
Speculative Execution in a Distributed
File System

EDMUND B. NIGHTINGALE, PETER M. CHEN, and JASON FLINN

University of Michigan

Speculator provides Linux kernel support for speculative execution. It allows multiple processes to

share speculative state by tracking causal dependencies propagated through interprocess commu-

nication. It guarantees correct execution by preventing speculative processes from externalizing

output, for example, sending a network message or writing to the screen, until the speculations

on which that output depends have proven to be correct. Speculator improves the performance of

distributed file systems by masking I/O latency and increasing I/O throughput. Rather than block

during a remote operation, a file system predicts the operation’s result, then uses Speculator to

checkpoint the state of the calling process and speculatively continue its execution based on the

predicted result. If the prediction is correct, the checkpoint is discarded; if it is incorrect, the call-

ing process is restored to the checkpoint, and the operation is retried. We have modified the client,

server, and network protocol of two distributed file systems to use Speculator. For PostMark and

Andrew-style benchmarks, speculative execution results in a factor of 2 performance improvement

for NFS over local area networks and an order of magnitude improvement over wide area networks.

For the same benchmarks, Speculator enables the Blue File System to provide the consistency of

single-copy file semantics and the safety of synchronous I/O, yet still outperform current distributed

file systems with weaker consistency and safety.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management—

Distributed file systems; D.4.7 [Operating Systems]: Organization and Design; D.4.8 [Operating
Systems]: Performance

General Terms: Performance, Design

Additional Key Words and Phrases: Distributed file systems, speculative execution, causality

1. INTRODUCTION

Distributed file systems often perform substantially worse than local file sys-
tems because they perform synchronous I/O operations for cache coherence and

The work is supported by the National Science Foundation under award CNS-0509093. NSF has

also supported development of the Blue File System through award CNS-0306251. Jason Flinn is

supported by NSF CAREER award CNS-0346686. Intel Corp and Motorola Corp have provided

additional support. The views and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies, either expressed or implied, of

NSF, Intel, Motorola, the University of Michigan, or the U.S. government.

Authors’ address: Department of Electrical Engineering and Computer Science, University of

Michigan, Ann Arbor, MI 48109-2122; email: enightin@eecs.umich.edu; {pmchen,jflinn}@umich.

edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0734-2071/06/1100-0361 $5.00

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006, Pages 361–392.

362 • E. B. Nightingale et al.

data safety. File systems such as AFS [Howard et al. 1988], and NFS [Callaghan
et al. 1995] present users with the abstraction of a single, coherent namespace
shared across multiple clients. Although caching data on local clients improves
performance, many file operations still use synchronous message exchanges
between client and server to maintain cache consistency and protect against
client or server failure. Even over a local area network, the performance im-
pact of this communication is substantial. As latency increases due to physical
distance, middleboxes, and routing delays, the performance cost may become
prohibitive.

Many distributed file systems weaken consistency and safety to improve per-
formance. Whereas local file systems typically guarantee that a process that
reads data from a file will see all modifications previously completed by other
processes; distributed file systems such as AFS and NFS provide no such guar-
antee. For example, most NFS implementations provide close-to-open consis-
tency, which guarantees only that a client that opens a file will see modifications
made by other clients that have previously closed the file. Weaker consistency
semantics improve performance by reducing the number of synchronous mes-
sages that are exchanged. Nevertheless, as our results show, even these weaker
semantics are time consuming.

We demonstrate that, with operating system support for lightweight check-
pointing, speculative execution, and tracking of causal interdependencies be-
tween processes, distributed file systems can be fast, safe, and consistent.
Rather than block a process while waiting for the result of a remote commu-
nication with a file server, the operating system checkpoints its state, predicts
the result of the communication, and continues to execute the process specula-
tively. If the prediction is correct, the checkpoint is discarded; if it is false, the
application is rolled back to the checkpoint.

Our solution relies on three observations. First, file system clients can cor-
rectly predict the result of many operations. For instance, consistency checks
seldom fail since concurrent file updates are rare. Second, the time to take a
lightweight checkpoint is often much less than network round trip time to the
server, so substantial work can be done while waiting for a remote request to
complete. Finally, modern computers often have spare resources that can be
used to execute processes speculatively. Encouraged by these observations, and
by the many prior successful applications of speculation in processor design,
we have added support for speculative execution, which we call Speculator, to
the Linux kernel.

In our work, the distributed file system controls when speculations start,
succeed, and fail. Speculator provides a mechanism for correct execution of
speculative code. It does not allow a process that is executing speculatively to
externalize output, for example, make network transmissions or display out-
put to the screen, until the speculations on which that output depends prove
to be correct. If a speculative process tries to execute a potentially unrecover-
able operation, for example, it calls the reboot system call, it is blocked until
its speculations are resolved. Speculator tracks causal dependencies between
kernel objects in order to share speculative state among multiple processes. For
instance, if a speculative process sends a signal to its nonspeculative parent,

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 363

Speculator checkpoints the parent and marks it as speculative before it delivers
the signal. If a speculation on which the child depends fails, both the child and
parent are restored to their checkpoints (since the parent might not receive the
signal on the correct execution path). Speculator tracks dependencies passed
through fork, exit, signals, pipes, fifos, Unix sockets, and files in local and dis-
tributed file systems. All other forms of IPC currently block the speculative
process until the speculations on which it depends are resolved.

Since speculation is implemented entirely in the operating system, no appli-
cation modification is required. Speculative state is never externally visible. In
other words, the semantics of the speculative version of a file system are iden-
tical to the semantics of the nonspeculative version; however, the performance
of the speculative version is better.

Results from PostMark and Andrew-style benchmarks show that Speculator
improves the performance of NFS by more than a factor of 2 over local area
networks; over networks with 30 ms of round-trip latency, speculation makes
NFS more than 14 times faster. We have also created a version of the Blue File
System [Nightingale and Flinn 2004], that uses speculator to provide single-
copy semantics, in which the file consistency seen by two processes sharing a
file and running on two different file clients is identical to the consistency that
they would see if they were running on the same client. In addition, our version
of BlueFS provides synchronous I/O in which all file modifications are safe on
the server’s disk before an operation is observed to complete. Despite providing
these strong guarantees, BlueFS is 66% faster than nonspeculative NFS over
a LAN and more than 11 times faster with a 30 ms delay.

2. MOTIVATION: SPECULATION IN NFS

Figure 1 illustrates how Speculator improves distributed file system perfor-
mance. Two NFS version 3 clients collaborate on a shared project that consists
of three files: A, B, and C. At the start of the scenario, each client has up-to-date
copies of all files cached. Client 1 modifies A and B; client 2 then opens C and
B. Client 2 should see the modified version of B since that file was closed by
client 1 before it was opened by client 2.

When an application closes a file, the Linux 2.4.21 NFSv3 client first sends
asynchronous write remote procedure calls (RPCs) to the server to write back
any data for that file that is dirty in its file cache—these RPCs are necessary to
provide close-to-open consistency. After receiving replies for all write RPCs, the
client sends a synchronous commit RPC to the server. The server replies only af-
ter it has committed all modifications for that file to disk. The NFS client returns
from the close system call after receiving the commit reply. The commit RPC
provides a safety guarantee, namely that no file modifications will be lost due
to a server crash after the file has been closed. Thus, a Linux application that
modifies a file in NFS incurs a performance penalty on the close of at least two
network round-trips, and one synchronous disk access. Some other operating
systems have NFS clients that do not wait for a commit reply before returning
from close—these clients sacrifice safety, but improve performance since they
block only until replies for all outstanding write RPCs have been received.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

364 • E. B. Nightingale et al.

Fig. 1. Example of speculative execution for NFS.

When an NFS client opens a file that it has previously cached, it issues a
getattr RPC to the server. The file attributes returned by the server indicate
whether the file has been modified since it was cached (in which case the cached
copy is discarded and a new copy is fetched). Since the NFS server is a single
point of synchronization, the getattr RPC guarantees that the cached copy is
fresh; if another client had modified and closed the file, the returned attributes
would show the modification. For instance, in Figure 1(a), when client 2 reads
file B, the attributes returned by getattr indicate that the file was modified.
Hence, client 2 discards its cached copy of file B.

Cache coherence in NFS is time consuming because a process blocks each
time a file is closed after being modified or opened, as well as on directory
lookups, permission checks, and modifications. This cost is magnified many
times during activities such as listing a directory or compiling a program,

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 365

because each activity invokes several file system operations; for instance, most
applications that show directory listings fetch the attributes of all files within
the directory to display file types, sizes, or other metadata.

Our speculative version of NFS is shown in Figure 1(b). Client 1 asyn-
chronously executes write and commit RPCs, speculating that all modifications
will succeed at the server. Client 2 asynchronously executes the getattr RPCs,
speculating that its cached copy of C and B are up-to-date. When the latter spec-
ulation fails, the calling process is rolled back to the start of the system call that
opened B. This system call is re-executed and a new speculation begins.

Speculation improves file system performance because it hides latency: mul-
tiple file system operations can be performed concurrently, and computation
can be overlapped with I/O. Speculation also improves write throughput. Be-
cause speculation transforms sequential operations issued by a single thread
of control into concurrent operations, it allows the server to group commit such
operations. Without OS support for speculative execution, the system call in-
terface prevents these optimizations. The file system cannot return to the ap-
plication until it receives the results of a remote operation, since that operation
might fail.

