoublePlay logs written to disk, the average number of roll-

backs that occurred per execution, and the time to record an execution. The next

column shows the overhead added by DoublePlay during recording, compared to two

configurations of the original application. The first overhead is relative to the original

application with the same number of application threads; this shows the overhead of

DoublePlay when it can take advantage of unused cores. The second overhead is rela-

tive to the original application with twice as many application threads; this shows the

overhead of DoublePlay relative to an application configured to use the same number

of cores as DoublePlay. The last column shows the offline replay execution time.

The availability of unused cores significantly impacts the overhead added by Dou-

blePlay during recording. If there are sufficient unused cores, DoublePlay adds little

overhead to the recorded application execution time.
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app worker original synch. system epochs pages log average record recording offline

threads time (s) ops. calls compared size rollbacks time (s) overhead time (s)

& stdev. (MB) per run & stdev. & stdev.

pfscan 1 193.93 (0.11)

2 100.99 (0.89) 23302 7528 101 1325 1.60 0 108.38 (0.87) 7% / 105% 193.73 (0.26)

3 69.01 (0.26) 22250 7531 60 868 1.55 0 78.91 (1.01) 14% / 112% 190.23 (2.88)

4 52.97 (0.18) 21575 7534 50 760 1.52 0 59.20 (0.92) 12% / 102% 188.19 (1.16)

6 37.18 (0.04)

8 29.26 (0.03)

pbzip2 1 91.65 (0.06)

2 46.08 (0.03) 26182 5481 46 573243 1.30 0 50.42 (0.41) 9% / 111% 92.88 (0.11)

3 31.45 (0.77) 26025 5207 31 574131 1.28 0 35.92 (0.09) 14% / 119% 92.94 (0.29)

4 23.94 (0.38) 26393 5066 23 562705 1.29 0 29.38 (0.43) 23% / 128% 92.85 (0.10)

6 16.38 (0.07)

8 12.90 (0.03)

aget 1 21.19 (0.04)

2 10.73 (0.02) 25243 33495 22 267 27.41 0.4 10.80 (0.06) 1% / 99% 0.28 (0.01)

3 7.22 (0.01) 21564 29022 20 263 26.54 0.2 7.31 (0.08) 1% / 102% 0.26 (0.01)

4 5.42 (0.01) 19618 27372 20 277 26.13 0.2 5.54 (0.15) 2% / 104% 0.25 (0.02)

6 3.62 (0.01)

8 2.71 (0.00)

apache 1 44.36 (0.13)

2 43.59 (0.27) 3756 3944 393 5264 0.14 0.1 43.95 (0.33) 1% / 10% 0.04 (0.00)

3 41.67 (0.35) 3682 3923 386 5285 0.14 1.0 42.74 (0.59) 3% / 11% 0.04 (0.00)

4 40.13 (0.27) 3636 3904 389 5383 0.14 1.7 40.75 (0.65) 2% / 9% 0.04 (0.00)

6 38.39 (0.41)

8 37.35 (0.61)

mysql 1 29.97 (0.08)

2 29.25 (0.09) 195903 46691 3035 195903 13.86 0 34.89 (0.23) 19% / 19% 0.53 (0.00)

3 29.28 (0.08) 199952 46792 3052 199952 14.07 0 34.98 (0.21) 19% / 19% 0.54 (0.00)

4 29.20 (0.08) 200598 46951 3069 200598 14.10 0.2 34.25 (1.39) 17% / 17% 0.55 (0.00)

6 29.33 (0.12)

8 29.35 (0.14)

fft 1 117.88 (0.19)

2 58.12 (0.06) 15689 3011 67 547619 0.90 0 68.72 (0.25) 18% / 106% 115.65 (0.11)

4 33.33 (1.08) 32242 3041 41 333837 1.77 0 43.47 (0.17) 30% / 131% 106.61 (0.15)

8 18.79 (0.15)

radix 1 177.84 (0.96)

2 89.10 (0.39) 4571 471 41 1295817 0.22 0 96.88 (0.15) 9% / 114% 177.58 (0.23)

4 45.28 (0.28) 11140 607 41 1313664 0.53 0 53.43 (0.23) 18% / 127% 177.73 (0.24)

8 23.50 (0.03)

ocean 1 56.67 (0.03)

2 28.19 (0.67) 108808 149 32 914104 4.88 0 46.09 (0.06) 63% / 222% 56.45 (0.03)

4 14.31 (1.35) 218788 222 27 745697 10.44 0 31.75 (0.26) 121% / 278% 53.24 (0.25)

8 8.39 (0.09)

water 1 154.57 (1.97)

2 81.70 (1.95) 5376008 21404 88 275484 207.33 0 89.00 (3.78) 9% / 106% 160.57 (3.63)

3 57.78 (1.25) 6756393 21741 65 279701 260.64 0 63.10 (1.45) 9% / 89% 160.60 (2.13)

4 43.15 (0.03) 8131526 21537 54 334339 313.81 0 56.32 (1.96) 31% / 92% 162.99 (1.05)

6 33.39 (0.52)

8 29.33 (0.22)

Results are the mean of five trials. Values in parentheses show standard deviations. Note that DoublePlay uses more cores
than the original execution during recording since it executes two copies of the application. The overhead column shows
the overhead of DoublePlay with respect to two configurations of the original application. The first overhead is relative to
the original application with the same number of application threads; this shows the overhead of DoublePlay when it can
take advantage of unused cores. The second overhead is relative to the original application with twice as many application
threads; this shows the overhead of DoublePlay relative to an application configured to use the same number of cores as
DoublePlay.

Table 3.1: DoublePlay performance

51



On average, 2 worker threads add about 15% overhead to the application run time.

The overhead gradually increases to 28% with 4 threads. For the five real applications,

the maximum overhead of any benchmark is 23% (for pbzip2 with 4 worker threads)

— the average overhead is only 7% with 2 worker threads and 11% with 4 worker

threads. Apache and aget are limited by the speed of our local network; mysql is

limited by disk I/O, and the remaining benchmarks are CPU bound. DoublePlay

shows more overhead for the SPLASH-2 benchmarks, generally because they perform

many more synchronization operations per second and dirty memory pages more

rapidly, which increases the number of pages compared. As shown in the Respec

paper [46], Ocean is a challenging benchmark as most of its overhead derives from

sharing the limited memory bandwidth and processor caches between the recorded

and online replay processes. As expected, Ocean incurs approximately the same

overhead with DoublePlay as it incurs with Respec.

If all cores can be productively used by the application, then DoublePlay incurs

much higher overhead because it uses twice as many cores, executing each benchmark

twice during recording. When compared to an application configured to use the same

number of cores as DoublePlay, DoublePlay adds approximately 100% overhead to

CPU-bound applications that can scale to eight cores (this does not affect Apache,

which is network bound, or mysql, which is disk bound). For comparison, iDNA adds

an average of 1100% overhead [11], and SMP-ReVirt adds 10-600% overhead [25].

SMP-ReVirt does not incur DoublePlay’s overhead of executing the application twice,

but SMP-ReVirt does incur high overhead for applications that share data frequently

(including false sharing due to tracking ownership at page granularity) because of the

cost of memory protection faults. DoublePlay also scales well up to 8 cores (e.g., its

average overhead across all benchmarks without spare cores is 99% with 2 threads and

110% with 4 threads), while SMP-ReVirt does not scale well for some applications

even up to 4 cores.

Thus, DoublePlay is well suited for three settings that require deterministic replay

(e.g., for forensic or auditing purposes): (1) applications which cannot scale effectively

to use all cores on the machine, (2) sites that are willing to dedicate extra cores to
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provide deterministic replay, and (3) applications that share data frequently between

cores (for which DoublePlay is the lowest overhead solution). In particular, we believe

that many machines will have unused cores that DoublePlay can take advantage of

because the number of cores per computer is expected to grow exponentially, and

scaling applications to use these extra cores is notoriously difficult. In such settings

with spare cores, DoublePlay incurs only modest overhead.

For CPU-bound benchmarks, DoublePlay’s offline replay takes approximately the

same amount of time as a single-threaded execution of the application. This is due

to our current implementation, which limits offline replay to executing on one core.

If we used two executions to accelerate replay in the same way we accelerate record-

ing, the offline replay time should be approximately the same as the record time for

these benchmarks. Aget runs much faster during offline replay than during record-

ing because it obtains its data from sequential disk reads rather than from network

receives. Apache runs even faster because it uses Linux’s zero-copy sendfile system

call: thus, no data is copied into or out of its address space on replay. Mysql also

benefits from sequential disk I/O.

DoublePlay’s offline replay performance is a substantial improvement over sys-

tem such as PRES and ODR that log partial information during recording, then

search during replay for an execution that matches the original execution. In its

low-recording overhead mode (SI-DRI), ODR’s replay time is reported as ranging

from 300 to over 39000 times the original application time, with some replays not

completing at all. During replay, PRES records the global order of accesses to shared

variables from different threads (called the RW scheme) to guide its search for an

execution that matches the recorded run. This is reported to have an overhead from

28% (for network applications to several hundred times (for CPU-bound applications

and benchmarks) the original execution time. This additional work is necessary to

guarantee that the produced replay can be reproduced at will. Further, PRES may

try several executions before finding a matching one. When PRES records synchro-

nization operations and system calls (similar to DoublePlay), it takes 1-28 tries to

replay most runs, and is unable to replay one run within 1000 tries. Thus, Double-
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app threads rollbacks rollbacks execution execution relative

w/o with time(s) & stdev. time(s) & stdev. reduction in

opt. opt. w/o opt. with opt. exec. time

pbzip2 2 2.2 0 53.32 (2.61) 50.42 (0.41) 6%

3 1.2 0 38.54 (3.77) 35.92 (0.09) 8%

4 0.8 0 32.59 (3.04) 29.38 (0.43) 13%

aget 2 0.4 0.4 10.80 (0.06) 10.84 (0.12) 0%

3 0.2 0.2 7.31 (0.08) 7.30 (0.02) 0%

4 0.2 0.2 5.54 (0.15) 5.57 (0.03) 0%

apache 2 0.1 0.1 43.95 (0.33) 43.81 (0.31) 0%

3 1.0 1.0 42.74 (0.59) 41.78 (0.48) 2%

4 1.7 1.7 40.75 (0.65) 41.09 (1.28) -1%

mysql 4 0.2 0.2 34.25 (1.39) 34.25 (1.39) 0%

Table 3.2: Benefit of forward recovery and loose replay.

Play’s contribution compared to these prior systems is (1) to guarantee that a replay

can be produced in a bounded amount of time, and (2) to substantially lower relative

replay time. The main cost of these contributions is that DoublePlay uses twice as

many cores during recording to run two executions of CPU-bound applications.

3.4.3 Forward recovery and loose replay

Of the nine benchmarks we used in our evaluation, four (pbzip, aget, Apache,

and mysql) experience application-level benign data races. For instance, pbzip2 has

a benign data race in which an output thread spins waiting for a worker thread to set

a value. Aget has a benign race where a thread reads and displays a progress counter

without grabbing a lock. Apache has a benign race in which worker threads increment

an idle counter in a spin loop with an atomic compare-and-swap implemented using

low-level locks. If two worker threads contend, one may experience an additional

iteration of the spin loop, which leads to an additional paired lock-unlock sequence.

As shown in Table 3.2, DoublePlay’s loose replay optimization reduces the fre-

quency of rollbacks for pbzip2 — in fact, all rollbacks were eliminated during our

evaluation. Eliminating rollbacks improves execution time from 6% of the original

execution time with two threads to 13% with four threads. In all runs during our

evaluation, the loose replay optimization was able to continue the execution of the
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epoch-parallel execution past the spin loop. While extra system calls create a tran-

sient difference in stack values, the process states soon converge when the thread

overwrites those values during subsequent function calls.

For aget and Apache, no rollbacks were avoided. Although loose replay allows

epoch-parallel execution to proceed when aget outputs a different progress value to the

console, the output values usually remain in a buffer in libc at the end of the epoch,

which is detected as a divergence. The data races in Apache lead to complicated

divergences in synchronization operations and system calls for which loose replay

cannot be used. Further, for these two applications, forward recovery does not have a

measurable performance impact. For aget, the reason is that DoublePlay saves a copy

of data received over the network until the epoch that received the data is committed

(otherwise, the received data would be lost). On a rollback, the subsequent execution

reads the copied data from memory rather than the network, so those system calls

are much faster. Apache also benefits from this behavior, but it also takes frequent

epochs because it sends external output over the network quite often. Consequently,

the amount of work preserved by a forward recovery is very small. Since divergence

check failures are relatively infrequent, the effect of forward recovery on the execution

time of the two applications is negligible. We observed only one rollback during the

mysql benchmarks; as with Apache, this rollback could not be avoided due to a

complicated divergence, but the performance impact was negligible due to frequent

epochs. Thus, while forward recovery and loose replay are often successful in reducing

rollbacks and preserving work done during a failed epoch, they appear to be most

beneficial for CPU-bound applications with longer epoch durations.

3.5 Conclusion

Providing efficient deterministic replay for multithreaded programs running on

multiprocessors is challenging. While many prior solutions have been proposed, all

fall short in some way. For instance, they may require custom hardware support, be

prohibitively slow for many applications, or not guarantee that a replayed execution
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can be produced in a reasonable amount of time. Compared to these prior systems,

DoublePlay’s contribution is to provide guaranteed software-only record and replay

with a minimal overhead to execution time, at the cost of using more cores. The

key insight in DoublePlay is that one can use the simpler and faster mechanisms of

single-processor record and replay, yet still achieve the scalability offered by multiple

cores, by using an additional execution to parallelize the record and replay of an

application. On machines with spare cores, this insight allows DoublePlay to record

application execution with only an average of 15% overhead with 2 threads and 28%

with 4 threads.

56



CHAPTER 4

Detecting and surviving data races using

complementary schedules

This chapter describes how uniparallel execution can be used to build a system

that can detect data races in multithreaded programs running on commodity multi-

processors and also mask the harmful effects of most data race bugs and ensure the

forward progress of production software systems.

4.1 Introduction

Developing reliable multithreaded programs that run reliably on commodity mul-

tiprocessors is a challenging goal. One fundamental problem that exacerbates this

challenge is the occurrence of bugs due to data races. A data race occurs when two

threads concurrently access the same memory location and one of them performs a

write, without being ordered by synchronization operations. As most data race bugs

result from rare thread interleavings, they are difficult to identify during development

and can cause crashes, data loss and other program errors at runtime.

