
..

MEMORY PERSISTENCY: SEMANTICS
FOR BYTE-ADDRESSABLE NONVOLATILE

MEMORY TECHNOLOGIES
..

IMPLEMENTING CORRECT RECOVERABLE DATA STRUCTURES REQUIRES CONSTRAINTS

ON THE ORDER OF WRITES. THIS ARTICLE INTRODUCES MEMORY PERSISTENCY, A

FRAMEWORK FOR ALLOWING PROGRAMMERS TO EXPRESS MINIMAL ORDERING

CONSTRAINTS ON WRITES TO BYTE-ADDRESSABLE NONVOLATILE MEMORY (NVRAM).

BY ENABLING HIGHER NVRAM WRITE CONCURRENCY, RELAXED PERSISTENCY MODELS

CAN ACCELERATE SYSTEM THROUGHPUT 30 TIMES.

......Emerging nonvolatile memory
(NVRAM) technologies, such as phase
change memory, memristor, or spin-torque
transfer RAM, offer the durability of disk
with the high performance and byte address-
ability of DRAM.1 Future systems will con-
nect such devices on a memory bus like those
used for DRAM, providing memory per-
formance approaching that of DRAM, yet
also providing recoverability after failure. We
anticipate that systems incorporating high-
performance, byte-addressable NVRAMs
will become widely available within a decade.
Indeed, as cost and yield improve, such
memories may become ubiquitous across the
computing spectrum: they could become the
preferred storage for small devices in the
Internet of Things, and similarly could
become critical to performance and recover-
ability in cloud systems.

Byte-addressable NVRAMs enable the
construction of high-performance, in-mem-
ory, recoverable data structures (RDS). Con-

ventionally, RDSs have been placed either on
disk or Flash and accessed through a slow,
serial, block-based interface. With NVRAM,
these data structures can be accessed at word
granularity via loads and stores orders of
magnitude faster than disk and Flash
accesses. This paradigm shift in access latency
and interface implies that we must rethink
how we construct these RDSs. For example,
recent research has looked at ways to opti-
mize file systems for NVRAMs.2,3

Programs written for such systems will
have to manage the transfer of data between
volatile and nonvolatile memories. Whereas
programmers are familiar with designing
recoverable systems using block-oriented file-
system interfaces, NVRAM’s byte addressabil-
ity creates the potential for new and higher-
performing recoverable data structures and
calls for new programming interfaces to suc-
cinctly express ordering requirements. Future
systems may incorporate two explicit memory
spaces for volatile and nonvolatile data, or they

Steven Pelley

Peter M. Chen

Thomas F. Wenisch

University of Michigan

0272-1732/15/$31.00�c 2015 IEEE Published by the IEEE Computer Society

...

125

may use a unified address space and precede
nonvolatile memory spaces with volatile caches
to enable write coalescing. In either scenario,
the correctness of recoverable data structures
relies on knowing the order of durable writes.

Existing memory hierarchies do not pro-
vide mechanisms to express and enforce write
ordering all the way to NVRAM. Memory
consistency requirements are enforced at the
processor and do not govern write-backs
from caches to memory. Ordering constraints
that arise from memory consistency require-
ments are usually enforced at the processor,
which is insufficient for failure tolerance with
acceptable performance.

In our earlier work,4 we introduced Mem-
ory Persistency, a framework motivated by
memory consistency to provide an interface
for enforcing the order in which NVRAM
writes become durable. Persistency models
prescribe ordering constraints on writes to
NVRAM (an operation we refer to as a persist)
that software and hardware mechanisms must
enforce, similar to memory consistency mod-
els and ordering constraints on memory-access
visibility across cores. Persistency models range
from easy-to-program, low-performing mod-
els to complex, high-performing (that is,
relaxed) models. These models let pro-
grammers precisely specify ordering con-
straints on persists by using model-specific
annotations without having to worry about
the underlying hardware implementation.