3. CONDITIONS FOR SUCCESS

We believe that adding support for speculative execution to a commodity OS
kernel will eventually benefit many applications. However, we have targeted
distributed file systems as the first clients of Speculator because they exhibit
three ideal characteristics:

(1) The results of speculative operations are highly predictable. File
system clients cache data in memory and on disk to improve performance.
Due to ever increasing memory and disk capacities, today’s workstations
can cache data for long periods of time. In the absence of concurrent mod-
ifications, cached data remains valid and can be used to successfully pre-
dict the outcome of remote operations. Speculation is a form of optimistic
concurrency, since a client detects a conflicting update by another client
when it next accesses the modified file. Since concurrent updates are rare
in distributed file systems [Howard et al. 1988], we expect the vast major-
ity of speculations to succeed. However, our results show that even when
many speculations fail, speculative file systems still substantially outper-
form nonspeculative ones.

(2) Checkpointing is often faster than remote I/O. Speculator checkpoints
are essentially copy-on-write forks where the forked child is typically never
executed. The time to take and discard a checkpoint of a small process is
52 μs; considerably less than the cost of a disk or network I/O. Although this
time is greater for larger processes (6.3 ms for a 64 MB process), checkpoint
cost can be amortized across several speculations by having those specu-
lations share a single process checkpoint. Thus, there is considerable time
available to execute applications speculatively when they would normally
block on file system operations.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

366 • E. B. Nightingale et al.

Fig. 2. Speculator interface.

(3) Modern computers often have spare resources. Speculative execu-
tion requires CPU cycles, and checkpoint storage requires memory. Fortu-
nately, modern workstations typically have these resources in abundance.
Since I/O is increasingly the performance bottleneck in modern computers
[Rosenblum et al. 1995], we can improve application performance by using
these spare resources to hide I/O latency and improve I/O throughput.

4. AN INTERFACE FOR SPECULATION

Our design for speculative execution exhibits a separation of concerns between
policy and mechanism. The distributed file system determines when specu-
lations begin, succeed, and fail. Speculator provides a lightweight checkpoint
and rollback mechanism that allows speculative process execution. Specula-
tor ensures that speculative state is never externalized or directly observed by
nonspeculative processes.

Speculator is implemented as part of the core Linux 2.4.21 kernel and con-
sists of roughly 7,500 lines of C source code. Figure 2 shows Speculator’s in-
terface. A process must be executing in kernel mode (e.g., within a system
call) to use this interface. To initiate speculative execution, a process calls
create speculation. This function returns a spec id that uniquely identifies
the particular speculation and a list of prior speculations on which the new
speculation depends. Any process may later declare whether that speculation
succeeds or fails by calling commit speculation or fail speculation with that
spec id. This design enables Speculator to remain ignorant of the particular
hypothesis that underlies each speculation, as well as the semantics for suc-
cess and failure. In turn, a Speculator client, for example, a distributed file
system, need not concern itself with the details of how speculative execution is
performed.

The next section describes our basic implementation of speculative execution
in the Linux kernel, which allows processes to execute speculatively in isola-
tion. Section 6 extends this implementation by allowing multiple processes to
share speculative state. Section 7 describes how distributed file systems use
Speculator.

5. IMPLEMENTING SPECULATION

5.1 Process Checkpoint and Rollback

Speculator implements checkpointing by performing a copy-on-write fork of the
currently running process. It also saves the state of any open file descriptors
and copies any signals pending for the checkpointed process. In contrast to a
normal fork, the child process is not placed on the run queue—it is simply a
vessel for storing state. If all speculations on which a checkpoint depends prove

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 367

to be correct, Speculator discards the checkpoint by reclaiming the kernel data
structures associated with the child process.

If one of the speculations on which a checkpoint depends fails, Speculator
restores the process to the state captured during the checkpoint. The process
that is currently executing speculatively, called the failed process, is marked
for termination by setting a flag in its task structure. When the failed process is
next scheduled, Speculator forces it to exit. Speculator ensures that the failed
process performs no externally visible operations prior to termination.

The process that was forked during the checkpoint, called the checkpoint pro-
cess, assumes the identity of the failed process. Speculator gives the checkpoint
process the process identifier, thread group identifier, and other distinguish-
ing characteristics of the failed process. It also changes its file descriptors and
pending signals to match the values saved during the checkpoint. The program
counter of the checkpoint process is set to the system call entry point, and its
kernel stack pointer is set to the initial kernel stack frame. Thus, after Specula-
tor places the checkpoint process on the run queue, the process re-executes the
system call that was being executed when the checkpoint was taken. Since the
checkpoint process steals the identity of the failed process, this manipulation
is hidden from observers outside the kernel; to the user, it appears that the
speculative execution never happened.

5.2 Speculation

Speculator adds two new data structures to the kernel to track speculative
state. A speculation structure is created during create speculation to track
the set of kernel objects that depend on the new speculation. An undo log is
associated with each kernel object that has speculative state—this log is an
ordered list of speculative operations that have modified the object. Each entry
in the log contains sufficient information to undo the modifying operation, as
well as references to all new speculative dependencies that were introduced
by the operation. The presence of an entry in an object’s undo log indicates
that the object will be rolled back to the state associated with that entry if
any of the referenced speculations fail. We say that a kernel object depends on
all speculations for which references exist in its undo log. The speculations on
which an object depends are resolved if all speculations commit (in which case,
the object becomes nonspeculative) or if any speculation fails (in which case,
the object is rolled back to a prior state).

When a previously nonspeculative process calls create speculation, Specu-
lator creates a new speculation structure and an undo log for the calling process.
It checkpoints the calling process as described in the previous section and in-
serts an entry containing the checkpoint into its undo log. The new entry and
the new speculation structure refer to each other. If the speculation fails, the
checkpoint is used to restore the process to its prior state. If the process calls
create speculation again, Speculator creates a new speculation structure and
appends a new entry to the process undo log. If the previous speculation was
caused by a read-only operation such as a stat on a file in the distributed file
system, no new checkpoint is needed. In this case, the new undo log entry shares

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

368 • E. B. Nightingale et al.

a reference to the checkpoint contained in the previous log entry. If either spec-
ulation fails, the process is rolled back to the common checkpoint. Allowing
speculations to share checkpoints improves performance in the common case
where speculations succeed. Of course, in the uncommon case where the second
speculation fails, the application must re-execute more work than if separate
checkpoints had been taken.

Speculator caps the amount of work unnecessarily re-executed by taking a
new checkpoint if the prior checkpoint for the process is more than 500 ms
old. Speculator also caps the number of outstanding speculations at 2000 to
prevent speculation from consuming too many system resources. As we gain
more experience with the system, it may also prove useful to limit specific
resources such as the amount of physical memory used for speculation.

Currently, two operations do not share a common checkpoint if the first op-
eration modifies state. For example, if the first operation is a mkdir in the dis-
tributed file system, a common checkpoint cannot be used since the file server
might make the effects of the mkdir visible to other clients, then fail the second
operation. When the second operation fails, the client must roll back to the com-
mon checkpoint. Any clients that view the new directory would see incorrect
state if the process that performed the mkdir does not recreate the directory
when it re-executes. If necessary, Speculator could allow two mutating opera-
tions to share a checkpoint by modifying the file server to atomically perform
all operations that share a checkpoint. However, this further optimization re-
quires substantial server modifications, and our performance results indicate
it is not needed.

5.3 Ensuring Correct Speculative Execution

We define the speculative execution of a process to be correct if two invariants
hold. First, speculative state should never be visible to the user or any external
device. Enforcing this invariant requires that Speculator prevent a speculative
process from externalizing output to the screen, network, or other interfaces.
Second, a process should never view speculative state unless it is already spec-
ulatively dependent upon that state (because it could produce output that de-
pends on that state). If a nonspeculative process tries to view speculative state,
Speculator either blocks the process until the state becomes nonspeculative, or
it makes the process speculative and rolls it back if a speculation on which that
state depends fails.

Since interactions between a process and its external environment pass
through the operating system, Speculator can prevent a speculative process
from performing potentially incorrect operations by blocking that process until
the speculations on which it depends are resolved. If all of those speculations
prove successful, the process is unblocked and allowed to execute the operation
(which is correct since the process is no longer speculative). If a speculation
fails, the process is terminated.

We observe that blocking a speculative process is always correct, but that
blocking limits the amount of work that can be done while waiting for remote
operations to complete. Our approach to developing Speculator was to first

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 369

create a correct but slow implementation that blocked whenever a speculative
process performed a system call. We created a new system call jump table and
modified the Linux system call entry point to use this table if the task structure
of the currently executing process is marked as speculative. Initially, we set all
entries in this jump table to sys spec deny, a function we created to block the
calling process until its speculations are resolved.

Next, we observed that system calls that do not modify state (e.g., getpid)
are correct if performed by a speculative process. We let speculative processes
perform these calls by replacing sys spec deny entries with the addresses of the
functions that implement these syscalls. We also found that several system calls
modify only state that is private to the calling process; these calls are correct to
perform while speculative since their effects are not observed by other processes
and, on speculation failure, their effects are undone as a side effect of restoring
the checkpoint process. For example, dup2 creates a new file descriptor that
is a copy of an existing descriptor. This state is private to a process since file
descriptors are not shared (except on fork, which is handled in Section 6.8).
Further, when Speculator restores the checkpoint process, the effect of dup2 is
undone since the restored checkpoint contains the descriptor state of the failed
process prior to calling dup2.