To help address the problem of data race bugs, we propose running multiple

replicas of a program using uniparallelism and forcing two of these replicas to follow

complementary schedules. Complementary schedules are a set of replica thread sched-

ules crafted to ensure that replicas diverge only if a data race occurs and to make it

very likely that harmful data races cause divergences. First, we use uniparallelism
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to split a program into epochs and run each epoch twice as distinct epoch-parallel

replicas. Next, we run a single thread-parallel execution that provides a log of non-

deterministic events (e.g., system calls) and a log of the happens-before ordering of

synchronization operations. The two epoch-parallel executions of an epoch are iden-

tical to the thread-parallel execution in that all three replicas operate on the same

program input. Additionally, the epoch-parallel replays are constrained to a single

processor and observe the same happens-before ordering and non-deterministic events

logged by the thread-parallel execution.

The only difference in the epoch-parallel replicas is that each executes a unique

complementary schedule. Specifically, the current thread in each epoch-parallel replica

runs non-preemptively until it blocks on a synchronization operation or system call;

the next thread to run on the processor is carefully selected from the set of eligible

threads with the goal that the epoch-parallel replicas execute two instructions in dif-

ferent threads that are not ordered by a synchronization operation or system call, in

opposite orders. By having two replicas execute racing instructions in opposite order,

we hope to cause at least one replica to trigger the data race bug while the other

replica avoids the harmful ordering.

We realize our design in Frost, a new system that combines uniparallelism and

complementary schedules to achieve two goals: detecting data races at low overhead

and increasing availability by masking the effects of harmful data races at runtime.

Frost introduces a new method to detect races: outcome-based data-race detection.

While traditional dynamic data race detectors work by analyzing the events executed

by a program, outcome-based race detection works by detecting the effects of a data

race by comparing the states of different replicas executed with complementary sched-

ules. Outcome-based race detection achieves lower overhead than traditional dynamic

data race detectors, but it can fail to detect some races, e.g., data races that require a

preemption to cause a failure and that also generate identical correct outcomes using

multiple non-preemptive schedules (see Section 4.3.4 for a full discussion). However,

in our evaluation of real programs, Frost detects all potentially harmful data races

detected by a traditional data race detector. While prior work [59] compared the
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outcomes of multiple orderings of instructions for known data races in order to clas-

sify those races as either benign or potentially malign, Frost is the first system to

construct multiple schedules specifically to detect and survive unknown data races.

Frost thus faces the additional challenge of constructing useful schedules without first

knowing which instructions race. A benefit that Frost inherits from the prior classi-

fication work is that it automatically filters out most benign races that are reported

by a traditional dynamic race detector.

For production systems, Frost moves beyond detection to also diagnose and survive

harmful data races. Since a concurrency bug due to a data race manifests only under

a specific order of racing memory accesses, executing complementary schedules makes

it extremely likely that one of the replicas survives the ill effects of a data race. Thus,

once Frost detects a data race, it analyzes the outcomes of the various replicas and

chooses a strategy that is likely to mask the failure, such as identifying and resuming

execution from the correct replica or creating additional replicas to help identify a

correct replica.

Note that Frost’s approach of constraining epoch-parallel replicas to run threads

on a single processor without preemptions has an implicit benefit: it prevents bugs

that require preemptions (e.g., atomicity violations) from manifesting, thereby in-

creasing availability. However, since running all threads on a single processor prevents

a replica from scaling to take advantage of multiple cores, Frost also uses the thread-

parallel execution to generate checkpoints of future states at each epoch boundary so

multiple epochs can be run on separate cores simultaneously.

Frost helps address the problem of data races in several scenarios. During testing,

it can serve as a fast dynamic data race detector that also classifies races as benign

or potentially harmful in the observed execution. For a beta or production system

with active users, both detection and availability are important goals. Frost masks

many data race failures while providing developers with reports of data races that

could lead to potential failures.

Frost makes the following contributions. First, it proposes the idea of comple-

mentary schedules, which guarantees that replicas do not diverge in the absence of
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data races and makes it very likely that replicas do diverge in the presence of harmful

data races. Second, it shows a practical and low-latency way to run two replicas with

complementary thread schedules by using a third replica to accelerate the execution

of the two complementary replicas. Third, it shows how to analyze the outcomes of

the three replicas to craft a strategy for surviving data races. Fourth, it introduces a

new way to detect data races that has lower overhead than traditional dynamic data

race detectors.

We evaluate the effectiveness of complementary thread schedules on 11 real data

race bugs in desktop and server applications. Frost detects and survives all these bugs

in every trial. Frost’s overhead is at worst 3x utilization to run three replicas, but it

has only 3–12% overhead given spare cores or idle CPU cycles to run all replicas.

4.2 Complementary schedules

The key idea in Frost is to execute two replicas with complementary schedules

in order to detect and survive data race bugs. A data race is comprised of two in-

structions (at least one of which is a write) that access the same data, such that the

application’s synchronization constraints allow the instructions to execute in either

order. For harmful data races, one of these orders leads to a program error (if both

orders lead to an error, then the root cause of the error is not the lack of synchro-

nization). We say that the order of two instructions that leads to an error is a failure

requirement. In general, a data race bug may involve multiple failure requirements,

all of which must be met for the program to fail.

As an example, consider the simple bug in Figure 4.1(a). If thread 1 sets fifo to

NULL before thread 2 dereferences the pointer, the program fails. If thread 2 accesses

the pointer first, the program executes correctly. The arrow in the figure shows the

failure requirement. Figure 4.1(b) shows a slightly more complex atomicity violation.

This bug has two failure requirements; i.e., both data races must execute in a certain

order for the failure to occur.

To explain the principles underlying the idea of complementary schedules, we first
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Thread 1

void main() {                                   void *consumer (void *q) {

    ...                                                         ...

    �fo = NULL;

                                                                pthread_mutex_unlock (�fo->mut);

    ...                                                         ...

}                                                          }

(a) Type Ι bug

Thread 2

Thread 1

void  innobase_mysql_print_thd(...) {                bool do_command (...) {

      if (thd->proc_info) {                                                   ...

              ... 

                                                                                               thd->proc_info = 0;

             fputs (thd->proc_info, f );                                  ...

      }                                                          

}                                                                                      }

(b) MySQL #3596:  Type ΙΙ bug

Thread 2

Figure 4.1: Data race examples

consider an interval of execution in which at most one data race bug occurs and

which contains no synchronization operations that induce an ordering constraint on

the instructions (we call such an interval synchronization-free). For such regions,

complementary schedules provide hard guarantees for data race detection and sur-

vival. We discuss these guarantees in this section. However, real programs do not

consist solely of such regions, so in Section 4.3.4, we discuss how generalizing the

range of scenarios affects Frost’s guarantees.

The goal of executing two replicas with complementary schedules is to ensure

that one replica avoids the data race bug. We say that two replicas have perfectly

complementary schedules if and only if, for every pair of instructions a and b executed

by different threads that are not ordered by application synchronization, one replica

executes a before b, and the other executes b before a.

Since a failure requirement orders two such instructions, use of perfectly com-
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CPU 0

a0

b0

a1

PreemptionPreemption

PreemptionPreemption

Execution of two threads is interleaved on a single core. It is not feasible to construct a
completely complementary schedule for this particular execution.

Figure 4.2: Preemption scenario

plementary schedules guarantees that for any failure requirement, one replica will

execute a schedule that fulfills the requirement and one will execute a schedule that

does not. This guarantees that one of the two replicas does not experience the failure.

Eliminating preemptions is essential to achieving perfectly complementary sched-

ules. To understand why this is so, consider a canonical schedule with a preemption

as shown in Figure 4.2: thread A executes an instruction a0, then thread B preempts

thread A and executes an instruction b0, then thread A resumes and executes a1. It is

impossible to generate a perfectly complementary schedule for this schedule. In such

a schedule, a1 would precede b0, and b0 would precede a0. However, this would require

a1 to precede a0, which would violate the sequential order of executing instructions

within a thread.

In contrast, without preemptions, constructing a perfectly complementary sched-

ule for two threads in a synchronization-free interval is trivial—one schedule simply

executes all of thread A’s instructions before thread B’s instructions; the other sched-

ule executes all of thread B’s instructions before thread A’s instructions. For more

than two threads, one schedule executes the threads in some order, and the other

executes the threads in the reverse order.

Thus, to guarantee that at least one replica avoids a particular data race bug in a

synchronization-free interval, we execute two replicas, use non-preemptive scheduling

for these replicas, and reverse the scheduling order of thread execution between the

two replicas.
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The above algorithm provides even stronger properties for some common classes

of data race bugs. For instance, consider the atomicity violation in Figure 4.1(b).

Because the failure requirements point in opposite directions, each of the two replica

schedules will fulfill one constraint but not the other. Since failure requires that both

requirements be fulfilled, the proposed algorithm guarantees that both replicas avoid

this failure.

In general, given n threads, we must choose an arbitrary order of those threads

for one schedule and reverse that order in the complementary schedule. Visualizing

the threads arrayed according to the order chosen, if all failure requirements point in

the same direction, then the proposed algorithm guarantees that one replica avoids

the failure. In the rest of the paper, we will refer to bugs in this category as Type I. If

any two failure requirements point in the opposite direction, the proposed algorithm

provides the stronger guarantee that both replicas avoid the failure. We will refer to

bugs in this category as Type II.

4.3 Frost: Design and implementation

Frost uses complementary schedules to detect and survive data races. This section

describes several challenges, including approximating the ideal behavior for intervals

of execution with synchronization operations and multiple bugs, scaling performance

via multicore execution, implementing heuristics for identifying correct and faulty

replicas. It concludes with a discussion of specific scenarios in which Frost can fail

to detect or survive races and the steps Frost takes to minimize the effect of those

scenarios.

4.3.1 Constructing complementary schedules

Frost divides the execution of a program into time-slices called epochs. For each

epoch, it runs multiple replicas and controls the thread schedule of each to achieve

certain properties.

The first property that Frost enforces is that each replica follows the same partial
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order of system calls and synchronization operations. In other words, certain pairs of

events such as lock and unlock on a mutex lock, signal and wait on a condition

variable, or read and write on a pipe represent a happens-before order of events in

the two threads; e.g., events following the lock in one thread cannot occur until after

the other thread calls unlock. By ensuring that all threads have the same happens-

before order of such events, Frost guarantees that two replicas can diverge in output

or final memory and register state only if a data race occurs within the epoch [73].

Further, all replicas will encounter the same pair of racing instructions.

The second property that Frost tries to achieve is that two replicas have thread

schedules that are as complementary as possible, given that the first property has to

be upheld. As discussed in Section 4.2, this property is intended to ensure that at

least one of the two replicas with complementary thread schedules does not fail due

to a particular data race.

Frost must execute a replica to observe the happens-before order of synchroniza-

tion operations and system calls before it can enforce an identical order over the same

operations in other replicas. Frost observes this order by using a modified glibc and

Linux kernel that maintain a vector clock for each thread and for synchronization

entities such as locks and condition variables. Each value in the vector represents a

thread’s virtual time. Synchronization events and system calls increment the calling

thread’s value in its local vector clock. Operations such as unlock set the vector

clock of the lock to the maximum of its previous value and the vector clock of the

unlocking thread. Operations such as lock set the vector clock of the locking thread

to the maximum of its previous value and the vector clock of the lock. Similarly, we

modified kernel entities to contain vector clocks and propagate this information on

relevant system calls. For instance, since system calls such as map and munmap do

not commute, Frost associates a vector clock with the address space of the process to

enforce a total order over address-space-modifying system calls such as mmap.

When the first replica executes, Frost logs the vector clocks of all system calls

and synchronizations in a log. Other replicas read the logged values and use them to

follow the same happens-before order. Each replica maintains a replay vector clock
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that is updated when a thread performs a synchronization operation or system call. A

thread may not proceed with its next operation until the replay vector clock matches

or exceeds the value logged for the matching operation by the first replica. This

ensures, for example, that one thread does not return from lock until after another

thread calls unlock if there was a happens-before order between the two operations

in the original replica. More than one replica can execute an epoch concurrently;

however, all other replicas typically are slightly behind the first replica since they

cannot execute a synchronization operation or system call until the same operation

is completed by the first replica.

Given a happens-before order, Frost uses the following algorithm to construct

schedules for two replicas that complement each other as much as possible without

modifying the application. Frost chooses an order over all threads within a replica

and assigns the reverse order to those threads in a second replica. For example, if

three threads are ordered [A, B, C] in one replica, they are ordered [C, B, A] in

the other. Frost executes all threads within each replica on a single core so that

two threads do not run simultaneously. A thread is eligible to run as long as it is

not waiting to satisfy a happens-before constraint and it has not yet completed the

current epoch. The Frost kernel always runs the eligible thread that occurs first in

its replica’s scheduling order. A thread runs until it reaches the end of the epoch,

it blocks to enforce a happens-before constraint, or a thread earlier in the replica’s

scheduling order becomes eligible to run.

4.3.2 Scaling via uniparallelism

As described so far, the use of complementary schedules does not allow a program

to scale to use multiple cores because all threads of a replica must run sequentially

on a single core. If multiple threads from a replica were to concurrently execute two

instructions on different cores, those two instructions cannot be ordered by a happens-

before constraint and are thus potentially racing. In this case, the two replicas should

execute these instructions in different orders. However, determining the order of these
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Figure 4.3: Frost: Overview

instructions and enforcing the opposite order on the other replica implies that the

instructions execute sequentially, not concurrently.

Frost uses uniparallelism [91] to achieve scalability. Uniparallelism is based on the

observation there exist at least two methods to scale a multithreaded program to run

on multiple cores. The first method, termed thread parallelism, runs multiple threads

on different cores — this is the traditional method for exploiting parallelism. The

second method, termed epoch parallelism, runs multiple time-slices of the application

concurrently.

Uniparallel execution runs a thread-parallel and one or more epoch-parallel execu-

tions of a program concurrently. It further constrains each epoch-parallel execution so

that all its threads execute on a single core. This strategy allows the epoch-parallel ex-

ecution to take advantage of the properties that come with running on a uniprocessor.