Our central observation is that the differ-
ing performance, endurance, and failure
characteristics of multiprocessor caches and
NVRAM lead to scenarios where it makes
sense to decouple the ordering rules for vola-
tile and nonvolatile accesses. Memory persis-
tency introduces a second consistency model
for the (slower and more costly) persistent
writes. Such a design allows synchronization
primitives and other complex, concurrent
volatile data structures to be written with the
simpler programming interface of strong
consistency, while allowing greater concur-
rency through relaxed ordering for expensive
persist operations. The potential perform-
ance gain from this relaxation is large: for a
500-ns NVRAM write latency, these concur-
rency gains improve performance to the
throughput limit of instruction execution—
as much as 30� speedup.

Memory persistency
Recovery mechanisms require particular

orders of persists. Failure to enforce this order
results in data corruption. Memory persis-
tency prescribes the order of persist opera-
tions with respect to one another and to
loads and stores, allowing the programmer to
reason about guarantees on the ordering of
persists with respect to system failures.

A persistency model enables software to
label those persist-order constraints necessary
for recovery correctness while allowing con-
currency among other persists. As with con-
sistency models, our objective is to strike a
balance between the programmer’s annota-
tion burden and the amount of concurrency
(and therefore, improved performance) the
model enables.

We describe memory persistency as an
extension of memory consistency. Memory
consistency models prescribe the order of
memory operations that can be observed by
processors in normal operation (that is, before
a failure occurs). In the same way, memory
persistency models prescribe the order of
memory operations that can be observed by
processors after a failure. Ordering constraints
for correct recovery thus become ordering
constraints on memory operations as viewed
by processors that execute after a failure. Using
this perspective, we can apply the reasoning
tools of memory consistency to persistency—
any two stores to the persistent memory
address space that are ordered according to the
memory persistency model imply an ordering
constraint on the corresponding persists. Con-
versely, stores that are not ordered according
to the memory persistency model allow corre-
sponding persists to be reordered or per-
formed in parallel.

Program execution typically defines mem-
ory order as a set of memory operations and a
partial order between them. We distinguish
the memory order seen by processors that
communicate without an intervening failure
(volatile memory order, or VMO, which is
constrained by memory consistency) from the
memory order seen by processors that com-
municate across a failure (persistent memory
order, or PMO, which is constrained by mem-
ory persistency).

We formalize persistency models in terms
of order relations over memory events.5 We

..

TOP PICKS

..

126 IEEE MICRO

consider two kinds of events, loads and stores
(to persistent or volatile address spaces), which
we collectively call memory accesses. We
assume persists are performed atomically (with
respect to failures) at 8-byte granularity. We
use the following notation to refer to events:

� Li
a: A load from thread i to address a.

� Si
a: A store from thread i to address a.

� Mi
a: A load or store by thread i to

address a.

We reason about two ordering relations
over memory events. VMO is an ordering
relation over all memory events (loads, stores,
and their values), as prescribed by the consis-
tency model. PMO comprises the same
events, but events are instead ordered by the
constraints imposed by the persistency
model. We denote these ordering relations as

� A �v B: A occurs no later than B in
VMO.

� A �p B: A occurs no later than B in
PMO.

VMO governs the visibility of shared
memory values among processors. (Our
VMO is simply “memory order” in similar
formalisms of consistency models.) PMO gov-
erns the visibility of shared memory values
among processors across a failure—an order-
ing relation between stores in PMO implies
the system must guarantee the same order for
the corresponding persist actions, that is,
A �p B! B may not persist before A.

Persistency models
Persistency models provide a program-

ming interface to prescribe required ordering
relations in PMO and how they relate to
VMO. We explore the performance and
expressiveness of a spectrum of persistency
models. Much like consistency, we identify
strict and relaxed classes of persistency.