We next allowed speculative processes to perform operations on files in
speculative file systems. For these system calls, it is insufficient to replace
sys spec deny with syscalls such as mkdir in the speculative jump table be-
cause the OS may mount some file systems that support speculative execution
and some that do not. For instance, one might use a nonspeculative version of
ext3 along with a speculative version of NFS—in this case, it is correct to allow
speculative processes to modify state in NFS but not in ext3.

When a speculative process performs a file system operation, Speculator in-
spects the file system type to determine whether to block the calling process
or allow speculative execution. On mount, a file system may set a flag in its
superblock that indicates that speculative processes are allowed to read and
write the files and directories it contains. Another flag allows just speculative
read-only operations. All file system syscalls check these flags if the current
process is speculative, to decide whether to block or permit the operation. For
example, mkdir blocks speculative processes unless the superblock of the par-
ent directory indicates that mutating operations are allowed, and stat blocks
unless read-only operations are allowed. Our speculative versions of NFS and
BlueFS set the read/write flag. Because file systems that we have not modi-
fied do not set either flag, operations in those file systems block speculative
processes until their speculations are resolved.

Speculator uses a similar strategy for the read and write system calls. When
a file descriptor is opened, the type-specific VFS open function can set flags in
the Linux file structure to indicate that speculative reads and/or writes are per-
mitted. If a speculative process tries to read from, or write to, a file descriptor
for which the appropriate flag is not set, that process is blocked until its specula-
tions are resolved. The read flag is needed because read is a mutating operation
for some inode types—for instance, reading from a Unix socket consumes the
data that is read. For this inode type, speculative reads are incorrect. For other

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

370 • E. B. Nightingale et al.

inode types, such as files in local file systems that do not update access times,
reads are correct since they do not change object state.

If a speculative process writes to a tty or other external device, its action
is incorrect since it is externalizing output. Yet, blocking such writes greatly
limits the amount of work that can be done while speculative. This led us to
support a third behavior for write: the data being written can be buffered in the
kernel until the speculations on which it depends have been resolved. Specula-
tor first validates such output operations to ensure that they can be performed.
It then stores the output in a queue associated with the last checkpoint of the
current process. After all speculations associated with that checkpoint commit,
the buffered output is delivered to the device for which it was destined. If a spec-
ulation fails, the output is discarded. Currently, Speculator uses this strategy
for output to the screen and network.

Output from a speculative process can appear before all of the speculations
for that process are resolved. Consider a process that speculates on a remote op-
eration, outputs a message, and then performs another speculative operation.
Since the output depends only on the first speculation, Speculator can deliver
it to the output device once the first speculation succeeds—it need not wait for
the second speculation to succeed or fail. In a nonspeculative system, the out-
put would be delayed while the process blocked on the remote I/O operation.
Thus, the condition on which the output awaits, the completion of the remote
I/O, is the same in nonspeculative and speculative systems. In fact, output in
the speculative system often appears faster than in the nonspeculative system
since the remote operations on which that output waits complete faster. An
exception occurs if two speculations share a checkpoint since output that de-
pends on only one speculation must wait for both to complete—this is another
reason Speculator limits the maximum time difference between speculations
that depend on the same checkpoint.

6. MULTIPROCESS SPECULATION

We next allowed speculative processes to participate in interprocess commu-
nication. This significantly extends the amount of speculative work done by
applications composed of multiple cooperating processes. For example, make
forks children to perform compilation and linking; these processes communi-
cate via pipes, signals, and files. If we limit speculation to a single process, make
would often block waiting for a signal to be delivered or for data to arrive on
a pipe.

6.1 Generic Strategy

Speculator’s strategy for IPC allows selected data structures within the kernel
to have speculative state. Figure 3 illustrates how speculative state is prop-
agated. In Figure 3(a), processes 8000 and 8001 both stat different files in
BlueFS—BlueFS calls create speculation, sends an asynchronous RPC to
check cache consistency, and continues execution assuming that the cached
attributes are up-to-date. Speculations 1 and 2 track the state associated with
each speculation. Each process is marked as speculative, associated with an

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 371

Fig. 3. Propagating causal dependencies.

undo log, and checkpointed. Each undo log entry contains the process checkpoint
and a reference to the speculation on which the process depends.

In Figure 3(b), process 8000 writes data to a file in /tmp. This causes Spec-
ulator to propagate dependencies from process 8000 to inode 3556. After this
operation, the file contains speculative state; for example, if speculation 1 fails,
process 8000 may write different data to the file on re-execution. Speculator
therefore creates an undo log for inode 3556 and marks it as speculative. The
entry in the file’s undo log describes how to restore it to its previous state; in
this case, the entry describes how to reverse the write operation that modified
the file. The association between speculation 1 and this entry indicates that the
write operation will be undone if speculation 1 fails.

In general, Speculator propagates dependencies from a process P to an object
X whenever P modifies X and P depends on speculations that X does not. The
entry in X’s undo log for that operation is associated with all speculations on
which P depended but X did not.

In Figure 3(c), process 8001 writes data to the same file. This operation
creates another entry in the inode’s undo log—this entry is associated with
speculation 2. This operation also creates an entry in the process 8001 undo
log since the process may have observed speculative state as a result of writing
to the file. For example, if a speculative operation changes file permissions,
the return value of a later write might depend on whether that speculation
succeeds.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

372 • E. B. Nightingale et al.

In general, Speculator propagates dependencies from an object X to a process
P whenever P observes X’s state and X depends on speculations that P does not.
The entry in P’s undo log for that operation is associated with all speculations
on which X depended but P did not.

In our experience, almost all operations that modify kernel objects also
observe the object being modified (in fact, the only exception we have seen
is a signal sent by an exiting process). Thus, mutating operations normally
propagate dependencies bi-directionally between the mutating process and
the mutated object.

Process undo entries are not needed for many operations. For instance, an
undo entry is not created for process 8000 when it modifies the file because
the file depended on no speculations. Similarly, if process 8001 modifies the file
again after step (c), an entry is not put in its undo log since the file and process
8001 depend on the same set of speculations.

During commit speculation, Speculator deletes the speculation structure
and removes its association with any undo log entries. Entries at the front of
an undo log are deleted once they depend on no more speculations. When an
undo log has no more entries, it is deleted, and its associated object becomes
nonspeculative.

Figure 3(d) shows what happens when a speculation fails. The failed specu-
lation, speculation 1, is deleted. Each kernel object that depends on that spec-
ulation is rolled back to the state captured by the undo entry with which the
failed speculation is associated. In this example, process 8000 is restored to
its checkpoint and will retry the failed operation. Inode 3556 is restored to
the state that existed before it was modified by process 8000—this is done
by applying the two inverse operations in its undo log. Process 8001 is rolled
back to its second checkpoint (because it could have observed incorrect spec-
ulative state in inode 3556). When process 8001 is restarted, it will attempt
to write to inode 3556 again. This rollback is performed atomically during
fail speculation.

The undo log, undo entries, and speculations are generic kernel data struc-
tures. However, each undo log entry contains pointers to type-specific state and
functions that implement type-specific rollback and roll forward processing.
This design allows a common implementation for the type-independent logic
associated with propagating dependencies, rolling state forward, and rolling
state back. We next describe the type-specific logic for each form of IPC that
Speculator currently supports.

6.2 Objects in a Distributed File System

In our design, the file server always knows the correct state of each object (file,
directory, etc.). If a speculation on which an object depends fails, Speculator
simply invalidates the cached copy. When the object is next accessed, its correct
state is retrieved from the server. Thus, undo log entries do not contain type-
specific data. However, the undo log must still track each object’s speculative
dependencies so as to propagate those dependencies when one process reads a
locally-cached object previously modified by another speculative process.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 373

6.3 Objects in a Local Memory File System

We have modified the RAMFS memory-only file system to support speculative
state. When a VFS operation modifies a speculative RAMFS object, Speculator
inserts an entry that describes the inverse operation needed during rollback
in the inode’s undo log. For instance, an rmdir entry contains a reference to
the directory being deleted as well as the name of the directory. The reference
prevents the OS from reclaiming the directory object until the speculation is
resolved. Thus, if a speculation on which the rmdir depends fails, Speculator
can reinsert the directory into its original parent.

6.4 Objects in a Local Disk File System

We also modified the ext3 file system to support speculation. While Specula-
tor uses the same strategy for managing ext3 inode undo logs that it uses for
RAMFS, the presence of persistent state in ext3 presents many challenges.

One challenge is dealing with the possibility of system crashes. For instance,
it would be incorrect to write speculative state to disk while maintaining undo
information only in memory, since uncommitted speculative state would be
visible after a crash. While Speculator could potentially write undo logs to
disk to deal with this possibility, we felt a simpler solution is to never write
speculative data to disk (i.e., use a no-steal policy [Haerder and Reuter 1983]).
Speculator attaches undo logs to kernel buffer head objects. When a speculative
process modifies a buffer, Speculator marks the buffer as speculative and inserts
a record in its undo log. Kernel daemons that asynchronously write buffers to
disk, skip any buffer marked as speculative. A process that explicitly forces a
speculative buffer to disk, for example, by calling fdatasync, is blocked until
the buffer’s speculations are resolved. A substantial advantage of using a no-
steal policy is that Speculator often does not need to shadow data overwritten
by a speculative operation in memory—if the speculation fails, it invalidates
the buffer, which will cause the prior state to be re-read from disk.