Our original use of uniparallelism in a system called DoublePlay provided efficient

software-only deterministic replay [91]. Frost is built on a modified version of the

DoublePlay infrastructure, but it uses uniparallelism for a different purpose, namely

the execution of replicas with complementary schedules and identical happens-before

constraints.

As shown in Figure 4.3, to run epochs in parallel, a uniparallel execution generates

checkpoints from which to start each epoch. It must generate these checkpoints early

enough to start future epochs before prior ones finish. Thus, the thread-parallel
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execution runs ahead of the epoch-parallel execution and generates checkpoints from

which to start future epochs. Multiple epochs execute in parallel, in a manner similar

to a processor pipeline — this allows an epoch-parallel execution to scale with the

number of available cores.

In summary, Frost executes three replicas for each epoch: a thread-parallel replica

that is used to record the happens-before constraints for the epoch and generate

checkpoints to speculatively parallelize the other two replicas, and two epoch-parallel

replicas with complementary schedules. Replicas use copy-on-write sharing to reduce

overall memory usage. Frost uses online deterministic replay [46] to ensure that all

replicas receive the same non-deterministic input and to enforce the same happens-

before constraints in all replicas. It logs the result of all system calls and synchro-

nization operations as the thread-parallel replica executes. When the epoch-parallel

replicas later execute the same operations, Frost’s modified kernel and glibc library

do not re-execute the operations but rather return the logged values. Signals are also

logged during the thread-parallel execution and delivered at the same point in the

epoch-parallel execution. Because Frost logs and replays all forms of non-determinism

except data races, only data races can cause replicas to diverge. Online replay has

an additional performance benefit — the epoch-parallel execution does not block on

I/O since the results have already been obtained by the thread-parallel execution.

When replicas diverge during an epoch, Frost chooses one of several actions. First,

it may decide to accept the results of one of the replica executions, which we refer

to as committing that replica. If it chooses to commit the thread-parallel replica, it

simply discards the checkpoint taken at the beginning of the epoch. If it chooses to

commit an epoch-parallel replica, and the memory and register state of that replica

is different from that of the thread-parallel replica, then subsequent epochs in the

pipeline are invalid. Effectively, the checkpoint from which the execution of the next

epoch began was an incorrect hint about the future state of the application. Frost

first discards the checkpoint taken at the beginning of the committed epoch. Then, it

quashes all epochs subsequent to the one just committed and begins anew with fresh

thread-parallel and epoch-parallel replicas using the state of the committed replica.
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Frost may also choose to execute additional replicas to learn more about the epoch

that led to the divergence. It starts additional thread-parallel and/or epoch-parallel

executions from the checkpoint taken at the beginning of the epoch that led to the

divergence — we refer to this process as rolling back the epoch. Frost could later

decide to commit one of the original replicas or one of the new ones, though currently

only new replicas are ever committed.

Since replicas may produce different output, Frost does not externalize any output

until it decides which replica to commit. It uses speculative execution (implemented

via Speculator [61]) to defer the output. This leads to a tradeoff among correctness,

overhead, and output latency when choosing how long an epoch should last. Longer

epochs offer better correctness properties, as discussed in Section 4.3.4.3, and also

lower overhead. Shorter epochs yield lower latency for output. Frost balances these

constraints by using an adaptive epoch length. For CPU-bound applications that issue

no external output, checkpoint length grows up to one second. However, when the

application executes a system call that produces external output, Frost immediately

starts to create a new epoch. Thus, server applications we have evaluated often see

the creation of hundreds of epochs per second. Additionally, as will be discussed

in Section 4.3.3.1, the epoch length is varied depending on the number of data races

observed during execution — epochs without a data race gradually increase the epoch

length (by 50ms at a time), while epochs with a data race decrease the epoch length

(by up to a factor of 20). After Frost decides to start an epoch, it waits for all threads

to reach a system call or synchronization operation. It then checkpoints the process

and allows all threads to proceed.

4.3.3 Analyzing epoch outcomes

After all three replicas finish executing an epoch, the Frost kernel compares their

executions to detect and survive data races. Since the Frost control code and data

are in the kernel, the following logic cannot be corrupted by application-level bugs.

First, Frost determines if a replica has crashed or entered an infinite loop. We
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call these self-evident failures, because Frost can declare such a replica to have failed

without considering the results of other replicas. Frost detects if a replica crashes or

aborts by interposing on the appropriate kernel signal-handling routines. It detects if

a replica has entered an infinite loop via a timeout-based heuristic (we have not yet

had the need to implement more sophisticated detection).

Other classes of failures are not self-evident; e.g., a replica may produce incorrect

output or internal state. One way to detect this type of failure is to require a detailed

specification of the correct output. Yet, for complex programs such as databases

and Web servers, composing such a specification is quite daunting. Addressing this

challenge in practice requires a method of detecting incorrect output that does not

rely on program semantics or hand-crafted specifications.

Frost infers the potential presence of failures that are not self-evident by comparing

the output and program state of the three replicas. While an epoch executes, Frost

compares the sequence and arguments of the system calls produced by each replica.

Frost also compares the memory and register state of all replicas at the end of epoch

execution. To reduce the performance impact of comparing memory state, Frost

only compares pages dirtied or newly allocated during the epoch. Frost declares two

replicas to have different outcomes if either their output during the epoch or their

final states at the end of the epoch differ.

To detect and survive data races, Frost must infer whether a data race has occurred

and which replica(s) failed. Frost first considers whether each replica has experienced

a self-evident failure. If the replica has not experienced a self-evident failure, Frost

considers the memory and register state of the replica at the end of an epoch, and

the output produced by the replica during that epoch.

There are 11 combinations of results among the three replicas, which are shown

in the left column of Table 4.1. The result of each replica is denoted by a letter: F

means the replica experienced a self-evident failure; A-C refer to a particular value

for the final state and output produced by the replica for the epoch. We use the

same letter, A, B, or C, for replicas that produced the same state and output. To

simplify the explanation, we do not distinguish between different types of failures in
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Epoch Likely Survival

Results Bug Strategy

AAA None Commit A

FFF Non-Race Bug Rollback

AAB/ABA Type I Rollback

AAF/AFA Type I Commit A

FFA/FAF Type I Commit A

ABB Type II Commit B

ABC Type II Commit B or C

FAA Type II Commit A

FAB Type II Commit A or B

ABF/AFB Multiple Rollback

AFF Multiple Rollback

The left column shows the possible combination of results for three replicas; the first letter
denotes the result of the thread-parallel run, and the other two letters denote the results of
the epoch-parallel replicas. F denotes a self-evident failure; A, B, or C denote the result of
a replica with no self-evident failure, where we use the same letter when replicas produce
identical output and state.

Table 4.1: A taxonomy of epoch outcomes

this exposition. The first letter shows the result of the thread-parallel execution; the

next two letters show the outcomes of the epoch-parallel executions. For example,

the combination F-AA indicates that the thread-parallel execution experienced a self-

evident failure, but the two epoch-parallel executions did not experience a self-evident

failure and produced the same state and output.

As an aside, two replicas may produce the same output and reach the same final

state, yet take different execution paths during the epoch due to a data race. Due to

Frost’s complementary scheduling algorithm, it is highly likely that the data race was

benign, meaning that both replicas are correct. Allowing minor divergences during an

epoch is thus a useful optimization for filtering out benign races. Frost lets an epoch-

parallel replica execute a different system call (if the call does not have side effects) or
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a different synchronization operation when it can supply a reasonable result for the

operation. For instance, it allows an epoch-parallel replica to perform a nanosleep

or a getpid system call not performed by the thread-parallel replica. It also allows

self-canceling pairs of operations such as a lock followed by an unlock. While further

optimizations are possible, the total number of benign races currently filtered through

current optimizations is relatively small. Thus, adding more optimizations may not

be worth the implementation effort. Consequently, when a divergence cannot be

handled through any of the above optimizations, Frost declares the two replicas to

have different output.

4.3.3.1 Using the epoch outcome for survival

Frost diagnoses results by relying on Occam’s razor: it chooses the simplest ex-

planation that could produce the observed results. Specifically, Frost chooses the

explanation that requires the fewest data race bugs in an epoch. Among explana-

tions with the same number of bugs, Frost chooses the explanation with the fewest

failure requirements. The middle column in Table 4.1 shows the explanation that

Frost associates with each combination of results, and the right column shows the

action that Frost takes based on that explanation.

The simplest possible explanation is that the epoch was free of data race bugs.

Because all replicas obey the same happens-before constraints, an epoch that is free

of data races must produce the same results in all replicas, so this explanation can

apply only to the combinations A-AA and F-FF. For A-AA epochs, Frost concludes that

the epoch executed correctly on all replicas and commits it. For F-FF epochs, Frost

concludes that the epoch failed on all replicas due to a non-race bug. In this case,

Frost rolls back and retries execution from the beginning of the epoch in the hope

that the failure is non-deterministic and might be avoided in a different execution,

e.g., due to different happens-before constraints.

The next simplest explanation is that the epoch experienced a single Type I data

race bug. A single Type I bug can produce at most two different outcomes (one

for each order of the racing instructions) and the outcome of the two epoch-parallel
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executions should differ because they execute the racing instructions in different order.

For a Type I bug, one of these orders will not meet the failure requirement and will

thereby work correctly. The other order will meet the failure requirement and may

lead to a self-evident failure, incorrect state, or incorrect output. The following

combinations have two different outcomes among the two epoch-parallel replicas (one

of which is correct) and at most two outcomes among all three replicas: A-AB (and

the isomorphic A-BA), A-AF (and the isomorphic A-FA), and F-AF (and the isomorphic

F-FA).

For epochs that result in A-AF and F-AF, a replica that does not experience the

self-evident failure is likely correct, so Frost commits that replica. For epochs that

produce A-AB, it is unclear which replica is correct (or if both are correct due to a

benign race), so Frost gathers additional information by executing an additional set

of three replicas starting from the checkpoint at the beginning of the epoch. In this

manner, Frost first tries to find a execution in which a happens-before constraint

prevents the race from occurring; our hypothesis is that for a reasonably well-tested

program, such an execution is likely to be correct. For the data races we have tested

so far, Frost typically encounters such a constraint after one or two rollbacks. This

results in a different combination of results (e.g., A-AA, in which case Frost can commit

the epoch and proceed). If Frost encounters the same data race on every execution, we

plan to use the heuristic that most natural executions are likely to be correct and have

Frost choose the thread-parallel execution that occurs most often in such executions.

Note that because epoch-parallel executions use artificially-perturbed schedules, they

should not be given much weight; for this reason, we would not consider an A-BA to

be two votes for A and one vote for B, but rather would consider it to be a single vote

for A.

If a combination of results cannot be explained by a single Type I bug, the next

simplest explanation is a single Type II bug. A Type II bug can produce the following

combination of results: A-BB, A-BC, F-AA, and F-AB. None of these should be produced

by a single Type I bug because the epoch-parallel replicas generate the same answer

(A-BB or F-AA) or because there are three outcomes (A-BC or F-AB). In the latter case,
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it is impossible for the outcome to have been produced by a single Type I bug, whereas

in the first case, the outcome is merely unlikely. Any epoch-parallel execution should

avoid a Type II bug because its non-preemptive execution invalidates one of the bug’s

failure requirements. For instance, atomicity violation bugs are Type II bugs that are

triggered when one thread interposes between two events in another thread. Because

threads are not preempted in the epoch-parallel replicas, both replicas avoid such

bugs.

We have found that it is common for a single type II bug to result in three dif-

ferent outcomes (e.g., A-BC or F-AB). For example, consider two threads both logging

outputs in an unsynchronized manner. The thread-parallel replica incorrectly gar-

bles the outputs by mixing them together (outcome A), one epoch-parallel replica

correctly outputs the first value in its entirety before the second (outcome B), and

the remaining epoch-parallel replica outputs the second value in its entirety before

the first (outcome C), which is also correct. Similar situations arise when inserting or

removing elements from an unsynchronized shared data structure. Thus, when Frost

sees an A-BC outcome, it commits one of the epoch-parallel replicas.

The remaining combinations (A-BF, the isomorphic A-FB, and A-FF) cannot be

explained by a single data race bug. A-BF has more than two outcomes, which rules

out a single Type I bug. A-BF also includes a failing epoch-parallel run, which rules

out a single Type II bug. Both epoch-parallel replicas fail in A-FF, and this is also not

possible from a single Type I or Type II bug. We conclude that these combinations

are caused by multiple data race bugs in a single epoch. Frost rolls back to the

checkpoint at the beginning of the epoch and executes with a shorter epoch length

(trying to encounter only one bug at a time during re-execution).

4.3.3.2 Using the epoch outcome for race detection

Using epoch outcomes for data race detection is more straightforward than using

those outcomes to survive races. Any outcome that shows a divergence in systems calls

executed (which includes all external output), synchronization operations executed,

or final state at the end of the epoch indicates that a data race occurred during the
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epoch. Because all three replicas obey the same happens-before order, a data race

is the only cause of replica divergence. Further, that data race must have occurred

during the epoch being checked because all replicas start from the same initial memory

and register state.

Because Frost’s data race detection is outcome-based, not all data races that occur

during the epoch will be reported. This is a useful way to filter out benign races,

which are sometimes intentionally inserted by programmers to improve performance.

In particular, an ad-hoc synchronization may never cause a memory or output diver-

gence, or a race may lead to a temporary divergence, such as in values in the stack

that are soon overwritten. If Frost explores both orders for a pair of racing instruc-

tions and does not report a race, then the race is almost certainly benign, at least

in this execution of the program. The only exception, discussed in Section 4.3.4.4,

occurs when multiple bugs produce identical-but-incorrect program state or output.

Since Frost allows replicas to diverge slightly during an epoch, it sometimes ob-

serves a difference between replicas in system calls or synchronization operations

executed, but it does not observe a difference in output or final replica state. Such

races are also benign. Frost reports the presence of such races but adds an annotation

that the race had no observable effect on program behavior. A developer can choose

whether or not to deal with such races.