Strict persistency
Under strict persistency, the consistency

model governs both volatile and persistent
memory orders—that is, VMO and PMO
are identical. So, for any two stores ordered
by the consistency model, the corresponding
persists are also ordered. Under strict
persistency,

Mi
a �v M

j
b $ Mi

a �p M
j
b:

Strict persistency unifies the problem of
reasoning about allowable VMO and allow-
able PMO (equivalently, allowable persistent
states at recovery). However, directly imple-
menting strict persistency implies frequent
stalls—consistency ordering constraints stall
execution until NVRAM writes complete. A
programmer seeking to maximize persist per-
formance must either rely on relaxed consis-
tency (with the concomitant challenges of
correct program labelling) or aggressively
employ thread concurrency to eliminate per-
sist-ordering constraints (introducing com-
plexity and synchronization overheads).

Relaxed persistency
Relaxed persistency loosens persist-order-

ing constraints relative to the memory consis-
tency model—that is, the visible order of
stores across failures can deviate from the visi-
ble order of stores without an intervening
failure (VMO and PMO contain different
constraints). Decoupling persistency and
consistency allows recoverable data structures
with high persist concurrency even under
familiar, strict consistency models, such as
sequential consistency. Layering relaxed per-
sistency on a stricter consistency model lets
programmers write synchronization code
with the more intuitive interface of strict con-
sistency while still expressing high concur-
rency for the much slower persist operations.

Relaxed persistency models provide pro-
grammers with an additional memory event,
the persist barrier (different from memory con-
sistency barriers), to prescribe only those order-
ing constraints in PMO required to ensure
recovery correctness. By removing ordering
constraints unnecessary for correct recovery,
relaxed persistency models increase persist con-
currency relative to strict persistency, leading to
a shorter critical path of persist operations.

To date, we have formally defined two
relaxed persistency models—epoch persistency,
which is inspired by recent work on the byte-
addressable persistent file system,2 and strand
persistency, an even more relaxed model that
can express an arbitrary graph of persist-
ordering constraints. Both models share a
foundational axiom, strong persist atomicity,

...

MAY/JUNE 2015 127

which we believe to be a key property to facil-
itate intuitive programming while enabling
highly concurrent recoverable data structures.

Strong persist atomicity
Consistency models often guarantee that

stores are serialized, a property referred to as
store atomicity. Persistency models could guar-
antee persist atomicity, wherein stores are simi-
larly serialized across failures. However, some
persistency models might allow the order of
serialized stores within one failure interval to
differ from the order of serialized stores across
failure intervals, producing astonishing results
(for example, recovery to states unreachable
under fault-free execution). Instead, we argue
that persistency models should provide a
stronger guarantee for conflicting accesses
(accesses to the same address at least one of
which is a store) to preclude such nonintuitive
behavior. Strong persist atomicity requires that
conflicting accesses ordered in VMO are also
ordered in PMO. To provide this guarantee,
implementations must ensure that the order
of racing stores (to one address) established by
cache coherence is maintained when ordering
persists. This guarantee is a powerful mecha-
nism—we can use it to construct precise
ordering dependencies across threads. We for-
malize strong persist atomicity in Equation 1:

Si
a �v Mj

a ! Si
a �p Mj

a

Mi
a �v Sj

a ! Mi
a �p Sj

a:
ð1Þ

Epoch persistency
Under epoch persistency, execution in

each thread is separated into epochs by persist
barriers, which ensure that no persist after the
barrier occurs before any persist before the
barrier. We denote persist barriers issued by
thread i as PBi . Persists within each epoch
(not separated by a barrier) are concurrent
and may reorder or occur in parallel. Epoch
persistency addresses the most common
unnecessary persist dependencies (that is, not
required for correct recovery) that arise due
to the program-order constraint of sequential
consistency. Programs frequently persist to a
large, contiguous region of memory (as in a
memcpy) in multiple persist operations with-
out needing those persists to be ordered.

In addition to strong persist atomicity, the
epoch persistency model prescribes that any

two memory accesses on the same thread sep-
arated by a persist barrier are ordered in
PMO, as in Equation 2:

Mi
a �v PBi �v Mi

b ! Mi
a �p Mi

b: ð2Þ

Each thread’s execution is separated into
persist epochs via persist barrier instructions.
Epoch persistency uses persist barriers to
order persists on the same thread (Equation
2) and a combination of strong persist atom-
icity (Equation 1) and persist barriers (Equa-
tion 2) to order persists across threads.