A second challenge is presented by shared on-disk metadata structures such
as the superblock and allocation bitmaps. Ext3 operations often read and mod-
ify these structures, potentially creating too many speculative dependencies.
For instance, when a speculative process allocates a new disk block for a file,
it modifies the count of free blocks in the superblock. Under our previously de-
scribed policy, any nonspeculative process performing an ext3 operation would
become speculative since it would observe speculative state in the superblock.

We felt that this policy was too aggressive as these metadata objects are
seldom observed outside the kernel. Even in the case of inode numbers, which
are externally visible, the impact of observing speculative state is limited (e.g.,
a new file might receive a different inode number than it would have received
in the absence of speculation, yet the particular number received is typically
unimportant as long as that number is unique). Speculator therefore allows
processes to observe speculative metadata in ext3 superblocks, bitmaps, and
group descriptors, without propagating causal dependencies.

Speculator must allow these ext3 metadata structures to be occasionally
written to disk. For instance, the ext3 superblock could remain speculative

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

374 • E. B. Nightingale et al.

indefinitely if it is continuously modified by speculative processes. In this case,
writing the superblock to disk is incorrect since it contains speculative data,
yet if it is not written out periodically, substantial data could be lost after a
crash. Speculator addresses this issue by maintaining shadow buffers for the
superblock, bitmaps, and group descriptors. The actual buffer contains the cur-
rent nonspeculative state, while the shadow buffer contains the speculative
state. When a speculative operation modifies one of these structures, it sup-
plies redo and undo functions for the modification. The redo function is initially
used to modify the speculative state. If the speculative operation commits, the
redo function is applied to the nonspeculative state. If the operation rolls back,
the undo function is applied to the speculative state. Only the actual buffer con-
taining nonspeculative state is written to disk. This design relies on metadata
operations being commutative (which is the case in Speculator).

A final challenge is presented by the ext3 journal, which groups multiple file
system operations into compound transactions. A compound transaction may
contain both speculative and nonspeculative operations. To preserve the invari-
ant that no speculative state is written to disk, we initially decided to block the
commit of a compound transaction until all of its operations became nonspec-
ulative. However, this proved too restrictive since there are many instances
in the ext3 code that wait for the current transaction to commit. We therefore
adopted an approach that leverages Speculator’s tracking of causal dependen-
cies. Any file system operation that is causally dependent upon a speculative
operation must itself be speculative. Thus, any nonspeculative operation within
a compound transaction cannot depend on a speculative operation within that
transaction. Prior to committing a compound transaction, Speculator moves
any speculative buffers in that transaction to the next compound transaction.
For shared metadata buffers such as the superblock, Speculator commits the
nonspeculative version of the buffer as part of the current transaction. This ap-
proach lets the journal immediately commit nonspeculative operations without
writing speculative data to disk.

6.5 Pipes and Fifos

Speculator handles pipes and fifos with a strategy similar to that used for local
file systems. Since the read and write system calls both modify and observe
pipe state, they propagate dependencies bi-directionally between the pipe and
the calling process. The undo entry for read saves the data read so that it can
be restored to the pipe if a speculation fails. The write entry saves the amount
and location of data written so that it can be deleted on failure. Undo entries
are also created when a pipe is created or deleted—the latter entry prevents
the pipe from being destroyed until its speculations are resolved.

6.6 Unix Sockets

Speculator tracks speculative dependencies propagated through Unix sockets
by allowing kernel socket structures to contain speculative state. When data
is written to a Unix socket, it is placed in a queue associated with the destina-
tion socket. Thus, any speculative dependencies are propagated bi-directionally

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 375

between the sending process and the destination socket. Additionally, since the
process sending data observes the state of the source socket, any speculative
dependencies associated with that socket are propagated to both the sending
process and destination socket. When a process reads data from the destination
socket, dependencies are propagated bi-directionally between the process and
the socket.

6.7 Signals

Signals proved difficult to handle. Our initial design had the sending process
propagate dependencies directly to the process that receives the signal. How-
ever, this design requires Speculator to be able to checkpoint the receiving
process at arbitrary points in its execution. The receiving process could receive
a signal while it is in the middle of a system call. If the process has already per-
formed some nonidempotent operation during the system call, restarting from
the beginning of the system call is incorrect. If the checkpoint process is instead
restarted from the location at which the signal was received, it would not have
any kernel resources such as locks that were previously acquired during the
system call by the process that received the signal.

Speculator solves this problem by requiring that all checkpoints be taken
by the process being checkpointed. Checkpoints are only taken at well-known
code locations where the checkpoint process will behave correctly if a rollback
occurs.

Speculator delivers signals using a two-step process. First, when the signal
is sent, it creates an undo log for that signal—the log’s only entry depends on
the same speculations as the sending process. The signal is put in a speculative
sigqueue associated with the receiving process. Signals in this queue are not yet
considered delivered; thus, these signals are not visible to the receiving process
when it checks its pending signals. During this step, Speculator propagates
dependencies from the receiving process to the sending process, since the sender
observes that it is allowed to send a signal to the destination process.

The second step occurs immediately before a process returns from kernel
mode. At this time, Linux delivers any pending signals. We modified this code
to first move any signals from the speculative sigqueue to the list of pending
signals. If necessary, the receiving process is checkpointed and dependencies
are propagated from the signals being delivered to the process. A flag is set
in the checkpoint so that the checkpoint process will exit the kernel instead of
restarting the system call if a rollback occurs. This preserves the invariant that
checkpoints are only taken by the checkpointed process.

When a signal is moved from the speculative sigqueue to the list of pending
signals, a new entry is inserted into the signal undo log. This ensures that
if the receiving process rolls back to a point before the signal was delivered,
that signal will be redelivered. On the other hand, if a speculation on which
the signal depends fails, the signal is destroyed and the receiving process rolls
back to the checkpoint taken before delivery.

If a signal becomes nonspeculative while it waits in the speculative sigqueue
(because all speculations on which it depends commit), it is immediately

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

376 • E. B. Nightingale et al.

delivered to the receiving process. This ensures that a process will eventually
proceed if it blocks in the kernel waiting for a speculative signal to be delivered.
However, to maximize performance, such signals should be delivered immedi-
ately. Speculator therefore interrupts wait and select when a signal arrives
in the speculative sigqueue (just as they are interrupted for a pending signal).
In these instances, we have ensured that these system calls can be restarted
correctly if a speculation on which the delivered signal depends fails.

6.8 Fork

When a process forks a child, that child inherits all dependencies of its parent.
If one of these speculations fails, the forked process is simply destroyed since
it may never exist on the correct execution path.

6.9 Exit

When a speculative process exits, its pid is not deallocated until all of its depen-
dencies are resolved. This ensures that checkpoints can be restarted with that
pid if a speculation fails. The rest of the Linux exit code is executed, including
the sending of signals to the parent of the exiting process. Speculating through
exit is important for supporting applications such as make that fork children to
perform subtasks. Without this support, the parent process would block until
its child’s speculations are resolved.

6.10 Other Forms of IPC

Speculator does not currently let speculative processes communicate via Sys-
tem V IPC, futexes, or shared memory. It does allow speculative execution of
processes with read-only access to shared memory segments, or write access to
private segments. However, it blocks processes that have write access to one
or more shared memory segments—this precludes multithreaded applications
from speculating. Rather than track individual memory accesses, our planned
approach to support multi-threaded processes is to consistently checkpoint all
threads within a single thread group whenever a checkpoint is needed for any
thread.

7. USING SPECULATION

Modifying a distributed file system to use Speculator typically involves changes
to the client, server, and network protocol. We first inspect the client code and
identify instances in which the client can accurately predict the outcome of
remote operations. Predicting the outcome of read-only operations typically
requires that the client memory or disk cache contain some information about
the state of the file system. For instance, an NFS client can predict the result
of a getattr RPC only when the inode attributes are cached. In this case, the
client is speculating that the file was not modified after it was cached.

We change the synchronous RPCs in these instances to be asynchronous, and
have the client create a new speculation before sending each request. When a
reply to the asynchronous RPC arrives, the client calls commit speculation if
it correctly predicted the result of the RPC and fail speculation if it did not.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 377

Normally, if a prediction fails, the file system invalidates any cached values
on which that prediction depended—this forces a nonspeculative, synchronous
RPC when the operation is re-executed. However, if the reply contains updated
state, the file system instead caches the new state—in this case, a new specu-
lation based on the updated values is made when the operation is re-executed.

In the next two subsections, we address two generic issues that occur when
modifying a file system to use Speculator: correctly supporting mutating op-
erations and implementing group commit. Sections 7.3 and 7.4 describe our
speculative implementations of NFS and BlueFS in more detail. Section 7.5
discusses how other file systems might benefit from using Speculator.

7.1 Handling Mutating Operations

Operations that mutate file system state at the server are challenging, since a
speculative mutation could potentially be viewed by a client other than the one
that made the mutation. For example, a process might read the contents of a
cached directory and write them to a file (e.g., ls /dfs/foo > /dfs/bar). The
readdir operation creates a speculation that the cached version of directory foo
is up-to-date. After the process writes to and closes bar, the contents of this file
depend on that speculation. If a process running on another file system client
reads /dfs/bar, it views speculative state. Thus, if the original speculation
made during the readdir fails, both clients and the server must roll back state.