Because Frost is implemented on top of the DoublePlay framework for determinis-

tic record and replay, it inherits DoublePlay’s ability to reproduce any execution of an

epoch-parallel replica [91]. Thus, in addition to reporting the existence of each race,

Frost also can reproduce on demand an entire execution of the program that leads

to each reported race, allowing a developer to employ his or her favorite debugging

tools. For instance, we have implemented a traditional dynamic data race detector

based on the design of DJIT+ [69] that replays a divergent epoch to precisely identify

the set of racing instructions.
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4.3.3.3 Sampling

Some recent race detection tools use sampling to reduce overhead at the cost of

missing some data races [14, 27, 53]. We added a similar option to Frost. When

the user specifies a target sampling rate, Frost creates epoch-parallel replicas for only

some epochs; we call these the sampled epochs. Frost does not execute epoch-parallel

replicas for other epochs, meaning that it neither detects nor survives races during

those epochs. Frost dynamically chooses which epochs are sampled such that the

ratio of the execution time of the sampled epochs to the overall execution time of the

program is equal to the sampling rate. While it is possible to use more sophisticated

heuristics to choose which epochs to sample, this strategy has the property that the

relative decrease in Frost’s ability to survive and detect dynamic data races will be

roughly proportional to the sampling rate.

4.3.4 Limitations

Section 4.2 discussed the guarantees that complementary scheduling provides for

data race survival and detection in synchronization-free code regions that contain

no more than one data race. We now describe the limitations on these guarantees

for epochs that do not conform to those properties. We also describe the steps that

Frost takes to mitigate these limitations. As the results in Section 4.4.1.2 show, these

limitations did not compromise Frost’s survival or detection properties in practice

when we evaluated Frost with real application bugs.

4.3.4.1 Multiple bugs in an epoch

Although we posit that data race bugs are rare, an epoch could contain more than

one bug. If multiple bugs occur in one epoch, Frost could assign an explanation that

explained the outcome, but which is incorrect. This would affect both survival and

detection guarantees.

Survival requires that at least one replica execute correctly. Adding any number of

Type II bugs to an epoch does not affect survival since neither epoch-parallel replica
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Figure 4.4: Priority inversion scenario

will fail due to such bugs. Thus, one replica will be correct for a synchronization-free

region that contains zero or one Type I bugs and any number of Type II bugs. How-

ever, the presence of multiple Type I bugs can cause both replicas to fail. Typically,

different bugs will cause the program to fail in different ways. The symptom of fail-

ure (e.g., crash or abort) might be different, or the memory and register state may

be different at the time of failure. Thus, Frost can still take corrective action such

as rolling back and executing additional replicas, especially if such failures are self-

evident. When Frost rolls back, it substantially reduces the epoch length to separate

out different bugs during re-execution. This is a form of search.

It is conceivable, though unlikely, that two different Type I bugs have the same

effect on program state, in which case the replicas with complementary schedules

could reach the same final state. If the failure is not self-evident, Frost will mis-

classify the epoch and commit faulty state.

For the purpose of data race detection, multiple data races are only a problem if

all races have an identical effect on program state. Otherwise, replicas will diverge

and Frost will report a race for the epoch. The presence of multiple data races will

subsequently be discovered by the developer when replaying the epoch in question.

4.3.4.2 Priority inversion

The presence of happens-before constraints within an epoch may cause Frost to

fail to survive or detect a data race within that epoch. For epochs in which only pairs

of threads interact with one another, Frost’s algorithm for complementary schedule
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generation will construct schedules in which the order of all potentially racing in-

structions differ. Non-racing instructions may execute in the same order, but, by

definition, this does not affect any guarantees about data races.

When more than two threads interact in an epoch, a situation similar to priority

inversion may arise and prevent Frost from constructing schedules that change the

order of all non-racing instructions. For instance, consider Figure 4.4. The epoch con-

tains three threads, a happens-before constraint due to application synchronization,

and a failure requirement caused by two racing instructions. If Frost’s assigns the

order ABC to threads in one replica, the serial order of execution in the two schedules

is { a0, b, c0, a1, c1 } in one replica and { c0, c1, b, a0, a1 } in the other. All pairs of

code segments that occur in different threads execute in a different order in the two

schedules, with two exceptions. c0 executes before a1 in both schedules. However,

this order is required by the application synchronization, and that synchronization

prevents these instructions from racing. Additionally, b executes before a1 in both

schedules. If the Type I bug shown in the figure occurs, then both replicas will fail.

This may prevent Frost from surviving or detecting the race if the failure does not

occur in the thread-parallel execution and it is not self-evident.

Note that Frost could have guaranteed both survival and detection by choosing

another set of priorities for the three threads, such as BAC. Based on this observation,

we have implemented a heuristic that helps choose thread priorities that avoid pri-

ority inversion. As a program executes, Frost counts the number of happens-before

constraints between each pair of threads. It uses a greedy algorithm to place the two

threads with the most frequent constraints in adjacent slots in the priority order, then

place the thread with the most frequent constraints with one of those two threads

adjacent to the thread with which it shares the most constraints, and so on. Since pri-

ority inversion can happen only when a constraint occurs between two non-adjacent

threads in the priority order, this heuristic reduces the possibility of priority inversion

happening as long as the constraints seen earlier in a program are a good predictor

of future constraints.

In some cases, the thread-parallel execution of an epoch may complete before
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the epoch-parallel executions begin. In such cases, Frost can observe the exact set of

happens-before constraints during that epoch and choose thread priorities accordingly.

We have not yet implemented this further optimization.

4.3.4.3 Epoch boundaries

Frost separates execution into epochs to achieve scalability via multicore execu-

tion. Each epoch represents an ordering constraint (a barrier) that was not present

in the original program. If a failure requirement crosses an epoch barrier (i.e., one of

the instructions occurs in a prior epoch and one occurs in a subsequent epoch), the

order of these two instructions is fixed in all replicas. For a Type I bug, all replicas

will fail together or all will avoid failure.

Frost takes two steps to mitigate this limitation. First, it creates epochs infre-

quently. Second, it creates an epoch such that all threads are executing a system call

at the point the epoch is created. For a data race such as the atomicity violation

in Figure 4.1(b), this guarantees that no replica will fail unless the program issues a

system call in the region that must be atomic.

All systems (including Frost) that are used to survive harmful races must commit

state before externalizing output, and externalizing output is often required for for-

ward progress. To avoid a bug due to a harmful race, such systems must also roll back

to some committed state that precedes the race. This committed state may artificially

order instructions before and after the commit point, and this ordering constraint may

force the program to experience a harmful ordering of racing instructions [48].

When Frost is used only to detect races and not to survive them (e.g., during

testing), there may be no need to keep the external output consistent after a data

race occurs. Thus, we have implemented an optimization when Frost is used for data

race detection in which external output does not cause the creation of a new epoch.

This optimization is used only in Section 4.4.2 and not elsewhere in the evaluation.
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4.3.4.4 Detection of Type II bugs

Frost’s outcome-based race detection may not detect certain Type II bugs. Detec-

tion requires that any two replicas differ in system calls or synchronization operations

executed, or that two replicas have a different memory or register state at the end of

the epoch. As previously mentioned, certain benign races may have this property —

filtering out such races is an advantage of outcome-based race detection. In addition,

a code region may exhibit this property if the effects of two or more sets of racing

instructions are identical. This is most likely to happen for a Type II bug in which

both epoch-parallel replicas are correct and finish the epoch in identical states. How-

ever, in our experience so far with actual programs, Type II bugs have always led to

some difference in program state or output.

4.4 Evaluation

Our evaluation answers the following questions:

• How effectively does Frost survive data race bugs?

• How effectively does Frost detect such bugs?

• What is Frost’s overhead?

4.4.1 Detecting and surviving races

4.4.1.1 Methodology

We evaluated Frost’s ability to survive and detect data races using a 8-core server

with two 2.66GHz quad-core Xeon processors and 4GB of DRAM. The server ran

CentOS Linux 5.3, with a Linux 2.6.26 kernel and GNU library version 2.5.1, both

modified to support Frost.

We used 11 actual concurrency bugs in our evaluation. We started by repro-

ducing all data race bugs from an online collection of concurrency bugs [103] in

Apache, MySQL, and pbzip2 compiled form several academic sources [49, 101, 104]
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Application Bug Bug Outcome % survived % detected Recovery

number manifestation time (sec)

pbzip2 N/A crash F-AA 100% 100% 0.01 (0.00)

apache 21287 double free A-BB or A-AB 100% 100% 0.00 (0.00)

apache 25520 corrupted output A-BC 100% 100% 0.00 (0.00)

apache 45605 assertion A-AB 100% 100% 0.00 (0.00)

MySQL 644 crash A-BC 100% 100% 0.02 (0.01)

MySQL 791 missing output A-BC 100% 100% 0.00 (0.00)

MySQL 2011 corrupted output A-BC 100% 100% 0.22 (0.09)

MySQL 3596 crash F-BC 100% 100% 0.00 (0.00)

MySQL 12848 crash F-FA 100% 100% 0.29 (0.13)

pfscan N/A infinite loop F-FA 100% 100% 0.00 (0.00)

glibc 12486 assertion F-AA 100% 100% 0.01 (0.00)

Results are the mean of five trials. Values in parentheses show standard deviations.

Table 4.2: Data race detection and survival

and BugZilla databases. Out of the 12 concurrency bugs in the collection, we re-

produced all 9 data race bugs. In addition, we reproduced a data race bug in the

application pfscan that has been previously used in academic literature [104]. Finally,

during our tests, Frost detected a previously unknown, potentially malign data race

in glibc, which we added to our test suite. Table 4.2 lists the bugs and describes their

effects.

For each bug, we ran 5 trials in which the bug manifests while the application

executes under Frost’s shepherding. The fourth column in Table 4.2 shows the replica

outcomes for the epoch containing the bug. The fifth column shows the percentage of

trials in which Frost survives the bug by producing output equivalent to a failure-free

bug. The next column shows the percentage of trials in which Frost detects the bug

via divergence in replica output or state. The final column shows how long Frost

takes to recover from the bug — this includes the cost of rolling back and executing

new replicas.
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4.4.1.2 Results

The main result of these experiments is that Frost both survives and detects all

11 bugs in all 5 trials for each bug. For these applications, surviving a bug adds little

overhead to application execution time, mostly because epochs are short for server

applications such as MySQL and Apache, and the bugs in other applications occurred

close to the end of execution, so little work was lost due to quashing future epochs.

We next provide more detail about each bug.

The pbzip2 data race can trigger a SIGSEGV when a worker thread dereferences a

pointer that the main thread has freed. This is a Type II bug because the dereference

must occur after the deallocation but before the main thread exits. This failure is

self-evident, leading to the F-AA epoch outcome.

Apache bug #21287 is caused by lack of atomicity in updating and checking the

reference count on cache objects, typically leading to a double free. This is a latent

bug: the data race leads to an incorrect value for the reference count, which typically

manifests later as an application fault. Frost detects this bug via a memory divergence

at the end of the epoch in which the data race occurs, which is typically much earlier

than when the fault is exhibited. Early detection allows Frost to avoid externalizing

any output corrupted by the data race. The bug may manifest as either a Type I or

Type II bug, depending on the order of cache operations.

Apache bug #25520 is a Type II atomicity violation in which two threads concur-

rently modify a shared variable in an unsafe manner. This leads to garbled output in

Apache’s access log. Frost detects a memory divergence since the log data is buffered

before it is written to the log. The epoch classification is A-BC because the failure is

not self-evident and the two epoch-parallel executions produce a different order of log

messages (both orders are correct since the logged operations execute concurrently).

Apache bug #45605 is an atomicity violation that occurs when the dispatcher

thread fails to recheck a condition after waiting on a condition variable. For this

bug to manifest, the dispatcher thread must spin multiple times through a loop and

accept multiple connections. Frost prevents this bug from manifesting in any replica
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because of its requirement that output not be released prior to the end of an epoch.

Since accept is a synchronous network operation, two accepts cannot occur in the

same epoch. Thus, Frost converts the bug to a benign data race, which it detects.

Even when the requirement for multiple accepts is removed, Frost detects the bug

as a Type II race and survives it.

MySQL bug #644 is a Type II atomicity violation that leads to an incorrect loop

termination condition. This causes memory corruption that eventually may cause

MySQL to crash. Frost detects this bug as a memory divergence at the end of the

buggy epoch. Thus, it recovers before memory corruption causes incorrect output.

MySQL bug #791 is a Type II atomicity violation that causes MySQL to fail to log

operations. In a manner similar to Apache bug #25520, Frost sees an A-BC outcome

for the buggy epoch, although the difference occurs in external output rather than

memory state. Like the Apache bug, the order of output in the two epoch-parallel

replicas are different, but both orders are correct.

MySQL bug #2011 is a Type II multi-variable atomicity violation that occurs

when MySQL rotates its relay logs. This leads MySQL to fail an error check, leading

to incorrect behavior. Frost detects the bug as an A-BC outcome.

MySQL bug #3596 is the Type II bug shown in Figure 4.1(b). The NULL pointer

dereference generates a self-evident failure. The two epoch-parallel replicas avoid

the race and take correct-but-divergent paths depending on how the condition is

evaluated. Frost therefore sees the epoch outcome as F-BC.

MySQL bug #12848 exposes an incorrect intermediate cache size value during a

cache resizing operation, leading MySQL to crash. Although this variable is protected

by a lock for most accesses, one lock acquisition is missing, leading to the potential

for an incorrect order of operations that results in a Type I bug. Since the crash

occurs immediately, the failure is self-evident.

A Type I bug in pfscan causes the main thread to enter a spin-loop as it waits

for worker threads to exit due to an incorrect count on the number of such threads.

Frost detects the spin-loop as a self-evident failure and classifies the epoch as F-FA.

The third replica avoids the spin-loop by choosing an order of racing instructions that
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violates the bug’s failure requirement.

While reproducing the prior bugs, Frost detected an additional, unreported data

race bug in glibc. Multiple threads concurrently update malloc statistics counters

without synchronization, leading to possibly incorrect values. When debugging is

enabled, additional checks on these variables trigger assertions. If a data race causes

invalid statistics, the assertion can trigger incorrectly. We wrote a test program that

triggers this bug reliably. Since the assertion happens in the same epoch as the

data race, the failure is self-evident. We have reported this data race to the glibc

developer’s mailing list and are awaiting confirmation.

In summary, for a diverse set of application bugs, Frost both detects and survives

all bugs in all trials with minimal time needed for recovery. For latent bugs that

corrupt application state, Frost detects the failure in the epoch that contains the

data race bug rather than when the program exhibits a self-evident symptom of

failure and thereby avoids externalizing buggy output.