Strand persistency
Although epoch persistency relaxes persist

dependencies relative to strict persistency, only
persists within an epoch can be labelled as con-
current. Strand persistency lets programmers
further remove unnecessary orderings, achiev-
ing the minimal set of persist-ordering con-
straints needed for correct recovery.

Strand persistency divides program execu-
tion into strands, the logically independent
segments of execution that happen to execute
in the same thread. The strand abstraction lets
programmers express that nonconflicting exe-
cution segments (for example, transactions or
tasks) are unordered with respect to persis-
tency without incurring the overheads of plac-
ing each segment on different threads. Strands
are separated by the strand barrier (SB) mem-
ory event. The strand barrier clears all prior
PMO constraints from prior instructions,
effectively making each strand behave as if it
were a separate thread (with respect to persis-
tency) but at a lower overhead than starting a
new thread. Memory accesses within a strand
are ordered using persist barriers (Equation 2),
and memory accesses across strands continue
to be ordered in PMO using strong persist
atomicity (Equation 1). Strand barriers from
thread i are denoted SBi. The strand persis-
tency model is defined as such: any two mem-
ory accesses on the same thread separated by a
persist barrier without an intervening strand
barrier are ordered in PMO:

ðMi
a �v PBi �v Mi

bÞ
^ ð8SBi : ðSBi �v Mi

aÞ _ ðMi
b �v SBiÞÞ

! Mi
a �p Mi

b:

..

TOP PICKS

..

128 IEEE MICRO

A key property of strand persistency is that
it lets programmers express an arbitrary
directed graph of dependencies among persist
events. That is, with sufficient program anno-
tation, any desired ordering constraints can be
expressed in PMO (for example, the minimal
order constraints required for correct recov-
ery), irrespective of the ordering constraints in
VMO (such as stronger ordering constraints
used to correctly synchronize threads).

Applying persistency: A persistent queue
To understand and evaluate persistency

models, we studied a motivating microbe-
nchmark: a thread-safe persistent queue. Sev-
eral workloads require high-performance
persistent queues, such as write-ahead logs in
databases and journaled file systems. Funda-
mentally, a persistent queue inserts and
removes entries while maintaining their
order. The queue must recover after failure,
preserving proper entry values and order.

The goal in designing a persistent queue is
to improve the persist concurrency of insert
operations both through improved thread
concurrency and relaxed persistency. We
study implementations similar to those pro-
posed by Fang et al.,6 which are concurrent
(thread-safe) but allow varying degrees of
persist concurrency.

Figure 1a shows pseudocode for an insert
operation, including the annotations required
for epoch and strand persistency. Figure 1b
shows a diagram of the persistent writes
required for two consecutive inserts into the
queue (boxes) and persist-ordering con-
straints among those steps that arise under
strict persistency. Recovery requires that per-
sists to the head pointer are ordered after per-
sists to the data segment from the same insert
operation, and that persists to the head
pointer occur in insert-order to prevent holes
in the queue (persists to the head pointer may
coalesce so long as no ordering constraint is
violated). All other persists within the same
insert operation and between operations may
occur concurrently without compromising
recovery correctness.

Under strict persistency, various ordering
constraints arise that are unnecessary for cor-
rect recovery (the dashed lines in Figure 1).
Strict persistency under sequential consis-
tency serializes persists to the data segment
(“A” in the diagram) and serializes persists
between all insert operations (“B” in the dia-
gram). Epoch persistency allows the individ-
ual writes in the copy operation (lines 4 and
5) to persist concurrently, removing the
dependences labeled “A” in the diagram.
However, the head update from one insert

function Q.Insert(entry)
1. lock (volatile mutex)
2. PERSIST_BARRIER
3. NEW_STRAND
4. Q.Data[Head + 0] = entry[0]
5. Q.Data[Head + 1] = entry[1]
 ...
6. PERSIST_BARRIER
7. Q.Head += entry.length
8. PERSIST_BARRIER
9. unlock

Data:

A

B

A

Head:

Required constraints:

Unnecessary constraints:

(a) (b)

Figure 1. Persist dependencies when inserting into a queue. (a) Pseudocode for inserting an

entry in a queue. (b) Visual representation of the persist dependencies arising in the insert

operation. Persist operations to the data in the queue and head pointer are indicated by

boxes. Persist-ordering constraints necessary for proper recovery are shown as solid arrows;

unnecessary constraints incurred under strict persistency appear as dashed arrows. Epoch

persistency allows the data copy to persist concurrently (lines 4 and 5), removing the

dependences labeled “A” in the diagram. Under strand persistency, the NEW STRAND
operation (line 3) removes the unnecessary dependence between the head update (line 7)

from one insert operation and the data copy during the next (lines 4 and 5), removing the

dependence labeled “B” in the diagram.

...

MAY/JUNE 2015 129

operation remains serialized with the data
copy of the next, as indicated by the depend-
ence labeled “B.” Under strand persistency,
the NEW STRAND operation (line 3) removes
the unnecessary dependence between the
head update (line 7) from one insert opera-
tion and the data copy during the next (lines
4 and 5), removing the dependence labeled
“B” in the diagram.

Evaluation and impact
We measured the opportunity for relaxed

persistency models to improve persist per-
formance for our thread-safe persistent queue
microbenchmark. Instead of assuming spe-
cific storage technologies and memory system
implementations, we measured NVRAM
write performance as the critical path of
persist-ordering constraints, assuming that
NVRAM writes form the primary system
bottleneck and that practical memory systems
effectively use available concurrency. Our
results present a best-case persist performance
for a given device persist latency; real devices
are expected to introduce additional delays
(for example, for buffering and routing
within the device). Figure 2 demonstrates

that relaxed persistency models substantially
improve write concurrency over strict persis-
tency. For a 500-ns NVRAM write latency,
these concurrency gains improve performance
to the throughput limit of instruction execu-
tion—as much as 30� speedup over strict
persistency under sequential consistency.

Our work lays a foundation for reasoning
about the programming interface for a sys-
tem that includes both volatile and nonvola-
tile memories. We build on the rich literature
and powerful framework of memory consis-
tency research, allowing the familiar models
and reasoning tools of consistency to be
applied to persistent writes and failures. The
memory consistency literature has had a clear
and lasting impact on the development of
computer architectures to mitigate the high
cost of communicating shared memory
writes. We hope that our work helps establish
a similar literature to mitigate the even higher
costs of writes to NVRAM.

Past works have proposed NVRAM inter-
faces for particular applications (such as file
systems2); we provide a taxonomy for analyz-
ing these instances of persistency models.
Much of the existing work has focused on a
transactional interface.7–9 Our work reasons
about NVRAM accesses at a lower abstrac-
tion level; transactional systems can be built
on the ordering guarantees provided by a per-
sistency model. Whereas transactions might
ultimately prove to be a familiar and desir-
able interface for NVRAM, there is evidence
(for example, our queue implementations)
that higher performance may be possible
when designing data structures for a relaxed
persistency model.

I n this article, we introduced persistency
with the specific goal of designing an

interface for byte-addressable NVRAM.
However, the notion of layering two different
consistency models for two performance
classes of memory is generally applicable. For
example, our persistency models might be
applied in a system with two coherence
domains, where performing coherence opera-
tions across domains is much more expensive
than maintaining coherence locally. Persis-
tency provides a framework for expressing
two layers of ordering guarantees. There is a

10
51 51

8

6

4

2

0

1 thread 8 threads

Stric
t

Epoc
hs

Stra
nd

s
Stric

t

Epoc
hs

Stra
nd

s

M
ill

io
ns

 in
se

rt
s/

se
c

Figure 2. Persistency model performance.

We evaluate performance of inserts into a

persistent queue under varying persistency

models. Bars indicate the performance

constraint imposed by the persist-ordering

critical path with a 500-ns persist latency.

Lines indicate the instruction execution

rate. When the bars fall short of the lines,

persist constraints limit performance.