Potentially, Speculator could allow multiple clients to share speculative state
using a mechanism such as Time Warp’s virtual time [Jefferson 1985]. Alter-
natively, it could allow each client to share its speculative state with the server,
but not with other clients, by having the server block any clients that attempt to
read or write data that has been speculatively modified by another client. How-
ever, we realized that the restricted nature of communication in a server-based
distributed file system enables a much simpler solution.

The file server always knows the true state of the file system; thus, when it
receives a speculative mutating operation, it can immediately evaluate whether
the hypothesis that underlies that speculation is true or false. Based on this
observation, we modify the server to only perform a mutation if its hypothesis
is valid. If the hypothesis is false, the server fails the mutation. Thus, the
server effectively controls whether a speculation succeeds or fails. A client that
receives a failure response cannot commit that speculation.

In each speculative RPC, the client includes the hypothesis underlying that
speculation. In the above example, a BlueFS client would send a check version
RPC containing the version number of its cached copy of foo when it executes a
speculative readdir. The server checks this version number against the current
file version and fails the speculation if the two differ. Part of the hypothesis of
any mutating operation is that all prior speculations on which it depends have
succeeded. In the example, the modification to bar depends on the success of the
readdir speculation. These causal dependencies are precisely the set of specula-
tions that are associated with the undo log of the process prior to transmitting
the mutating operation. This list is returned by create speculation and in-
cluded in any speculative RPC sent to the server. If the server has previously
failed any of the listed speculations, it fails the mutation.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

378 • E. B. Nightingale et al.

This design requires that the server keep a per-client list of failed specula-
tions. It also requires that the server process messages in the same order that
a client generates them (otherwise the server could erroneously allow a mu-
tation because it has not yet processed an invalid speculation on which that
mutation depends). We enforce this ordering using client-generated sequence
numbers for all RPCs. This sequence number also limits the amount of state
that the server must keep. Each client appends the sequence number of the
last reply that it received from the server to each new RPC. Once the server
learns that the reply associated with a failed speculation has been processed,
it discards that state (since the client will not allow any process that depends
on that speculation to execute further).

A substantial advantage of this approach is simplicity: the server never
stores speculative file data. Because all file modifications must pass through
the server, other clients never view speculative state in the file system. Thus,
when a speculation fails, only a single client must roll back state. To enable
this simple design we had to modify each file system’s underlying RPC protocol
to support dependencies and asynchronous messages. While we have chosen to
explicitly modify each file server, all server modifications (with the exception of
group commit, described below) could be implemented with a server-side proxy.

Speculator reduces the size of the list sent to the server by representing spec-
ulations as <pid,spec id> tuples and generating the low-order spec id with a
per-process counter that is incremented on each new speculation. The depen-
dency list is encoded as a list of extents of consecutive identifiers. Typically, this
produces a list size proportional to the number of processes sharing specula-
tive state, rather than the number of speculations (it is not quite proportional
because rollbacks can create gaps in the spec id sequence).

Speculator assumes that a client communicates with only one file server at
a time. In the future, we plan to block any process that attempts to write to a
server while it has uncommitted speculations that depend on another server.

7.2 Speculative Group Commit

Our original intent in using speculative execution was to hide the latency asso-
ciated with remote communication. However, we soon realized that speculative
execution can also improve throughput. Without speculation, synchronous oper-
ations performed by a single thread of control must be done sequentially. Spec-
ulative execution allows such operations to be performed concurrently. This
creates opportunities to amortize expensive activities across multiple opera-
tions. Group commit is a prime example of this.

In most distributed file systems (e.g., Coda and NFS), the file server commits
synchronous mutating operations to disk before replying to clients. Commits
limit throughput because each requires a synchronous disk write. A well known
optimization in the presence of concurrent operations is to group commit multi-
ple operations with a single disk write. However, opportunities for group commit
in a file server are limited because each thread of control has at most one in-
flight synchronous mutating operation (although the Linux NFS server groups
the commit of asynchronous writes to the same file). In contrast, speculative

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 379

execution lets a single thread of control have many synchronous mutating op-
erations in-flight—these can be committed with a single disk command.

We modify the file server to delay committing and replying to operations
until either (a) no operations are in its network buffer, or (b) it has processed
100 operations. The server then group commits all operations and replies to
clients.

7.3 Network File System

In order to explore how much speculative execution can improve the perfor-
mance of existing distributed file systems, we modified NFS version 3 to use
Speculator. Our modified version, called SpecNFS, preserves existing NFS se-
mantics, including close-to-open consistency. It issues the same RPCs that the
nonspeculative version issues; however, in SpecNFS, many of these RPCs are
speculative and contain the additional hypothesis data described in Section 7.1.

The NFS version 3 specification requires data to be committed to stable
storage before returning from a synchronous mutating RPC such as mkdir (the
Linux 2.4.21 implementation meets this specification unless the async mount
flag is used). Implicit in this specification is the assumption that the operation
should not be observed to complete until its modifications are safe on stable
storage. In SpecNFS, although a process may continue to execute speculatively
while it waits for a reply, it cannot externalize any output that depends on the
speculation. Thus, any operation that is observed to complete has already been
committed to stable storage at the server.

The SpecNFS client speculatively executes getattr RPCs when it has a lo-
cally cached copy of the inode being queried. If the inode is not cached, a block-
ing, nonspeculative getattr is issued. The client also speculatively executes
lookup and access RPCs if cached data is available. Mutating RPCs such as
setattr, create, commit, and unlink always speculate.

One complication with the NFS protocol is that the server generates new
file handles and fileids on RPCs such as create and mkdir. These values are
chosen nondeterministically, making it difficult for the client to predict which
values the server will choose. The SpecNFS client chooses aliases for those
values that it can use until it receives the reply to its original RPC. After the
client receives the reply, it discards the aliases and uses the real values. When
the server receives a message that uses an alias, it replaces the alias with the
actual value before performing the request. It discards an alias once it learns
that the client has received the reply that contains the actual value.

The Linux NFS server does not use a write-ahead log; instead, it updates
files in place. The server syncs data to disk whenever it processes commit RPCs
and RPCs that modify directory data. Rather than sync data during the pro-
cessing of these individual RPCs, the SpecNFS server syncs its file cache as a
whole when no more incoming operations are in its network buffer, or when its
commit limit of 100 operations has been reached. After syncing the file cache,
the server replies to the RPCs sent by its clients—these clients then commit
the speculations associated with those RPCs. This implementation of group
commit is less efficient than one that uses a write-ahead log; however, it still

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

380 • E. B. Nightingale et al.

improves disk throughput because the kernel orders disk writes during syncs
and coalesces writes to the same disk block.

For example, consider a client that quickly modifies and closes a small file
twice. The Linux NFS client generates a write RPC, followed by a commit RPC
for the first close. It then generates additional write and commit RPCs for the
second close. Given the Linux client implementation that waits for replies to
all write RPCs before sending the commit, this activity results in four network
round-trip delays. Furthermore, the client must wait twice for file data to be
committed to disk—once for each commit RPC. In comparison, SpecNFS creates
four speculations and sends all four RPCs asynchronously. The SpecNFS server
delays committing data to disk and replying to the client until it processes all
four messages. Committing the file data requires only a single disk write if the
two writes are to the same file location.

7.4 Blue File System

We next explored whether speculative execution enables a distributed file sys-
tem to provide strong consistency and safety, yet still have reasonable per-
formance. Since we are currently developing a new distributed file system,
BlueFS [Nightingale and Flinn 2004], we had the opportunity to develop a
clean-sheet design that used Speculator. We exploited this opportunity to pro-
vide the consistency of single-copy file semantics and the safety of synchronous
I/O.

Single-copy file semantics are equivalent to the consistency of a shared lo-
cal disk: any read operation sees the effects of all preceding modifications. In
contrast, the weaker close-to-open consistency of NFS guarantees only that a
process that opens a file on one client will see the modifications of any client
that previously closed that file. NFS makes only loose, timeout-based guar-
antees about data written before a file is closed, file attributes, and directory
operations. This creates a window during which clients may view stale data or
create inconsistent versions, leading to erroneous results.

In BlueFS, each file system object has a version number that is incremented
when it is modified. All file system operations that read data from the client
cache speculate and issue an asynchronous RPC that verifies that the version
of the cached object matches the version at the server. All operations that mod-
ify an object verify that the cached version prior to modification matches the
server’s version prior to modification. In the event of a write/write or read/write
conflict, the version numbers do not match—in this case, the speculation fails
and the calling process is restored to a prior checkpoint.

Clearly, an implementation that performs these version checks syn-
chronously provides single-copy semantics since all file system operations are
synchronized at the server. Our speculative version (which performs version
checks asynchronously) also provides single-copy semantics since no operation
is observed to complete until the server’s reply is received. Until some out-
put is observed, the status of the operation is unknown (similar to the fate of
Schrödinger’s cat). In order for a write operation on one client to precede a read
(or write) operation on another, the read must begin after the write has been

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 381

observed to complete. Since that observation can only be made after the write
reply has been received from the server, the incrementing of the version num-
ber at the server also precedes the beginning of the read operation. Thus, if the
read operation uses stale data in its cache that does not include the modifica-
tion made during the write operation, the version check fails. In this event, a
rollback occurs, and the read is re-executed with the modified version.