4.4.2 Stand-alone race detection

We next compare the coverage of Frost’s data race detector to that of a tradi-

tional happens-before dynamic data race detector. Section 4.4.1.2 showed that Frost

detects (and survives) all harmful data races in our benchmarks. However, in those

experiments, we considered only scenarios in which the race manifests in a harmful

manner. This may have made it easier for Frost to detect these races by making it

more likely for replicas to diverge.

In this section, we repeat the experiments of Section 4.4.1.2, but we make no

special effort to have the bug manifest. That is, we simply execute a sequence of

actions that could potentially lead to a buggy interleaving of racing instructions.

For comparison, we built a data race detector based on the design of DJIT+ [69].

Although it is slow, this data race detector provides full coverage; in other words, it

detects all data races that occur during program execution. Since modern data race

detectors often compromise coverage for speed (e.g., by sampling), a full-coverage
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Bug Harmful Race Detected? Benign Races

App Number Traditional Frost Traditional Frost

pbzip2 N/A 5 5 3 1

apache 21287 0 0 55 2

apache 25520 3 3 61 2

apache 45605 3 3 65 2

mysql 644 4 4 2899 2

mysql 791 3 3 808 1

mysql 2011 0 0 1414 1

mysql 3596 0 0 658 2

mysql 12848 0 0 1449 2

pfscan N/A 5 5 0 0

glibc 12486 6 6 9 3

The third column shows the number of runs in which a full-coverage, traditional dynamic
race detector identifies the harmful race and the fourth column shows the number of runs
in which Frost identifies the harmful race. The last two columns report the number of
benign races detected for that benchmark in our runs.

Table 4.3: Comparison of data race detection coverage

data race detector such as the one we used provides the strongest competition.

Comparing the coverage of race detection tools is challenging since there is ordi-

narily no guarantee that each tool will observe the same sequence of instructions and

synchronization operations during different executions of the program. Fortunately,

because Frost is built using the DoublePlay infrastructure, we can use DoublePlay

to record the execution of the application and deterministically replay the same ex-

ecution later. When we execute a dynamic race detector on the replayed execution,

it is guaranteed to see the same happens-before order of synchronization operations

as observed by both the thread-parallel and epoch-parallel executions. Further, the

sequence of instructions executed by each thread is guaranteed to be the same up to

the first data race. This ensures an apples-to-apples comparison.

Table 4.3 compares the coverage of Frost to that of the traditional dynamic race

84



detector. We evaluated each benchmark for the same amount of testing time; the

table shows cumulative results for all runs.

For each run for which the traditional data race detector identified a harmful race,

Frost also identified the same race. The third column in Table 4.3 lists the number

of runs for which the traditional data race detector identified the harmful race. The

fourth column shows the number of runs for which Frost identified the same race.

For some harmful races, neither Frost nor the traditional data race detector detect

the race during our preset testing duration; this is expected since dynamic data race

detectors must see instructions execute without synchronization to report a race.

We also evaluated the benefit of the ordering heuristic described in Section 4.3.4.2.

When we executed Frost with the heuristic disabled, it detected all harmful races

detected in Table 4.3 except for the harmful race in pbzip2. We verified that Frost

does not report this race without the heuristic due to a priority inversion.

The last two columns in Table 4.3 list the number of benign races identified by the

traditional data race detector and Frost for each benchmark. We manually classified

79 benign races reported by the traditional race detector in the pbzip2, Apache, pf-

scan and glibc benchmarks, according to a previously-proposed taxonomy [59], with

the following results: (a) user-constructed synchronization (42 races): for example,

Apache uses custom synchronization that the traditional race detector is unaware

of without annotation and so the traditional race detector incorrectly identifies cor-

rectly synchronized accesses as racing, (b) redundant writes (8 races): two threads

write identical values to the same location, (c) double checks (11 races): a variable

is intentionally checked without acquiring a lock and re-checked if a test fails, and

(d) approximate computation (18 races): for example, glibc’s malloc routines main-

tain statistics and some threads concurrently log the order in which they service

requests without synchronization. We also classified MySQL #644 and found that

user-constructed synchronization accounted for 2619 benign data races, redundant

writes for 71, double checks for 153 and approximate computation for 156. Due to

the effort required, we have not classified the other MySQL benchmarks.

In contrast, Frost reports many fewer benign races. For example, if a race leads
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to transient divergence (e.g., an idempotent write-write race), Frost does not flag the

race if the replica states converge before the end of the epoch. Frost also need not be

aware of custom synchronization if that synchronization ensures that synchronized

instructions have identical effects on all replicas. In our benchmarks, Frost identified

only 8 benign races (2 double checks and 6 approximate computations). Thus, almost

half of the races identified by Frost were harmful, while less than 0.25% of the races

identified by the traditional race detector were harmful (with most benign races due

to custom synchronization in MySQL).

4.4.3 Performance

4.4.3.1 Methodology

Our previous experiment demonstrated Frost’s ability to survive and detect data

races in pbzip2, pfscan, Apache and MySQL. We next measured the throughput

overhead introduced by Frost in these 4 applications by comparing the execution

time with Frost on the same 8-core server running our modified Linux kernel and

glibc to the execution time running without Frost (i.e., running the same kernel and

glibc versions without the Frost modifications).

We evaluate pbzip2 compressing a 498MB log file in parallel. We use pfscan to

search for a string in a directory with 935MB of log files. We extended the benchmark

to perform 150 iterations of the search so that we could measure the overhead of

Frost over a longer run while ensuring that data is in the file cache (otherwise, our

benchmark would be disk-bound). We tested Apache using ab (Apache Bench) to

simultaneously send 5000 requests for a 70KB file from multiple clients on the same

local network. We evaluate MySQL using sysbench version 0.4.12. This benchmark

uses multiple client threads to generate 2600 total database queries on a 9.8GB

myISAM database; 2000 queries are read-only and 600 update the database.

For these applications, the number of worker threads controls the maximum num-

ber of cores that they can use effectively. For each benchmark, we varied the number

of worker threads from two to eight. Some benchmarks have additional control threads
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This figure shows how Frost affects execution time for four benchmarks on an 8-core
machine. We show results for 2, 3, 4 and 8 threads for pbzip2 and pfscan. Apache and
MySQL are I/O bound, so results are the same between 2 and 8 threads; we show the 4
thread results as a representative sample. Results are the mean of five trials—the error
bars are 90% confidence intervals. Frost adds a small amount of overhead (3-12%) when
there are sufficient cores to run the extra replicas. When the number of worker threads
exceeds 3 (pfscan) or 4 (pbzip2), Frost cannot hide the cost of running additional replicas.

Figure 4.5: Execution time overhead

which do little work during the execution; we do not count these in the number of

threads. Pbzip2 uses two additional threads: one to read file data and one to write

the output; these threads are also not counted in the number of threads shown. All

results are the mean of five trials.

4.4.3.2 Throughput

The primary factor affecting Frost’s performance for CPU-bound applications is

the availability of unused cores. As Figure 4.5 shows, Frost adds a reasonable 8%

overhead for pbzip2 and a 12% overhead for pfscan when these applications use only

2 cores. The reason that Frost’s execution time overhead is low is that the server has

spare resources to run its additional replicas.

To measure how Frost’s overhead varies with the amount of spare cores, we grad-

ually increased the number of threads used by the application up to the full capacity

of the 8-core machine. Frost performance for pfscan stops improving at 3 worker

threads, which is expected since running 3 replicas with 3 worker threads each re-

quires 9 cores (1 more than available on this computer). Frost performance continues

to scale up to 4 worker threads for pbzip2 due to application-specific behavior. A

data race in pbzip2 sometimes leads to a spin-loop containing a call to nanosleep.
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This figure shows Frost’s energy overhead. We show results for 2, 3, 4 and 8 threads for
pbzip2 and pfscan, and 4 threads for Apache and MySQL. Results are the mean of five
trials—the error bars are 90% confidence intervals.

Figure 4.6: Energy overhead

One replica does not consume CPU time when this happens. As expected, if these

two CPU-bound applications use all 8 cores, Frost adds slightly less than a 200%

overhead. As with all systems that use active replication, Frost cannot hide the cost

of running additional replicas when there are no spare resources available for their

execution.

In contrast, we found the server applications Apache and MySQL do not scale

with additional cores and are hence less affected by Frost’s increased utilization.

Specifically, we find that Apache is bottlenecked on network I/O and MySQL is

bottlenecked on disk I/O. Since Apache and MySQL are not CPU-bound, neither

the original nor Frost’s execution time is affected as we vary the number of threads

from 2 to 8. For this reason, we simply show the results for 4 threads. As shown in

Figure 4.5, Frost only adds 3% overhead for Apache and 11% overhead for MySQL.

4.4.3.3 Energy use

Even when spare resources can hide the performance impact of executing mul-

tiple replicas, the additional execution has an energy cost. On perfectly energy-

proportional hardware, the energy overhead would be approximately 200%. We were

interested to know the energy cost on current hardware, which is not particularly

energy-proportional.
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We used a Watts Up? .Net power meter to measure the energy consumed by the

8-core machine when running the throughput benchmarks with and without Frost.

As Figure 4.6 shows, Frost adds 26% energy overhead for pbzip2 and 34% overhead

for pfscan when run with 2 threads. The energy cost increases to 122% and 208%

respectively when the applications use 8 worker threads. Frost adds 28% energy

overhead for Apache and 43% overhead for MySQL, independent of the number of

worker threads.

4.4.3.4 Scalability

As the 8-core machine runs out of CPU resources with only 2-3 worker threads,

we next evaluate how Frost scales on a 32-core server with four 2.27GHz 8-core Xeon

X7560 processors and 1.8GB of RAM. This server ran the same software as in the

previous experiments. We look at pfscan in these experiments as it showed the highest

8-core overhead previously. We scaled up the benchmark by increasing the number

of data scans by a factor of 100. We report the throughput, measured by the amount

of data scanned by pfscan per second.

As Figure 4.7 shows, pfscan scales well without Frost until it reaches 10 cores. At

this point, we conjecture that it is using all the available memory bandwidth for the

32-core computer. Frost scales well up to 6 cores on this computer, with overhead less

than 4%. Frost’s execution of pfscan achieves maximum throughput at 7 cores. We

conjecture that it is hitting the memory wall sooner due to executing multiple replicas.

Because replicas execute the same workload, cache effects presumably mitigate the

fact that the combined replicas access 3 times as much data as the original execution.

4.4.3.5 Sampling

As described in Section 4.3.3.3, Frost can be configured to sample only a portion

of a program’s execution. Sampling reduces overhead, but Frost will only detect

and/or survive races data in the sampled intervals for which it executes epoch-parallel

replicas. Thus, Frost will experience a decrease in its survival and detection rates for

dynamic data races that is proportional to the sampling rate.
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This figure shows the throughput (MB of data scanned per second) by pfscan running
with and without Frost. We vary the number of threads in pfscan from 1 to 10. Results
are the mean of five trials—the error bars are 90% confidence intervals.

Figure 4.7: Scalability on a 32-core server
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This figure shows Frost’s relative overhead running pfscan at various sampling rates. A
sampling rate of 0.25 means that Frost detects and survives races in 1 out of 4 epochs.
Results are the mean of five trials; error bars are 90% confidence intervals.

Figure 4.8: Effect of sampling on relative overhead

We re-ran the CPU-bound pfscan benchmark with 8 worker threads on the 8-

core computer used in our previous experiments. We varied the percentage of epochs

sampled and measured the relative overhead that Frost adds to application execution
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time. Figure 4.8 shows that with a sampling rate of 3.5%, Frost adds only 17% relative

overhead to the benchmark. As the sampling rate increases, Frost’s relative overhead

scales roughly linearly up to approximately 200% when no sampling is employed.

4.4.4 Discussion

In summary, Frost detects all harmful races detected by a full-coverage dynamic

race detector and survives those races in our experiments. While these results are

quite positive, we believe there are a small set of scenarios that Frost will fail to handle

correctly, as described in Section 4.3.4. Frost’s overhead ranges from 3–12% for the

applications we measured when spare resources are available to execute additional

replicas. When spare resources are not available, the cost of executing additional

replicas cannot be masked. Frost scales well with the number of cores, though it may

experience limitations in other resources such as memory bandwidth if that resource

is the bottleneck for the application being executed.

Frost’s measured overhead is slightly less than that reported for the DoublePlay

system on which it is built [91] due to code optimizations added after the reporting of

the DoublePlay results. Uniparallel execution, as used by both Frost and DoublePlay,

can have substantially higher overheads for benchmarks that dirty memory pages very

rapidly. For example, by far the worst case overhead we measured for DoublePlay

was the ocean benchmark in the SPLASH-2 suite (121% with spare cores); we expect

Frost would have similar overhead with spare cores and 3x that overhead without

spare cores.

These measured overheads are substantially less than those reported for dynamic

data race detectors that handle non-managed code. As with other systems that use

multiple replicas, Frost offers a tradeoff between reliability and utilization. During

the software life cycle, one may choose to employ Frost at different times as priorities

change; e.g., one can use Frost when software is newly released or updated to survive

and detect data race bugs, then disable Frost or sample a subset of epochs to reduce

overhead when software is believed to be race-free. Additionally, since it is inherently

91



difficult to scale many workloads (e.g., those that are I/O bound), spare cores may

often be available in production, in which case Frost can mask its extra utilization.

One could, for instance, use a variation of sampling that only runs extra replicas when

spare cores are available.

4.4.5 Frost versus Triple Modular Redundancy

When viewed through the lens of fault-tolerance, the cost of running Frost’s three

replicas is the same as triple modular redundancy (TMR): they both impose a 3X

hardware utilization cost. The obvious distinction between the two is that Frost uses

complementary schedules to tightly control the epoch-parallel replicas so at least one

replica survives the data race bug, while TMR runs three loosely controlled replicas.

The question then is whether Frost’s complementary schedules are more effective than

TMR’s loosely controlled replicas at surviving harmful data race bugs.

We observe that when TMR is used for tolerating non-fail-stop faults (e.g., tran-

sient hardware faults), the system must bound the window over which at most one

fault can occur by periodically comparing the state of the replicas for divergences.