Relaxed persistency models reduce

ordering constraints, improving

performance up to the limit of the

instruction execution rate—30� over

strict persistency.

..

TOP PICKS

..

130 IEEE MICRO

rich relationship between our work and prior
work on distributed shared memories that
remains to be explored. Such systems grow
more relevant as “durability” comes to mean
“replication in a distributed cloud” (for
example, in schemes like RAMCloud10). We
believe many connections between memory
persistency and such past and future research
topics remain to be discovered. MICRO

Acknowledgments
This work was partially supported by

NSF CCF-0845157 and CNS-0905149
and by grants from ARM and Oracle. We
thank Aasheesh Kolli for assistance in for-
malizing our descriptions of persistency
models and Ali Saidi for feedback on this
work.

..
References
1. B.C. Lee, et al., “Architecting Phase Change

Memory as a Scalable DRAM Alternative,”

Proc. 36th Ann. Int’l Symp. Computer Archi-

tecture, 2009, pp. 2–13.

2. J. Condit et al., “Better I/O through Byte-

Addressable, Persistent Memory,” Proc.

ACM SIGOPS 22nd Symp. Operating Sys-

tem Principles, 2009, pp. 133–146.

3. S.R. Dulloor et al., “System Software for

Persistent Memory,” Proc. 9th European

Conf. Computer Systems, 2014, article 15.

4. S. Pelley, P.M. Chen, and T.F. Wenisch,

“Memory Persistency,” Proc. 41st Ann.

Int’l Symp. Computer Architecture, 2014,

pp. 265–276.

5. A. Kolli et al., “Persistency Programming

101,” Non-Volatile Memory Workshop,

2015; http://nvmw.ucsd.edu/2015/assets

/abstracts/33.

6. R. Fang et al., “High Performance Database

Logging using Storage Class Memory,”

Proc. IEEE 27th Int’l Conf. Data Eng. (ICDE),

2011, pp. 1221–1231.

7. D.R. Chakrabarti and H.-J. Boehm,

“Durability Semantics for Lock-based Multi-

threaded Programs,” Proc. USENIX Work-

shop Hot Topics in Parallelism, 2013; www

.usenix.org/conference/hotpar13/workshop

-program/presentation/chakrabarti.

8. H. Volos, A.J. Tack, and M.M. Swift,

“Mnemosyne: Lightweight Persistent Mem-

ory,” Proc. 16th Int’l Conf. Architectural Sup-

port for Programming Languages and

Operating Systems (ASPLOS), 2011, pp.

91–104.

9. J. Zhao et al., “Kiln: Closing the Perform-

ance Gap between Systems with and with-

out Persistence Support,” Proc. 46th Ann.

Int’l Symp. Microarchitecture (MICRO),

2013, pp. 421–432.

10. J. Ousterhout et al., “The Case for

RAMCloud,” Comm. ACM, vol. 54, no. 7,

2011, pp. 121–130.

Steven Pelley is a software developer at
Snowflake Computing. His research inter-
ests include new database designs and mem-
ory interfaces for NVRAM. Pelley has a
PhD in computer science and engineering
from the University of Michigan, where he
performed the work for this article. Contact
him at spelley@umich.edu.

Peter M. Chen is an Arthur F. Thurnau Pro-
fessor in the Department of Electrical Engi-
neering and Computer Science at the Uni-
versity of Michigan. His research interests
include operating systems, computer secur-
ity, and fault-tolerant computing. Chen has
a PhD in computer science from the Univer-
sity of California at Berkeley. He is a fellow
of IEEE and the ACM. Contact him at
pmchen@umich.edu.

Thomas F. Wenisch is an associate professor
in the Department of Electrical Engineering
and Computer Science at the University of
Michigan. His research interests include mul-
tiprocessor and multicore systems, multicore
programmability, smartphone architecture,
datacenter architecture, and performance eval-
uation methodology. Wenisch has a PhD in
electrical and computer engineering from Car-
negie Mellon University. He is a member of
IEEE and the ACM. Contact him at
twenisch@umich.edu.

...

MAY/JUNE 2015 131

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