Our second goal was to provide the safety of synchronous I/O. Before the
server replies to a client RPC, it commits any modifications associated with that
RPC to a write-ahead log. Since the client does not externalize any output that
depends on that RPC until it receives the reply, any operation that is observed
to complete is already safe on the server’s disk. In NFS, this safety guarantee
is provided only when a file is closed; our modified version of BlueFS provides
safety for all file system operations, including each write. Since commits occur
frequently, BlueFS uses group commit to improve throughput. After a group
commit, the server reduces network traffic by summarizing the outcome of all
operations committed on behalf of a client in a single reply message

7.5 Discussion: Other File Systems

While we have modified only NFS and BlueFS to use speculation, it is useful
to consider how Speculator could benefit other distributed file systems. Since
speculation improves performance by eliminating synchronous communication,
the performance improvement seen by a particular file system will depend on
how often it performs synchronous operations.

Both NFS and BlueFS implement cache coherence by polling the file server
to verify that cached files are up-to-date. Since polling requires frequent
synchronous RPCs to the server, these file systems see substantial benefit
from Speculator. Other file systems use cache coherence schemes that re-
duce the number of synchronous RPCs performed in common usage scenarios.
AFS [Howard et al. 1988] and Coda [Kistler and Satyanarayanan 1992] grant
clients callbacks, which are promises by the server to notify the client before a
file system object is modified. A client holding a callback on an object does not
need to poll the server before executing a read-only operation on that object.
File delegations in NFSv4 [Shepler et al. 2003] provide similar functionality.
SFS [Mazières et al. 1999] also extends the NFS protocol with callbacks and
leases on file attributes. Echo [Birrell et al. 1993] uses leases to provide single-
copy consistency; a client granted an exclusive lease on an object can read or
modify that object without contacting the server.

While the use of callbacks or leases reduces the number of synchronous RPCs,
it can increase the latency of individual RPCs. Before a server can accept a
file modification or grant a client exclusive access to a file, it must first syn-
chronously revoke any callbacks or leases held by other clients. Potentially, a
well-connected client must wait on one or more poorly-connected clients. Specu-
lator would help hide the latency of these expensive operations. Thus, we expect
that file systems that use leases or callbacks would see substantial benefit from
Speculator, even though the relative benefit would be less than that seen by file
systems that use polling.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

382 • E. B. Nightingale et al.

Speculator also reduces the cost of providing safety guarantees. AFS, Coda (in
its strongly-connected mode), and NFS, write file modifications synchronously
to the server on close. Directory caching in these file systems is write-through.
Speculator would substantially improve write performance in these file systems
by hiding the latency of these synchronous operations. Since file modifications
may not be written back to the server until the file is closed, data can be lost
in the event of a system crash. Echo caches modifications for longer periods of
time and writes back modifications asynchronously (unless a lease is revoked).
This improves performance by reducing the number of synchronous RPCs, but
increases the size of the window during which data can be lost due to system
crashes.

To date, file system designers have had to choose whether to provide strong
consistency guarantees, strong safety guarantees, or good performance. Spec-
ulative execution changes this equation by eliminating synchronous communi-
cation. As our BlueFS results in the next section demonstrate: a distributed file
system using Speculator can provide the safety of synchronous I/O, as well as
single-copy semantics, and still perform better than current file systems.

8. EVALUATION

Our evaluation answers two questions:

� How much does Speculator improve the performance of an existing file system
(NFS)?

� With Speculator, what is the performance impact of providing single-copy file
semantics and synchronous I/O (in BlueFS)?

8.1 Methodology

We use two Dell Precision 370 desktops as the client and file server. Each ma-
chine has a 3 GHz Pentium 4 processor, 2 GB DRAM, and a 160 GB disk. We run
RedHat Enterprise Linux release 3 with kernel version 2.4.21. To insert delays,
we route packets through a Dell Optiplex GX270 desktop running the NISTnet
[Carson http://snad.ncsl.nist.gov/itg/nistnet/slides/index.htm] network emula-
tor. All computers communicate via 100 Mb/s Ethernet switches—the measured
ping time between client and server is 229 μs.

SpecNFS mounts with the -o tcp option to use TCP as the transport protocol.
For comparison, we run the nonspeculative version of NFS with both UDP and
TCP. Although results were roughly equivalent, we always report the best of the
two results for nonspeculative NFS. While BlueFS can cache data on local disk
and portable storage, it uses only the Linux file cache in these experiments—
this provides a fair comparison with NFS, which uses only the file cache. The
client/tmp directory is a RAMFS memory-only file system for all tests.

We ran each experiment in two configurations: one with no latency, and
the other with 15 ms of latency added between client and server (for a 30 ms
round-trip time). The former configuration represents the LAN environments
in which current distributed file systems perform relatively well, and the latter
configuration represents a wide-area link over which current distributed file
systems perform poorly.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 383

Fig. 4. PostMark file system benchmark.

8.2 PostMark

We first ran the PostMark benchmark, which was designed to replicate the
small-file workloads seen in electronic mail, netnews, and web-based com-
merce [Katcher 1997]. We used PostMark version 1.5, running in its default
configuration, which creates 500 files, performs 500 transactions consisting of
file reads, writes, creates, and deletes, and then removes all files.

The left graph in Figure 4 shows benchmark results with no additional de-
lay inserted between the file client and server. The difference between the first
two bars shows that NFS is 2.5 times faster with speculation. This speedup
is a result of using speculative group commit and the ability to pipeline previ-
ously sequential file system operations. Because PostMark is a single process
that performs little computation, this benchmark does not show the benefit
of propagating speculative state within the OS, or the benefit of overlapping
communication and computation.

The right graph in Figure 4 shows results with a 30 ms delay. The adverse
impact of latency on NFS is apparent by the difference in scales between the
two graphs: NFS without speculation is 41 times slower with 30 ms round-trip
time than in a LAN environment. In contrast, SpecNFS is much less affected
by network latency since it does not block on most remote operations. Thus, it
runs the PostMark benchmark 24 times faster than NFS without speculation.

The benefits of speculative execution are even more apparent for BlueFS.
BlueFS runs the PostMark benchmark 53% faster than the nonspeculative
version of NFS with no delay, and BlueFS is 49 times faster with a 30 ms de-
lay. This performance improvement is realized even though BlueFS provides

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

384 • E. B. Nightingale et al.

Fig. 5. Apache build benchmark.

single-copy file semantics and synchronous I/O. Interestingly, BlueFS outper-
forms the speculative version of NFS with a 30 ms delay. This is attributable
to two factors: BlueFS uses write-ahead logging to achieve better disk through-
put, and NFS network throughput is limited by the legacy sunrpc package. The
BlueFS server achieves better disk throughput than NFS because its use of a
write-ahead log reduces the number of disk seeks compared to the Linux NFS
server, which updates file data in place. The sunrpc package used by NFS has
some synchronous behavior that we were unable to eliminate; for example, we
could only have a maximum of 160 asynchronous RPCs in flight.

8.3 Apache Build Benchmark

We next ran a benchmark in which we untar the Apache 2.0.48 source tree into
a file system, run configure in an object directory within that file system, run
make in the object directory, and remove all files. During the benchmark, make
and configure fork many processes to perform subtasks—these processes com-
municate via signals, pipes, and files in the /tmp directory. Thus, propagating
speculative kernel state is important during this benchmark.

In Figure 5, each bar shows the total time to perform the benchmark, and
shadings within each bar show the time to perform each stage. With no delay
inserted between client and server, speculative execution improves NFS perfor-
mance by a factor of 2. The largest speedup comes during the configure stage,
which is 3.4 times faster. The bar on the far right shows the time to perform
the benchmark on the local ext3 file system—this gives a lower bound for per-
formance of a distributed file system. The potential speedup for make is limited

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 385

since computation represents a large portion of the execution of that stage.
However, speculative execution still improves make time by 30%. With 30 ms
of delay, NFS is 14 times faster with speculation. The cost of cache coherence
is quite high without speculation since every RPC incurs a 30 ms round-trip
delay.

SpecNFS typically has less than 10 rollbacks during the Apache benchmark.
When a file is moved to a new directory, the Linux NFS server assigns it a
new file handle; when the client next tries to access the file by the old han-
dle, the server returns ESTALE if the entry with the old file handle has been
evicted from its file cache. The client then issues a lookup RPC to learn the new
file handle. Since SpecNFS does not anticipate the file handle changing, an
ESTALE response causes a rollback. Like the nonspeculative version of NFS,
SpecNFS learns the correct file handle when it issues a nonspeculative lookup
on re-execution.

BlueFS is 66% faster than nonspeculative NFS with no delay; with a 30 ms
delay, BlueFS is 12 times faster. These results demonstrate that, with specula-
tive execution, it is possible for a distributed file system to be safe, consistent,
and fast. BlueFS does not experience any rollbacks during this benchmark.

To provide a point of comparison with file systems that use callbacks, we
ran the benchmark using version 6 of the Coda distributed file system; we
executed the benchmark with Coda in strongly-connected mode (which provides
AFS-like consistency guarantees). BlueFS, which provides stronger consistency,
outperforms Coda by 12%. With 30ms of delay, BlueFS is 3 times faster than
Coda. While we would need to implement a speculative version of Coda to
determine precisely how much Speculator would improve its performance, our
existing results provide some insight. Since Coda’s use of callbacks results in
fewer synchronous RPCs than NFS, we suspect that a speculative version of
Coda would perform better than SpecNFS.