The frequency of these comparisons will bound how much work the system loses in

case of a fault. Hence, both TMR and Frost experience the overhead of periodic

checkpointing and comparison of replica state.

If the program state of the TMR replicas is to match when executing a multi-

threaded program on a commodity multiprocessor, care must be taken to ensure that

all replicas operate on the same program input and observe the same happens-before

order of synchronization operations. If the TMR replicas do not observe the same

program input, they could falsely diverge. Similarly, if the TMR replicas do not ob-

serve the same happens-before order of synchronization operations, a benign race (for

instance, an incorrect worker could be assigned a task in a work-queue) could lead to

replica divergence. A practical solution is to let one of the TMR replicas run ahead of

the others and generate a log of program inputs and synchronization operations that

the trailing replicas can replay. Additionally, all three TMR replicas should execute
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until the same thread barrier (i.e., epoch boundary) before comparing program state.

As previous research has shown, harmful data race bugs are rare and highly un-

likely to manifest [49]. Hence, the likelihood of a race manifesting on a production

system that deploys Frost or TMR is extremely low. So, the question is: if a data

race bug does manifest in the leading TMR replica, what is the likelihood that the

other two replicas survive the bug? Since all three replicas see the same program

inputs and obey the same happens-before ordering, their program state is identical

until the last synchronization operation before the data race. By letting threads run

freely between synchronization operations, TMR leaves it up to chance whether the

other two replicas execute the racing instructions in a manner that avoids the harmful

bug.

The challenge in quantifying the likelihood of whether TMR survives non-fail-

stop harmful data race bugs is twofold: first, we would have to build a TMR system

based on the design described above, and second, we would have to dedicate sufficient

testing time so each of our diverse set of rare data race bugs manifests. As described in

Section 4.4.2, we could not reproduce 4 of these data race bugs in our testing duration

and several others caused our epoch-parallel replicas to diverge before manifesting

in the thread-parallel execution (for instance, Frost detects a memory divergence

in the replica states after encountering MySQL bug #644, so it initiates recovery

before the bug causes a segmentation fault in the thread-parallel execution). Since

an experimental comparison is hard, we instead provide a logical comparison.

Let p(bug in natural run) be the probability that a harmful data race bug occurs

in a given epoch of execution for a natural run of the program. In Frost, the thread-

parallel execution is the only natural run as both epoch-parallel replicas replay the

log captured by the thread-parallel execution. Similarly, the leading replica in the

TMR system is the only natural run as it provides the log of program input and

synchronization operations to the trailing replicas. Since data race bugs are rare, we

know that p(bug in natural run) is very small for both Frost and TMR.

Despite being highly unlikely, these rare data race bugs do manifest (as evidenced

by BugZilla and similar bug repositories). So the question we ask is: what is the con-
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ditional probability that the identical data race bug occurs in the two additional

replicas given that the bug also occurred in the natural run? That is, what is

p(bug in both replicas | bug in natural run)?

Some might say that the three replicas running under TMR are independent.

Hence, given a rare data race bug that occurs with probability p, the likelihood of

all three replicas experiencing the failure is p3. But in practice, TMR systems do

not run independent replicas. Specifically, if a program is running under TMR with

independent replicas, either its application code has to be modified, or a detailed

specification generated as in Pike [30], so its state can be periodically compared. A

more practical approach is to construct the TMR system such that one of the replicas

leads the execution and generates a log of events that the trailing replicas replay.

A TMR system as described above executes highly correlated replicas as all three

replicas start executing from the same checkpoint, see the same program input and

obey the same order of happens-before synchronization operations. Hence, if one

replica experiences a failure, it is highly likely that the other replicas will experience

the same failure. For example, if the leading replica executes a rare synchronization

operation that results in a harmful thread interleaving, the trailing TMR replicas,

which obey the log of program inputs and happens-before synchronization opera-

tions, are likely to execute the same harmful thread interleaving too. If this harmful

interleaving results in one of the replicas failing, it is highly likely that the two trailing

replicas also fail in the exact same way. In this case, despite the low probability that

the leading TMR replica fails due to a harmful race bug, the conditional probability

that the identical data race bug causes the two trailing replicas to fail is almost 100%.

In contrast to TMR, Frost uses complementary schedules so the two epoch-parallel

replicas execute thread schedules that are as dissimilar as possible to ensure that at

least one of the two replicas does not execute the harmful interleaving. So, even in the

rare case that the leading thread-parallel execution executes a harmful interleaving

and fails, the likelihood that both epoch-parallel replicas fail in the exact same way

is zero, in the absence of any of the limitations described in Section 4.3.4. This is

empirically supported in our evaluation where Frost survives harmful data race bugs
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with 100% probability, for our tested benchmarks.

4.5 Conclusion

Frost introduces two main ideas to mitigate the problems of data races: comple-

mentary schedules and outcome-based race detection. Running multiple replicas with

complementary schedules ensures that, for most types of data race bugs, at least one

replica avoids the order of racing instructions that leads to incorrect program execu-

tion. This property enables a new, faster dynamic data race detector, which detects

races by comparing outcomes of different replicas rather than analyzing the events

executed. After Frost detects a data race, it analyzes the combination of results and

selects the strategy that is most likely to survive the bug.
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CHAPTER 5

Related Work

5.1 Uniparallelism

Uniparallelism builds upon many ideas from research on using speculation to run

applications in parallel, such as thread-level speculation [84, 86, 65]. In particular,

Master/Slave Speculative Parallelization [108], Predictor/Executor by Süßkraut [87],

SuperPin [94], Speck [62], and Fast Track [40] also use a fast execution to start multi-

ple slow executions in parallel. Uniparallelism applies this idea in a new way by using

a fast, thread-parallel execution on multiple processors to start multiple uniprocessor

executions that execute threads sequentially on one processor. Running a uniproces-

sor execution is critical to utilizing techniques such as deterministic replay, data race

detection and data race survival, that are much more efficient on a uniprocessor than

a multiprocessor. These techniques cannot be used with master/slave parallelism,

which runs epochs in parallel on multiple processors.

Restricting each epoch-parallel execution to a single processor allows us to tightly

control the schedule with which threads are timesliced on the processor. DoublePlay

implements a deterministic scheduler to ensure that the thread schedule executed by

an epoch-parallel execution during recording is reproduced during replay. The idea of

controlling thread schedules has also been used to explore the space of possible thread

interleavings in model checking and program testing [33, 56]. The goal of such prior

work is to explore the space of the possible behaviors to find bugs. In contrast, the
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primary goal of Frost is to ensure that at least one of the thread schedules assigned to

an epoch-parallel replica executes racy accesses in the correct order. This difference

changes the algorithm used to create schedules and leads to the design choice in

Frost to use two complementary schedules instead of many schedules. Like Frost,

CHESS [56] uses non-preemptive scheduling to tightly control the thread schedule.

However, because CHESS is used only for testing, it has no need to parallelize the

execution of non-preemptive runs which Frost achieves through uniparallelism.

The primary cost of uniparallelism is the increased hardware utilization resulting

from the need to execute multiple instances of the program. One way to reduce this

cost is to leverage the speculative control and data flow prediction scheme introduced

in SlipStream [71] so the leading thread-parallel execution communicates values and

branch outcomes to the trailing epoch-parallel execution.

5.2 DoublePlay

Because of its wide array of uses, deterministic replay has been the subject of

intense research by the hardware and software systems communities.

Many of the early replay systems focused on uniprocessor replay; e.g., IGOR [28],

Hypervisor [15], Mach 3.0 Replay [74], DejaVu [18], ReVirt [24], and Flashback [85].

The designers of these systems observed that when executing a multithreaded program

on a uniprocessor, there are many fewer thread switch events than accesses to shared

memory. DoublePlay leverages this observation by logging and replaying epochs that

each run the multithreaded program on a single processor, while taking advantage of

multiple processors by starting multiple epochs in parallel.

Multiprocessor replay has been a particular area of focus in recent years because

of the growing prevalence of multi-core processors. The main difficulty in replaying

multithreaded programs on multiprocessors is logging and replaying shared memory

accesses efficiently. One approach is to log the order of shared accesses [44], but this

incurs high overhead. Systems such as SMP-ReVirt [25] and SCRIBE [42] use page

protections to log only the order of conflicting accesses to memory pages. The cost
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of handling memory protection faults can be quite high in these systems due to true

or false sharing, though this cost can be lowered by intelligent scheduling. Another

approach is to log and replay the values returned by load instructions [11, 58], but

this also incurs high overhead.

One way to reduce the overhead of logging multiprocessors is to add hardware

support. The most common strategy is to modify the cache coherence mechanism to

log the information needed to infer the order of shared memory accesses [4, 60, 35, 55,

57, 92]. While these approaches are promising, we would like to support deterministic

replay on commodity multiprocessors.

Another response to the high overhead of logging multiprocessors is to reduce the

scope of programs that can be replayed. RecPlay [73] logs only explicit synchroniza-

tion operations and so is unable to replay programs with unsynchronized accesses to

shared memory (data races). DoublePlay also logs synchronization operations, but it

uses these only as hints to guide the execution of the epoch-parallel run; DoublePlay

guarantees deterministic replay for programs with and without data races by logging

all non-determinism in the epoch-parallel run.

Researchers have also tried to reduce logging overhead by relaxing the definition of

deterministic replay. Instead of requiring that all instructions return the same data

returned in the original run, these approaches provide slightly weaker guarantees,

which still support the proposed uses of replay. PRES [67] and ODR [1] guarantee

that all failures in the original run are also visible during replay, where failures are

usually defined as the output of the program and program errors (e.g., assertions).

Respec [46] guarantees that both the output and the ending state of the replayed

execution match the logged execution. DoublePlay requires the same criteria as

Respec for deterministic replay when evaluating whether the epoch-parallel execution

matches the thread-parallel execution, since this guarantees that each checkpoint that

starts a future epoch matches the ending state of the prior epoch.

Respec also distinguishes between online and offline replay [46]. Online replay

refers to the ability to replay while the recording is in progress; offline replay refers

to the ability to replay after the recording is complete. Respec provides only online
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replay. DoublePlay uses online replay, but only for the purpose of guiding the epoch-

parallel execution. DoublePlay supports offline replay by logging and replaying the

epoch-parallel execution.

Another way to reduce logging overhead is to shift work from the recording phase

to the offline replay phase. To achieve this, recent research has investigated an al-

ternate approach to deterministic replay based on search [1, 67, 45, 98, 107]. Rather

than logging enough data to quickly replay an execution, these systems record a sub-

set of information (e.g., synchronization operations or core dumps), then use that

information to guide the search for an equivalent execution. The search space in-

cludes all possible orders of shared-memory accesses that are allowed by the logged

information, so it grows exponentially with the number of racing accesses. With good

heuristics, search-based replay can often find equivalent executions quickly, especially

for programs with few racing accesses. However, because of the exponential search

space, they may not be able to find an equivalent execution within a reasonable time

frame. In addition, even if the search succeeds within a few tries, the execution of the

program during search can be slowed by several orders of magnitude due to the need

to log the detailed order of shared-memory accesses [67]. DoublePlay logs similar

information as some of these systems (e.g., the SYS configuration in PRES [67]), so

its recording should add a similar amount of overhead to the original application.

One can view DoublePlay as using extra cores to search for an equivalent replay dur-

ing the original run. However, while other systems risk not being able to later find

an equivalent run quickly (or at all), DoublePlay verifies during recording that the

epoch-parallel execution matches the thread-parallel execution. While DoublePlay

must execute intervals that contain races sequentially, this is unlikely to slow the

program significantly because these intervals are likely to be a small fraction of the

overall execution time.

Deterministic replay helps reproduce non-deterministic multiprocessor executions.

An alternative approach is to ensure that all inter-thread communication is determin-

istic for a given input [23, 12, 9, 64]. This approach eliminates the need to log the

order of shared-memory accesses. However, current solutions for deterministic execu-
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tion only support programs that are free of data races [64], require language [12] or

hardware [23] support, increase runtime severalfold [7, 8], or only support programs

with fork-join parallelism [9] or shared-nothing address spaces [2].

In summary, DoublePlay distinguishes itself from prior software-only multiproces-

sor deterministic replay systems by adding little overhead to application execution

time during recording while also guaranteeing that the recorded execution will be

able to be replayed in the future in a reasonable amount of time. The cost of this

guarantee is that DoublePlay must use additional cores to run two executions of the

program during recording.

5.3 Frost

As Frost can serve as a tool for either surviving or detecting data races, we discuss

related work in both areas.

5.3.1 Data race survival

The idea of using replication to survive errors dates back to the early days of com-

puting [93, 51]. In active (state-machine) replication, replicas run in parallel and can

be used to detect errors and vote on which result is correct [79]. In passive (primary-

backup) replication, a single replica is used until an error is detected, then another

replica is started from a checkpoint of a known-good state [16]. Passive replication

incurs lower run-time overhead than active replication but cannot detect errors by

comparing replicas. Frost uses active replication to detect and survive programming

bugs.

In 1985, Jim Gray observed that just as transient hardware errors could be handled

by retrying the operation (a type of passive replication), some software errors (dubbed

Heisenbugs) could be handled in the same manner. Researchers have extended this

idea in many ways, such as retrying from successively older states [96], proactively

restarting to eliminate latent errors [37], shrinking the part of the system that needs

to be restarted [17], and reducing the cost of running multiple replicas [36].
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A general technique to increase the chance of survival in replication-based sys-

tems is to use diverse replicas to reduce the probability of all replicas failing at the

same time. Many types of diversity can be added, including changing the layout of

memory [10, 31, 72], changing the instruction set [6, 39], or even running multiple

independently-written versions of the program [3]. Our focus on ensuring at least

one correct replica is similar to work in security that creates replicas with disjoint

exploitation sets [21, 76].

The replication-based systems most closely related to Frost are those that add

diversity by changing the scheduling of various events, such as changing the order

in which messages or signals are delivered [72, 96] or changing the priority order of

processes [72]. Frost contributes to the domain of replica diversity by introducing the

idea of complementary schedules, describing how complementary schedules enable

data race detection, and showing how to produce complementary schedules efficiently

via non-preemptive scheduling and uniparallelism.

Past research has examined several approaches that do not require active replica-

tion for surviving concurrency bugs that cause deadlocks [38, 95]. Frost is complemen-

tary to these techniques as it targets a different class of concurrency bugs due to data

races. Instead of detecting concurrency bugs and then recovering from them, recent

research proposes to actively avoid untested thread interleavings and thereby reduce

the chance of triggering concurrency bugs. This approach, however, incurs high over-

head [22] or requires processor support [104]. Other researchers have observed that

some concurrency bugs can be eliminated by minimizing preemptions and providing

sequential semantics [9]. Other systems [97] avoid known bugs by avoiding thread

schedules that lead to the buggy behavior; unlike Frost, these systems do not survive

the first occurrence of unknown bugs.

5.3.2 Data race detection

In addition to its survival functionality, Frost can also be used as a dynamic race

detection tool, targeted either at production or test environments. Data race detectors
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can be compared along many dimensions, including overhead, coverage (how many

data races are detected), accuracy (how many false positives are reported), and fidelity

(how much data about each race is provided).

Static race detectors (e.g., [26]) try to prove that a program is free of data races;

they incur no runtime overhead but report many false positives (lowering accuracy)

due to the limits of static analysis, especially for less-structured languages such as C.

On the other hand, dynamic race detectors seek only to detect when a specific run

experiences a data race; they must observe potentially racing instructions execute

in order to report a race. Prior dynamic data race detectors are mostly based on

two basic techniques: happens-before analysis [43, 80] and lockset analysis [78]. Both

techniques analyze the synchronization and memory operations issued by a program to

determine whether a data race may have occurred. Because memory operations occur

frequently, dynamic race detectors have historically slowed programs by an order of

magnitude. In a recent study, Flanagan and Freund [29] compared several state-of-

the-art dynamic data race detectors and showed that their best Java implementation

is about 8.5x slower than native execution. Implementations that check for data races

in less-structured, optimized code running outside of a virtual machine (such as C and

C++ programs) may have even higher overhead, as exemplified by recently-released

industrial strength race detectors from Intel [75] and Google [82], which incur more

than 30x performance overhead.

Dynamic race detectors can use language-specific or runtime-specific features to

reduce overhead. RaceTrack [105] runs CPU-intensive benchmark in Microsoft’s CLR

2.6-3.2x slower, but limits coverage by not checking for races involving native code,

which represents a non-negligible number of methods. RaceTrack also leverages the

object-oriented nature of the checked code to employ a clever refinement strategy in

which it first checks for races at object granularity, then subsequently checks accesses

to the object for races at field granularity. Object-granularity checks may have sub-

stantial false positives, so are reported at lower priority. However, unless a particular

pair of instructions races twice for the same object, RaceTrack cannot report the race

with high confidence. Overhead can also be reduced by eliminating checks that are
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shown to be unnecessary via a separate static analysis phase [19]. However, these

optimizations are difficult to implement precisely for unsafe languages.

Frost executes applications 3–12% slower if spare cores are available to parallelize

replica execution, and approximately 3x slower if no spare cores are available. This

compares very favorably with all prior dynamic race detection tools for general code

running outside of a virtual machine, and also with most tools for managed code.

While Frost may miss races that are detected by the higher-overhead happens-before

race detectors, in practice Frost has detected all harmful races that would be reported

by such detectors.

Several recent race detectors use sampling to trade coverage for reduced overhead

by monitoring only a portion of a program’s execution. PACER [14] uses random

sampling, so has coverage approximately equal to the sampling rate used. At a 3%

sampling rate, PACER runs CPU-intensive applications 1.6-2.1x slower. However,

PACER reports only 2–20% of all dynamic races at that sampling rate. LiteRace [53]

uses a heuristic (adaptive bursty thread-local sampling that biases execution toward

cold code) to increase the expected number of races found, but the same heuristic

may systematically bias against finding certain races (such as those executed along

infrequent code paths in frequently-executed functions). LiteRace runs CPU-intensive

applications 2.4x slower to find 70% of all races and 50% of rare races.

Sampling is orthogonal to most data race detection techniques. Frost implements

sampling by checking only a portion of epochs. At a slightly greater than 3% sam-

pling rate, Frost’s overhead is only 17% for a CPU-bound benchmark. It would

also be possible to use heuristics similar to those used by LiteRace, but the appli-

cation is complicated by the granularity of Frost’s epoch. Whereas LiteRace toggles

instrumentation at function granularity, Frost can only toggle instrumentation at

epoch granularity. However, Frost could benefit from its thread-parallel execution,

for example by measuring the percentage of cold code executed before deciding which

epochs to check via epoch-parallel execution.

It is possible to reduce dynamic data race detection overhead further through

the use of custom hardware [70]. Data Collider [27] repurposes existing hardware
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(watchpoints) to implement a novel dynamic race detection technique. Data Collider

samples memory accesses by pausing the accessing thread and using watchpoints to

identify unsynchronized accesses to the memory location made by other threads. The

paucity of hardware watchpoints on existing processors (4 in their experiments) limits

the number of memory locations that can be sampled simultaneously. Data Collider

can thus achieve very low overhead (often less than 10%) but may not have suitable

coverage to detect rare races since the sampling rate (only 4 memory locations at a

time) is very low. It is also not clear how Data Collider will scale as the number

of cores increase because the number of watchpoints per core does not increase, and

sampling an address requires an IPI to all cores to set a watchpoint.

Most data races are not bugs. Prior work has shown that comparing execution

outcomes for schedules with different orderings of conflicting memory accesses can be

used to classify data races as benign or potentially harmful [59]. This can be viewed

as a method of improving accuracy. Frost’s design applies this filtering technique. In

contrast to the prior work that assumed that the data race was known in order to

generate thread schedules, Frost uses complementary schedules to detect races that

are unknown at the time that the schedules are generated.

Frost has extremely high fidelity because it can deterministically replay the execu-

tion of a program up to the first data race in an epoch (and often beyond that). This

allows Frost to re-generate any diagnostic information, such as stack traces, required

by a developer. We use this capability, for example, in Section 4.4.2 to implement

a complete dynamic race detector. Other tools such as Intel’s ThreadChecker [75]

provide stack traces for both threads participating in a data race, and some tools,

such as RaceTrack [105] can guarantee a stack trace from only one thread.

Pike [30] also uses multiple replicas to test for concurrency bugs by comparing

executions with interleaved requests with executions with serialized requests (which

are assumed to be correct). Pike requires that the application provide a canonicalized

representation of its state that is independent of thread interleavings, which could be

time-consuming to develop. Pike has high overhead (requiring a month to test one

application) but can find more types of concurrency bugs than just data race bugs.
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TightLip [106] compares the output of a replica with access to sensitive data with

that of a replica without such access to detect information leaks.
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CHAPTER 6

Conclusion

We next describe how we plan to extend our work on uniparallel execution and

summarize the contributions of this thesis.

6.1 Future Work

We plan to extend this work in two directions: reduce the utilization penalty of

uniparallelism and leverage uniparallelism to improve software reliability.

If there are spare cores available, DoublePlay slows program execution only mod-

estly (15% with 2 threads, 28% with 4 threads). Similarly, given spare cores, Frost

slows program execution by 3—12% for the tested benchmarks. The main cost of

uniparallelism is the increased hardware utilization caused by executing the program

multiple times; if there are no spare cores, this increased utilization doubles program

runtime for DoublePlay and triples program runtime for Frost.

One approach to reduce the extra utilization cost is to distribute the thread-

parallel execution and epoch-parallel executions across computers. Being able to use

multiple computers makes it more likely that there are spare cores that can hide the

extra utilization of uniparallelism. We could leverage multicast [5] to simultaneously

transmit each checkpoint from the computer running the thread-parallel execution

to the group of computers running the epoch-parallel executions. To reduce network

traffic, we need only send the pages modified since the prior epoch. For Double-
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Play, the total number of pages sent in these checkpoints is equal to the number of

pages compared in Table 3.1. For the applications shown in Table 3.1, the network

bandwidth needed to support distributed DoublePlay ranges from 0.5Mbits/second

(pfscan with 2 threads) to 736 Mbits/second (ocean with 4 threads). Frost builds

upon DoublePlay so requires a comparable number of page transmissions for these

applications. The required intra-computer communication bandwidth is easily avail-

able if the computers happen to be co-located in modern data centers [34]. Another

approach to reduce the utilization cost is to leverage information gained while run-

ning the thread-parallel execution to speed up the epoch-parallel execution (e.g., by

improving cache prefetching or branch prediction accuracy [71]).

With uniparallelism, the epoch-parallel execution timeslices threads onto a single

processor. As DoublePlay demonstrates, running on a uniprocessor makes the epoch-

parallel execution much easier to replay. We plan to explore how to take advantage

of uniparallelism to improve software reliability. For example, the Frost system uses

the control that uniparallelism affords over thread interleaving to create replicas with

complementary thread schedules, which can be used to detect and avoid data races.

By limiting preemptions, one can also use uniparallelism to execute program regions

atomically, which could in turn be used to improve the semantics of concurrent pro-

grams [50], support optimistic concurrency, or enable deterministic execution.

Lastly, it would be nice if we can employ uniparallel execution to speed up offline

replay, which currently runs at the speed of single-threaded execution. Basically, we

would execute multiple threads of a replayed process on multiple cores. At epoch

boundaries, we create a copy of the address space via a multi-threaded fork and

execute the forked replay process on a single core using the logged deterministic

schedule. When the single-threaded replay reaches the end of its epoch, we check the

architectural state. If a divergence is detected, we roll back the multi-core replay to

the previous epoch and retry. This technique would be useful, for example, to skip

ahead to the next break point during debugging.
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6.2 Thesis contribution

This thesis makes both a conceptual and system level contribution.

At a conceptual level, we introduce the notion of uniparallel execution which allows

systems to benefit from properties that are easy to achieve on a uniprocessor while

still scaling performance with increasing processors. With the advent of multicore and

manycore computing, we believe that novel approaches like uniparallel execution that

can utilize spare resources to improve the reliability of multithreaded applications will

prove useful in both the home and enterprise environments.

At the system level, this thesis presents a detailed design for uniparallel execution

and explains which techniques benefit from uniparallel execution. To prove our design,

we implemented support for uniparallel execution in the Linux kernel.

We demonstrate the utility of uniparallel execution by addressing two challenging

problems. First, we used uniparallelism to implement the DoublePlay system for

recording multithreaded execution on commodity multiprocessors. Second, we use

uniparallelism to implement the Frost system for data race detection and survival.

Our evaluation of DoublePlay and Frost on a variety of desktop, network and scientific

benchmarks demonstrates that uniparallel execution allows these systems to improve

upon existing approaches in both their efficiency and effectiveness.

Finally, we plan to provide the tools and infrastructure we have built to other

members of our research group, and the wider research community, that are interested

in applications of uniparallel execution.

108



BIBLIOGRAPHY

109



BIBLIOGRAPHY

[1] Altekar, G., and Stoica, I. ODR: Output-deterministic replay for multicore
debugging. In Proceedings of the 22nd ACM Symposium on Operating Systems Prin-
ciples (October 2009), pp. 193–206.

[2] Aviram, A., Weng, S.-C., Hu, S., and Ford, B. Efficient system-enforced de-
terministic parallelism. In Proceedings of the 9th Symposium on Operating Systems
Design and Implementation (Vancouver, BC, 2010).

[3] Avizienis, A. The N-version approach to fault-tolerant software. IEEE Transactions
on Software Engineering SE-11, 12 (December 1985), 1491–1501.

[4] Bacon, D. F., and Goldstein, S. C. Hardware assisted replay of multiprocessor
programs. In Proceedings of the 1991 ACM/ONR Workshop on Parallel and Dis-
tributed Debugging (1991), ACM Press, pp. 194–206.

[5] Banerjee, S., Bhattacharjee, B., and Kommareddy, C. Scalable application
layer multicast. In Proceedings of the Symposium on Communications Architectures
and Protocols (SIGCOMM ’02) (August 2002), pp. 205–217.

[6] Barrantes, E., Ackley, D., Forrest, S., Palmer, T., Stefanovic, D., and

Zovi, D. Randomized instruction set emulation to disrupt binary code injection at-
tacks. In Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS) (Washington, DC, October 2003).

[7] Bergan, T., Anderson, O., Devietti, J., Ceze, L., and Grossman, D. Core-
det: a compiler and runtime system for deterministic multithreaded execution. In
Proceedings of the 15th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Pittsburgh, PA, 2010), pp. 53–64.

[8] Bergan, T., Hunt, N., Ceze, L., and Gribble, S. D. Deterministic process
groups in dOS. In Proceedings of the 9th Symposium on Operating Systems Design
and Implementation (Vancouver, BC, October 2010).

[9] Berger, E. D., Yang, T., Liu, T., and Novark, G. Grace: Safe multithreaded
programming for C/C++. In Proceedings of the International Conference on Object
Oriented Programming Systems, Languages, and Applications (Orlando, FL, October
2009), pp. 81–96.

[10] Berger, E. D., and Zorn, B. G. DieHard: Probabilistic memory safety for unsafe
languages. In Proceedings of the ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation (Ottawa, Canada, June 2006).

110



[11] Bhansali, S., Chen, W., de Jong, S., Edwards, A., and Drinic, M. Frame-
work for instruction-level tracing and analysis of programs. In Second International
Conference on Virtual Execution Environments (June 2006), pp. 154–163.

[12] Bocchino, Jr., R. L., Adve, V. S., Dig, D., Adve, S. V., Heumann, S., Ko-

muravelli, R., Overbey, J., Simmons, P., Sung, H., and Vakilian, M. A type
and effect system for deterministic parallel Java. In Proceedings of the International
Conference on Object Oriented Programming Systems, Languages, and Applications
(Orlando, FL, October 2009), pp. 97–116.

[13] Boehm, H. J., and Adve, S. Foundations of the c++ concurrency memory model.
In Proceedings of PLDI (2008), pp. 68–78.

[14] Bond, M. D., Coons, K. E., and McKinley, K. S. PACER: Proportional de-
tection of data races. In Proceedings of the ACM SIGPLAN 2010 Conference on
Programming Language Design and Implementation (Toronto, Canada, June 2010).

[15] Bressoud, T. C., and Schneider, F. B. Hypervisor-based fault tolerance. ACM
Transactions on Computer Systems 14, 1 (February 1996), 80–107.

[16] Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg, S. The primary-
backup approach. Addison-Wesley, 1993. in Distributed Systems, edited by Sape
Mullender.