8.4 The Cost of Rollback

In the previous two benchmarks, almost all speculations made by the dis-
tributed file system were correct. We were therefore curious to measure the
performance impact of having speculations fail. We quantified this cost by per-
forming the make stage of the Apache benchmark while varying the percentage
of out-of-date files in the NFS client cache.

To create out-of-date files, we append garbage characters to a randomly se-
lected subset of the files in the Apache source directory—if one of these modified
files were to be erroneously used during the make, the Apache build would fail.
Before the experiment begins, the client caches all files in the source directory—
this includes both the unmodified and modified files. We then replace each
modified file with its correct version at the server. Thus, before the experiment
begins, the client cache contains a certain percentage of out-of-date files that
contain garbage characters.

Nonspeculative NFS detects that the out-of-date files have changed when
it issues synchronous getattr RPCs during file open. The client discards
its cached copies of these files and fetches new versions from the server.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

386 • E. B. Nightingale et al.

Fig. 6. Measuring the cost of rollback.

SpecNFS continues to execute with the out-of-date copies and issues asyn-
chronous getattr RPCs. When an RPC fails, it invalidates its cached copy and
rolls back to the beginning of the open system call. In all cases, the compile
completes successfully.

Figure 6 shows make time when approximately 10%, 50%, and 100% of the
files are initially out-of-date. As the number of out-of-date files grows, the time
to complete the benchmark increases slightly due to the time needed to fetch
up-to-date file versions from the server. This delay is small since network band-
width is high—however, this cost must be incurred by both speculative and
nonspeculative versions of NFS. Even when all files are initially out-of-date,
SpecNFS still substantially outperforms NFS without speculative execution:
SpecNFS is 31% faster with no delay and over 11 times faster with 30 ms delay.
These improvements are comparable to results with no files out-of-date (30%
and 13 times faster, respectively). Thus, the impact of failed speculations is
almost imperceptible in this benchmark. However, the impact could be greater
on a loaded system with less spare CPU cycles for speculation, or when the
network bandwidth between client and server is limited.

Figure 7 shows more detail about these experiments. The first column shows
the number of out-of-date files in the source directory actually accessed by make.
The remaining columns show the average number of speculations that roll back
and commit during execution of the benchmark. We were initially surprised to
see that the number of rollbacks is substantially less than the number of out-
of-date files accessed by the benchmark, meaning that several out-of-date files

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 387

Fig. 7. Rollback benchmark detail.

do not cause a rollback. This disparity is caused by make accessing several out-
of-date files in short succession. For example, consider a case where make reads
the attributes of two out-of-date files before it receives the getattr response
for the first file. The first response causes a rollback since the attributes in the
client cache were incorrect. Since this rollback eliminates all state modified
after the first request was issued, a rollback is not needed when the second
getattr response is received. SpecNFS updates file attributes in the client
cache based upon both responses. Thus, on re-execution, the new speculations
for both files are correct. In this example, although two files are out-of-date,
the client only rolls back once. In effect, this is a type of prefetching of out-of-
date file attributes, somewhat similar to the prefetching of file data proposed
by Chang and Gibson [1999].

8.5 Impact of Group Commit and Sharing State

Figure 8 isolates the impact of two ideas presented in this article. The left
bar of each graph shows the time needed by the nonspeculative version of
NFS to perform all four stages of the Apache benchmark described in Sec-
tion 8.3. The next two datasets show the performance of SpecNFS and BlueFS.
For each file system, we show the default configuration (with full support for
speculative execution), and three configurations that omit various parts of
Speculator.

The second bar in each data set shows performance when Speculator does
not let processes share speculative state through kernel data structures. This
implementation blocks speculative processes that read or write to pipes and
files in RAMFS, send signals to other processes, fork, or exit. Only speculative
state in the distributed file system is shared between processes. The third bar in
each data set shows the performance of speculative execution when the server
does not allow speculative group commit. The last bar shows performance when
both speculative group commit and sharing of speculative state are disallowed.

The benefit of propagation is most clearly seen with 30 ms delay. Block-
ing until speculations are resolved is more costly in this scenario since sever
replies take longer to arrive. The benefit of speculative group commit is less
dependent on latency. Without propagation and speculative group commit, the
improved consistency and safety of BlueFS are much more costly. Especially on
low-latency networks, both improvements are needed for good performance.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

388 • E. B. Nightingale et al.

Fig. 8. Measuring components of speculation.

9. RELATED WORK

To the best of our knowledge, Speculator is the first support for multiprocess
speculative execution in a commodity operating system and the first use of
speculative execution to improve cache coherence and write throughput in dis-
tributed file systems.

Chang and Gibson [1999] and Fraser and Chang [2003] use speculative ex-
ecution to generate I/O prefetch hints for a local file system. In their work,
the speculative thread executes only when the foreground process blocks on
disk I/O. When the speculative thread attempts to read from disk, a prefetch
hint is generated and fake data is returned so that the thread can continue to
execute. Their work improves read performance through prefetching, whereas
Speculator improves read performance by reducing the cost of cache coher-
ence. Speculator also allows write-path optimizations such as group commit.
In Speculator, speculative processes commit their work in the common case
where speculations are correct. However, since Chang’s speculative threads do
not see correct file data, any computation done by a speculative thread must
be re-done later by a nonspeculative thread. Speculator also allows multiple
processes to participate in a speculation; Chang’s speculative threads are not
allowed to communicate with other processes.

Time Warp [Jefferson et al. 1987] explored how speculative execution can im-
prove the performance of distributed simulations. Time Warp is specialized for
executing simulations, and imposes certain restrictions that may be onerous to
developers of general applications: processes must be deterministic, cannot use

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 389

heap storage, and must communicate via asynchronous messages. Speculator
is targeted for a general purpose operating system and does not impose these
restrictions. Time Warp’s abstraction of virtual time [Jefferson 1985] tracks
causal dependencies using Lamport’s [1978] clock conditions. Speculator’s de-
pendency lists are more general than a one-dimensional value. This generality
is most useful with concurrent speculations where a one-dimensional time value
creates an unnecessary dependency between two independent events. In con-
trast to Time Warp, the client-server nature of distributed file systems allows
Speculator to simplify its handling of speculative state: failed speculative state
created by a client is never committed at the server, nor is it visible to other
clients. Speculator’s design for buffering output was inspired by Time Warp’s
handling of external output.

Common applications of speculative execution in processor design range from
branch prediction to cache coherence in multiprocessors. Steffan et al. [2000]
have investigated the use of speculation to extract greater parallelism from ap-
plication code. Similar proposals advocating hardware speculation are Franklin
and Sohi [1996], Hammond et al. [1998], and Zhang et al. [1999]. The differ-
ence between implementing speculation in the processor and in the OS is the
level of granularity: OS speculation can be applied at much higher levels of
abstraction where processor-level speculation is inappropriate. Speculative ex-
ecution has recently been used for dynamic deadlock detection [Li et al. 2005],
surviving software failures [Qin et al. 2005], and improving the performance of
distributed shared memory [Tapus et al. 2005].

Speculative execution provides a limited subset of the functionality of a trans-
action. Thus, transactional systems such as QuickSilver [Schmuck and Wylie
1991], Locus [Weinstein et al. 1985], or TABS [Spector et al. 1985] could poten-
tially supply the needed functionality. However, the overhead associated with
providing atomicity and durability might preclude transactions from achieving
the same performance gains as speculative execution.

Checkpointing and rollback-recovery are well-studied [Elnozahy et al. 2002].
However, most prior work in checkpointing focuses on fault tolerance; a key
difference in Speculator is that checkpoints capture only volatile and not per-
sistent state. In this manner, they are similar to the lightweight checkpoints
used for debugging by Srinivasan et al. [2004]. Previous work in logging virtual
memory [Cheriton and Duda 1995] might offer performance optimizations over
Speculator’s current fork-based checkpoint strategy. Causal dependency track-
ing has been applied in several other projects, including QuickSilver [Schmuck
and Wylie 1991], BackTracker [King and Chen 2003], and the Repairable File
Service [Zhu and Chiueh 2003].

Prior distributed file systems have provided single-copy file semantics—
examples include Sprite [Nelson et al. 1988] and Spritely NFS [Srinivasan and
Mogul 1989]. However, these semantics came at a performance cost. On the
other hand, Liskov and Rodrigues [2004] demonstrated that read-only trans-
actions in a file system can be fast, but only by allowing clients to read slightly
stale (but consistent) data. A major contribution of Speculator is showing that
strong safety and cache coherence guarantees can be provided with minimal
performance impact. In this manner, it is possible that speculative execution

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

390 • E. B. Nightingale et al.

might improve the performance of distributed file systems such as BFS
[Castro and Liskov 2000], SUNDR [Li et al. 2004], and FARSITE [Adya et al.
2002] that require additional communication to deal with faulty or untrusted
servers. Finally, Satyanarayanan [1996] observed that semantic callbacks
could reduce the cost of cache coherence by expressing predicates over cache
state. The hypotheses used by our speculative file systems can be viewed as
predicates expressed over speculative state.