[17] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and Fox, A. Mi-
croreboot – A technique for cheap recovery. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (San Francisco, CA, December 2004),
pp. 31–44.

[18] Choi, J. D., Alpern, B., Ngo, T., and Sridharan, M. A perturbation free
replay platform for cross-optimized multithreaded applications. In Proceedings of the
15th International Parallel and Distributed Processing Symposium (April 2001).

[19] Choi, J.-D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., and Srid-

haran, M. Efficient and precise datarace detection for multithreaded object-oriented
programs. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation (Berlin, Germany, June 2002).

[20] Chow, J., Garfinkel, T., and Chen, P. M. Decoupling dynamic program analysis
from execution in virtual environments. In Proceedings of the 2008 USENIX Technical
Conference (June 2008), pp. 1–14.

[21] Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight,

J., Nguyen-Tuong, A., and Hiser, J. N-variant systems: A secretless framework
for security through diversity. In USENIX Security (August 2006).

[22] Cui, H., Wu, J., Tsai, C.-C., and Yang, J. Stable deterministic multithreading
through schedule memoization. In Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (Vancouver, BC, October 2010).

[23] Devietti, J., Lucia, B., Ceze, L., and Oskin, M. DMP: Deterministic shared
memory multiprocessing. In Proceedings of the 2009 International Conference on

111



Architectural Support for Programming Languages and Operating Systems (ASPLOS)
(March 2009), pp. 85–96.

[24] Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A., and Chen, P. M.

ReVirt: Enabling intrusion analysis through virtual-machine logging and replay. In
Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(Boston, MA, December 2002), pp. 211–224.

[25] Dunlap, G. W., Lucchetti, D. G., Fetterman, M., and Chen, P. M. Execu-
tion replay on multiprocessor virtual machines. In Proceedings of the 2008 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE)
(March 2008), pp. 121–130.

[26] Engler, D., and Ashcraft, K. RacerX: Efficient static detection of race conditions
and deadlocks. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (Bolton Landing, NY, 2003), pp. 237–252.

[27] Erickson, J., Musuvathi, M., Burckhardt, S., and Olynyk, K. Effective
data-race detection for the kernel. In Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (Vancouver, BC, October 2010).

[28] Feldman, S. I., and Brown, C. B. IGOR: A system for program debugging via
reversible execution. In PADD ’88: Proceedings of the 1988 ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debugging (1988), pp. 112–123.

[29] Flanagan, C., and Freund, S. FastTrack: Efficient and precise dynamic race
detection. In Proceedings of the ACM SIGPLAN 2009 Conference on Programming
Language Design and Implementation (Dublin, Ireland, June 2009), pp. 121–133.

[30] Fonseca, P., Li, C., and Rodrigues, R. Finding complex concurrency bugs
in large multi-threaded applications. In Proceedings of the European Conference on
Computer Systems (Salzburg, Austria, April 2011).

[31] Forrest, S., Somayaji, A., and Ackley, D. Building diverse computer systems.
In Proceedings of the 6th Workshop on Hot Topics in Operating Systems (Cape Cod,
MA, May 1997), pp. 67–72.

[32] Fraser, K., and Chang, F. Operating system I/O speculation: How two invoca-
tions are faster than one. In Proceedings of the 2003 USENIX Technical Conference
(San Antonio, TX, June 2003), pp. 325–338.

[33] Godefroid, P. Model checking for programming languages using VeriSoft. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (Paris, France, January 1997), pp. 174–186.

[34] Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri,

P., Maltz, D. A., Patel, P., and Sengupta, S. Vl2: a scalable and flexible data
center network. In Proceedings of the Symposium on Communications Architectures
and Protocols (SIGCOMM ’09) (August 2009), pp. 51–62.

[35] Hower, D. R., and Hill, M. D. Rerun: Exploiting episodes for lightweight memory
race recording. In Proceedings of the 2008 International Symposium on Computer
Architecture (June 2008), pp. 265–276.

112



[36] Huang, R., Den, D. Y., and Suh, G. E. Orthrus: Efficient software integrity
protection on multi-cores. In Proceedings of the 15th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (Pittsburgh,
PA, March 2010), pp. 371–383.

[37] Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. D. Software rejuve-
nation: Analysis, module and applications. In Proceedings of the 25th International
Symposium of Fault-Tolerant Computing (Pasadena, CA, June 1995), pp. 381–390.

[38] Jula, H., Tralamazza, D., Zamfir, C., and Candea, G. Deadlock immunity:
Enabling systems to defend against deadlocks. In Proceedings of the 8th Symposium
on Operating Systems Design and Implementation (San Diego, CA, December 2008),
pp. 294–308.

[39] Kc, G. S., Keromytis, A. D., and Prevelakis, V. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th ACM Confer-
ence on Computer and Communications Security (CCS) (Washington, DC, October
2003).

[40] Kelsey, K., Bai, T., Ding, C., and Zhang, C. Fast Track: A software system
for speculative program optimization. In Proceedings of the 2009 International Sym-
posium on Code Generation and Optimization (CGO) (March 2009), pp. 157–168.

[41] King, S. T., Dunlap, G. W., and Chen, P. M. Debugging operating systems
with time-traveling virtual machines. In Proceedings of the 2005 USENIX Technical
Conference (April 2005), pp. 1–15.

[42] Laadan, O., Viennot, N., and Nieh, J. Transparent, lightweight application
execution replay on commodity multiprocessor operating systems. In International
Conference on Measurements and Modeling of Computer Systems (SIGMETRICS)
(June 2010), pp. 155–166.

[43] Lamport, L. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21, 7 (1978), 558–565.

[44] LeBlanc, T. J., and Mellor-Crummey, J. M. Debugging parallel programs with
instant replay. IEEE Transaction on Computers 36, 4 (1987), 471–482.

[45] Lee, D., Said, M., Narayanasamy, S., Yang, Z. J., and Pereira, C. Offline
symbolic analysis for multi-processor execution replay. In International Symposium
on Microarchitecture (MICRO) (2009).

[46] Lee, D., Wester, B., Veeraraghavan, K., Chen, P. M., Flinn, J., and

Narayanasamy, S. Respec: Efficient online multiprocessor replay via speculation
and external determinism. In Proceedings of the 15th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (Pittsburgh,
PA, March 2010), pp. 77–89.

[47] Leveson, N. G., and Turner, C. S. Investigation of the Therac-25 accidents.
IEEE Computer 26, 7 (1993), 18–41.

113



[48] Lowell, D. E., Chandra, S., and Chen, P. M. Exploring failure transparency
and the limits of generic recovery. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation (San Diego, CA, October 2000).

[49] Lu, S., Park, S., Seo, E., and Zhou, Y. Learning from mistakes — a comprehen-
sive study on real world concurrency bug characteristics. In Proceedings of the 13th
International Conference on Architectural Support for Programming Languages and
Operating Systems (2008), pp. 329–339.

[50] Lucia, B., Ceze, L., Strauss, K., Qadeer, S., and Boehm, H.-J. Conflict
Exceptions: Simplifying Concurrent Language Semantics with Precise Hardware Ex-
ceptions for Data-Races. In Proceedings of the 2010 International Symposium on
Computer Architecture (June 2010), pp. 210–221.

[51] Lyons, R. E., and Vanderkulk, W. The use of triple-modular redundancy to
improve computer reliability. IBM Journal of Research and Development 6, 2 (1962),
200–209.

[52] Manson, J., Pugh, W., and Adve, S. The Java memory model. In Proceedings
of POPL (2005), pp. 378–391.

[53] Marino, D., Musuvathi, M., and Narayanasamy, S. LiteRace: efficient sam-
pling for lightweight data-race detection. In Proceedings of the ACM SIGPLAN 2009
Conference on Programming Language Design and Implementation (Dublin, Ireland,
June 2009).

[54] Mellor-Crummey, J. M., and LeBlanc, T. J. A Software Instruction Counter.
In Proceedings of the 1989 International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (April 1989), pp. 78–86.

[55] Montesinos, P., Ceze, L., and Torrellas, J. DeLorean: Recording and de-
terministically replaying shared-memory multiprocessor execution efficiently. In Pro-
ceedings of the 2008 International Symposium on Computer Architecture (June 2008),
pp. 289–300.

[56] Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P. A., and

Neamtiu, I. Finding and reproducing Heisenbugs in concurrent programs. In Pro-
ceedings of the 8th Symposium on Operating Systems Design and Implementation (San
Diego, CA, December 2008), pp. 267–280.

[57] Narayanasamy, S., Pereira, C., and Calder, B. Recording shared memory
dependencies using Strata. In ASPLOS-XII: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (2006), pp. 229–240.

[58] Narayanasamy, S., Pokam, G., and Calder, B. BugNet: Continuously record-
ing program execution for deterministic replay debugging. In Proceedings of the 32nd
Annual International Symposium on Computer Architecture (ISCA) (June 2005),
pp. 284–295.

114



[59] Narayanasamy, S., Wang, Z., Tigani, J., Edwards, A., and Calder, B.

Automatically classifying benign and harmful data races using replay analysis. In
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language De-
sign and Implementation (San Diego, CA, June 2007).

[60] Netzer, R. H. B. Optimal tracing and replay for debugging shared-memory parallel
programs. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed
Debugging (1993), pp. 1–11.

[61] Nightingale, E. B., Chen, P. M., and Flinn, J. Speculative execution in a
distributed file system. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (Brighton, United Kingdom, October 2005), pp. 191–205.

[62] Nightingale, E. B., Peek, D., Chen, P. M., and Flinn, J. Parallelizing security
checks on commodity hardware. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems (Seattle,
WA, March 2008), pp. 308–318.

[63] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J. Rethink
the sync. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (Seattle, WA, October 2006), pp. 1–14.

[64] Olszewski, M., Ansel, J., and Amarasinghe, S. Kendo: efficient deterministic
multithreading in software. In Proceedings of the 2009 International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS)
(March 2009), pp. 97–108.

[65] Oplinger, J., and Lam, M. S. Enhancing software reliability using speculative
threads. In Proceedings of the 2002 International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS) (October 2002),
pp. 184–196.

[66] Osman, S., Subhraveti, D., Su, G., and Nieh, J. The design and implemen-
tation of Zap: A system for migrating computing environments. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (Boston, MA,
December 2002), pp. 361–376.

[67] Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K. H., and Lu, S.

PRES: Probabilistic replay with execution sketching on multiprocessors. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems Principles (October 2009),
pp. 177–191.

[68] Poulsen, K. Software bug contributed to blackout. SecurityFocus (2004).

[69] Pozniansky, E., and Schuster, A. Efficient on-the-fly data race detection in
multithreaded C++ programs. In Proceedings of the 9th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (San Diego, CA, June 2003),
pp. 179–190.

[70] Prvulovic, M., and Torrellas, J. ReEnact: using thread-level speculation mech-
anisms to debug data races in multithreaded codes. In Proceedings of the 30th Annual

115



International Symposium on Computer architecture (San Diego, California, 2003),
pp. 110–121.

[71] Purser, Z., Sundaramoorthy, K., and Rotenberg, E. Slipstream processors:
improving both performance and fault tolerance. In Proceedings of the 9th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (November 2000), pp. 257–268.

[72] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. Rx: Treating bugs as
allergies—a safe method to survive software failures. In ACM Symposium on Op-
erating Systems Principles (Brighton, United Kingdom, October 2005), pp. 235–248.

[73] Ronsse, M., and De Bosschere, K. RecPlay: A fully integrated practical
record/replay system. ACM Transactions on Computer Systems 17, 2 (May 1999),
133–152.

[74] Russinovich, M., and Cogswell, B. Replay for concurrent non-deterministic
shared-memory applications. In Proceedings of the ACM SIGPLAN 1996 Conference
on Programming Language Design and Implementation (1996), pp. 258–266.

[75] Sack, P., Bliss, B. E., Ma, Z., Petersen, P., and Torrellas, J. Accurate and
efficient filtering for the Intel thread checker race detector. In Proceedings of the 1st
Workshop on Architectural and System Support for Improving Software Dependability
(San Jose, CA, October 2002), pp. 34–41.

[76] Salamat, B., Jackson, T., Gal, A., and Franz, M. Orchestra: Intrusion
detection using parallel execution and monitoring of program variants in user-space.
In Proceedings of the European Conference on Computer Systems (April 2009).

[77] Sarangi, S., Narayanasamy, S., Carneal, B., Tiwari, A., Calder, B., and

Torrellas, J. Patching processor design errors with programmable hardware. IEEE
Micro Top Picks 27, 1 (2007), 12–25.

[78] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T.

Eraser: A dynamic data race detector for multithreaded programs. ACM Transactions
on Computer Systems 15, 4 (November 1997), 391–411.

[79] Schneider, F. B. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Computing Surveys 22, 4 (December 1990), 299–319.

[80] Schonberg, E. On-the-fly detection of access anomalies. In Proceedings of the ACM
SIGPLAN 1989 Conference on Programming Language Design and Implementation
(Portland, OR, June 1989).

[81] Sen, K., and Agha, G. A race-detection and flipping algorithm for automated
testing of multi-threaded programs. In Proceedings of the 2nd international Haifa
verification conference on Hardware and software, verification and testing (Haifa,
Israel, 2007), pp. 166–182.

[82] Serebryany, K., and Iskhodzhanov, T. ThreadSanitizer: Data race detection in
practice. In Proceedings of the Workshop on Binary Instrumentation and Applications
(December 2009).

116



[83] Shavit, N., and Touitou, D. Software transactional memory. In Symposium on
Principles of Distributed Computing (1995), pp. 204–213.

[84] Sohi, G. S., Breach, S. E., and Vijaykumar, T. N. Multiscalar processors. In
Proceedings of the 1995 International Symposium on Computer Architecture (June
1995), pp. 414–425.

[85] Srinivasan, S., Andrews, C., Kandula, S., and Zhou, Y. Flashback: A light-
weight extension for rollback and deterministic replay for software debugging. In
Proceedings of the 2004 USENIX Technical Conference (Boston, MA, June 2004),
pp. 29–44.

[86] Steffan, J. G., and Mowry, T. C. The potential for using thread-level data spec-
ulation to facilitate automatic parallelization. In Proceedings of the 1998 Symposium
on High Performance Computer Architecture (February 1998), pp. 2–13.
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