10. CONCLUSION

Speculator supports multiprocess speculative execution within a commodity OS
kernel. In this article, we have shown that Speculator substantially improves
the performance of existing distributed file systems. We have also shown how
speculation enables the development of new file systems that are safe, consis-
tent, and fast, even over high-latency links. Our modified version of BlueFS
provides single-copy file semantics and synchronous I/O, yet still performs bet-
ter than current file systems. While our investigation to date has focused on
distributed file systems, we believe that generic OS support for speculative exe-
cution and causal dependency tracking will prove useful in many other domains.
Our future plans therefore include investigating what other applications can
benefit from Speculator.

ACKNOWLEDGMENTS

We thank Manish Anand, Dan Peek, Ya-Yunn Su, the anonymous reviewers,
and our SOSP shepherd, Franz Kaashoek, for suggestions that improved the
quality of this article. Jan Harkes and Mahadev Satyanarayanan helped ex-
plain details of the Coda file system. We used David A. Wheeler’s SLOCCount
to estimate the lines of code for our implementation.

REFERENCES

ADYA, A., BOLOSKY, W. J., CASTRO, M., CERMAK, G., CHAIKEN, R., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,

THEIMER, M., AND WATTENHOFER, R. P. 2002. FARSITE: Federated, available, and reliable storage

for an incompletely trusted environment. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation. Boston, MA, 1–14.

BIRRELL, A. D., HISGEN, A., JERIAN, C., MANN, T., AND SWART, G. 1993. The Echo distributed file

system. Tech. Rep. 111, Digital Equipment Corporation, Palo Alto, CA. October.

CALLAGHAN, B., PAVLOWSKI, B., AND STAUBACH, P. 1995. NFS Version 3 Protocol Specification. Tech.

Rep. RFC 1813, IETF. June.

CARSON, M. http://snad.ncsl.nist.gov/itg/nistnet/slides/index.htm. Adaptation and Protocol Testing
thorugh Network Emulation. NIST.

CASTRO, M. AND LISKOV, B. 2000. Proactive recovery in a Byzantine-fault-tolerant system. In Pro-
ceedings of the 4th Symposium on Operating Systems Design and Implementation. San Diego,

CA.

CHANG, F. AND GIBSON, G. 1999. Automatic I/O hint generation through speculative execution.

In Proceedings of the 3rd Symposium on Operating Systems Design and Implementation. New

Orleans, LA, 1–14.

CHERITON, D. AND DUDA, K. 1995. Logged virtual memory. In Proceedings of the 15th ACM Sym-
posium on Operating Systems Principles. Copper Mountain, CO, 26–39.

ELNOZAHY, E. N., ALVISI, L., WANG, Y.-M., AND JOHNSON, D. B. 2002. A survey of rollback-recovery

protocols in message-passing systems. ACM Comput. Surv. 34, 3 (Sept.), 375–408.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

Speculative Execution in a Distributed File System • 391

FRANKLIN, M. AND SOHI, G. 1996. ARB: A hardware mechanism for dynamic reordering of memory

references. IEEE Trans. Comput. 45, 5 (May), 552–571.

FRASER, K. AND CHANG, F. 2003. Operating system I/O speculation: How two invocations are faster

than one. In Proceedings of the 2003 USENIX Technical Conference. San Antonio, TX, 325–338.

HAERDER, T. AND REUTER, A. 1983. Principles of Transaction-Oriented Database Recovery. ACM
Comput. Surv. 15, 4 (Dec.), 287–317.

HAMMOND, L., WILLEY, M., AND OLUKOTUN, K. 1998. Data speculation support for a chip multi-

processor. In Proceedings of the 8th International ACM Conference on Architecture. Support for
Programming Languages and Operating Systems. San Jose, CA, 58–69.

HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS, D. A., SATYANARAYANAN, M., SIDEBOTHAM, R. N.,

AND WEST, M. J. 1988. Scale and performance in a distributed file system. ACM Trans. Comput.
Syst. 6, 1 (Feb.).

JEFFERSON, D. 1985. Virtual time. ACM Trans. Prog. Lang. Syst. 7, 3 (July), 404–425.

JEFFERSON, D., BECKMAN, B., WIELAND, F., BLUME, L., DILORETO, M., HONTALAS, P., LAROCHE, P., STUR-

DEVANT, K., TUPMAN, J., WARREN, V., WEIDEL, J., YOUNGER, H., AND BELLENOT, S. 1987. Time Warp

operating system. In Proceedings of the 11th ACM Symposium on Operating Systems Principles.

Austin, TX, 77–93.

KATCHER, J. 1997. PostMark: A new file system benchmark. Tech. Rep. TR3022, Network

Appliance.

KING, S. T. AND CHEN, P. M. 2003. Backtracking intrusions. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles. Bolton Landing, NY, 223–236.

KISTLER, J. J. AND SATYANARAYANAN, M. 1992. Disconnected operation in the Coda file system. ACM
Trans. Comput. Syst. 10, 1 (Feb.).

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21, 7, 558–565.

LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D. 2004. Secure untrusted data repository (SUNDR).

In Proceedings of the 6th Symposium on Operating Systems Design and Implementation. San

Francisco, CA, 121–136.

LI, T., ELLIS, C. S., LEBECK, A. R., AND SORIN, D. J. 2005. Pulse: A dynamic deadlock detection

mechanism using speculative execution. In Proceedings of the 1005 USENIX Technical Confer-
ence. 31–44.

LISKOV, B. AND RODRIGUES, R. 2004. Transactional file systems can be fast. In Proceedings of the
11th SIGOPS European Workshop. Leuven, Belgium.

MAZIÈRES, D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL, E. 1999. Separating key management

from file system security. In Proceedings of the 17th ACM Symposium on Operating Systems
Principles. Kiawah Island, SC, 124–139.

NELSON, M. N., WELSH, B. B., AND OUSTERHOUT, J. K. 1988. Caching in the Sprite network file

system. ACM Trans. Comput. Syst. 6, 1, 134–154.

NIGHTINGALE, E. B. AND FLINN, J. 2004. Energy-efficiency and storage flexibility in the Blue File

System. In Proceedings of the 6th Symposium on Operating Systems Design and Implementation.

San Francisco, CA, 363–378.

QIN, F., TUCEK, J., SUNDARESAN, J., AND ZHOU, Y. 2005. Rx: Treating bugs as allergies—a safe method

to survive software failures. In Proceedings of the 20th ACM Symposium on Operating Systems
Principles. Brighton, United Kingdom, 235–248.

ROSENBLUM, M., BUGNION, E., HERROD, S. A., WITCHEL, E., AND GUPTA, A. 1995. The impact of archi-

tectural trends on operating system performance. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles. Copper Mountain, CO, 285–298.

SATYANARAYANAN, M. 1996. Fundamental challenges in mobile computing. In Proceedings of the
15th Symposium on Principles of Distributed Computing. Philadelphia, PA, 1–7.

SCHMUCK, F. AND WYLIE, J. 1991. Experience with transactions in QuickSilver. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles. 239–253.

SHEPLER, S., CALLAGHAN, B., ROBINSON, D., THURLOW, R., BEAME, C., EISLER, M., AND NOVECK, D. 2003.

Network File System (NFS) version 4 Protocol. Tech. Rep. RFC 3530, IETF. April.

SPECTOR, A. Z., DANIELS, D., DUCHAMP, D., EPPINGER, J. L., AND PAUSCH, R. 1985. Distributed trans-

actions for reliable systems. In Proceedings of the 10th ACM Symposium on Operating Systems
Principles. Orcas Island, WA, 127–146.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

392 • E. B. Nightingale et al.

SRINIVASAN, S., ANDREWS, C., KANDULA, S., AND ZHOU, Y. 2004. Flashback: A light-weight extension

for rollback and deterministic replay for software debugging. In Proceedings of the 2004 USENIX
Technical Conference. Boston, MA.

SRINIVASAN, V. AND MOGUL, J. 1989. Spritely NFS: Experiments with cache consistency protocols.

In Proceedings of the 12th ACM Symposium on Operating System Principles. 45–57.

STEFFAN, J. G., COLOHAN, C. B., ZHAI, A., AND MOWRY, T. C. 2000. A scalable approach to thread-

level speculation. In Proceedings of the 27th Annual International Symposium on Computer
Architecture (ISCA). Vancouver, Canada, 1–24.

TAPUS, C., SMITH, J. D., AND HICKEY, J. 2003. Kernel level speculative DSM. Workshop on Dis-
tributed Shared Memory on Clusters. Tokyo, Japan.

WEINSTEIN, M. J., PAGE, T. W. JR., LIVEZEY, B. K., AND POPEK, G. J. 1985. Transactions and syn-

chronization in a distributed operating system. In Proceedings of the 10th ACM Symposium on
Operating Systems Principles. Orcas Island, WA, 115–126.

ZHANG, Y., RAUCHWERGER, L., AND TORRELLAS, J. 1999. Hardware for speculative parallelization of

partially-parallel loops in DSM multiprocessors. In Proceedings of the 5th International Sympo-
sium on High Performance Computer Architecture. Orlando, FL, 135.

ZHU, N. AND CHIUEH, T. 2003. Design, implementation and evaluation of the Repairable File

Service. In Proceedings of the International Conference on Dependable Systems and Networks.

San Francisco, CA.

Received January 2006; revised April 2006; accepted April 2006

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.

