
Design and Implementation of
Reliable Main Memory

by

Wee Teck Ng

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy (Computer Science & Engineering)

in The University of Michigan

1999

Doctoral Committee:

Associate Professor Peter M. Chen, Chair

Assistant Professor Stephen Chick

Adjunct Professor Peter Honeyman

Associate Professor Farnam Jahanian

Professor Trevor Mudge

 Wee Teck Ng 1999
All Rights Reserved

ACKNOWLEDGMENTS

I would like to thank my parents and sisters, whose love and support made this all

possible.

I would also like to thank my research advisor Peter M. Chen. Pete suggested this research

topic, secured the funds to support my research, and pitched in with the coding and writing

when I was working overtime to meet a paper deadline. I could not have finished my

dissertation without his support and encouragement.

I am grateful to my friends in the department. Professor Toby Teorey, my database

instructor and co-author in a journal paper, was instrumental in getting me involved in

database research early in my career. My dissertation committee members, especially

Professors Peter Honeyman and Stephen Chick, have made many suggestions that helped

improve my dissertation. The Rio project team members, David Lowell, Subhachandra

Chandra, George Dunlap, Olga Kornievskaia, Gurushankar Rajamani, and Chris Aycock,

have provided a fun and productive environment for research. I have benefited immensely

from my discussions with Dave, Chandra, and Guru on distributed systems and reliable

computing. Victor Kravets, my good friend and marathon training companion, was always

pushing me to go the extra mile. I am sad to say that after 1.5 years of training, I am still

not ready to compete in a marathon. Charles Lefurgy, Professor Sugih Jamin, and the staff

of Department Computing Organization were very generous in their equipment loan.

ABSTRACT

Design and Implementation of
Reliable Main Memory

by

Wee Teck Ng

Chair: Peter M. Chen

One of the fundamental limits to high-performance, high-reliability applications is mem-

ory’s vulnerability to system crashes. Because memory is commonly viewed as unsafe,

applications requiring high reliability need to write data synchronously back to disk. This

extra disk traffic lowers performance and necessitates complex strategies to minimize the

impact of disk I/O. The goal of the Rio (RAM I/O) project is to make ordinary main mem-

ory safe for persistent storage by enabling memory to survive system crashes. Reliable

memory enables a system to achieve the best of both worlds: reliability equivalent to a

write-through file cache, where every write is instantly safe, and performance equivalent

to a pure write-back cache, with no reliability-induced writes to disk. We apply an iterative

design methodology to design systematically reliable main memories, and use it to design

and implement reliable main memories in different platforms (Intel PC and Digital Alpha

workstation) and application domains (operating system and databases). Our main design

techniques are to protect memory during a crash and restore it either during a crash (a

“safe” sync) or during a reboot (a “warm” reboot). We conduct extensive crash tests to

demonstrate that our ideas are sound, and to formulate the design principles for reliable

main memory.

iv

Table of Contents

ACKNOWLEDGEMENT .. ii

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

CHAPTERS

1 Introduction..1
1.1 Problem Statement...1

1.2 Two Approaches for Reliable Memory ...4

1.3 Our Solution: Rio (RAM I/O) ...5

1.4 Contributions ...6

1.5 Outline of Dissertation Proposal ...7

2 Related Work ...10
2.1 Benefits of Reliable Memory...10

2.1.1 Benefits of Reliable Memory for File Systems.....................................11

2.1.2 Benefits of Reliable Memory for Databases ...12

2.1.3 Benefits of Reliable Memory for Future Applications..........................15

2.2 Field Studies of System Crashes ...16

2.3 Using Software to Inject Faults ...17

2.4 Using Fault Injection to Design Fault-tolerant Systems......................................21

2.5 Protecting Memory..22

2.6 Summary..25

3 Reliable Memory Design Methodology...26
3.1 Design Methodology ...26

3.2 Fault Model ...28

3.2.1 Random Bit Flips ..30

3.2.2 Low-Level Software Faults ...30

3.2.3 High-Level Software Faults ..30

3.3 Experiment Setup ..31

3.3.1 Injecting Faults..32

3.3.2 Detecting Corruption after a Crash ...32

3.3.3 Test Setup ..34

4 Reliable File Cache in Digital UNIX...36
4.1 Implementation Platform...36

4.2 Design Iterations..37

4.2.1 Design Iteration 1: Rio without Protection ...39

4.2.1.1 Design...39

4.2.1.2 Results and Analysis...41

4.2.2 Design Iteration 2: Rio with Protection ..42

4.2.2.1 Virtual Memory (VM) Protection...43

v

4.2.2.2 Code Patching...44

4.2.2.3 Results and Analysis...46

4.3 Performance...47

4.4 Discussion..50

4.5 Summary..51

5 Reliable File Cache in FreeBSD..52
5.1 Implementation Platform...52

5.2 Design Iterations..53

5.2.1 Design Iteration 1: Default FreeBSD Sync...54

5.2.1.1 Design...54

5.2.1.2 Results and Analysis...55

5.2.2 Design Iteration 2: Basic Safe Sync..58

5.2.1.1 Design...58

5.2.1.2 Results and Analysis...59

5.2.3 Design Iteration 3: Enhanced Safe Sync...62

5.2.1.1 Design...62

5.2.1.2 Results and Analysis...62

5.2.4 Design Iteration 4: BIOS Safe Sync ...63

5.2.1.1 Design...63

5.2.1.2 Results and Analysis...65

5.3 Performance...67

5.4 Discussion..70

5.5 Summary..71

6 Application-Level Reliable Memory ...73
6.1 Postgres Database Management System ...73

6.2 Software Designs for Integrating Reliable Memory..74

6.2.1 Non-Persistent Database Buffer Cache...75

6.2.2 Persistent Database Buffer Cache ...77

6.2.3 Persistent, Protected Database Buffer Cache ..82

6.3 Reliability Evaluation ..83

6.4 Discussion..88

6.5 Summary..89

7 Design Dimensions for Reliable Memory ...90
7.1 Fault Detection Techniques ...91

7.1.1 VM Protection...92

7.1.1.1 Protecting Kernel Code...93

7.1.1.2 Protecting Buffer Cache..93

7.1.1.3 Protecting Registry ...98

7.1.2 Reset Key and Watchdog Timer..99

7.2 Fault Recovery...101

7.2.1 When to Restore: Warm Reboot vs. Safe Sync...................................102

7.2.2 What Information Do We Need?...102

7.2.3 How to Access the Data and Code? ..103

7.2.4 How to write the data to disk?...104

7.3 System Configuration ..104

vi

7.3.1 Physical Memory Size...104

7.3.2 Virtual Address Size..106

7.4 Summary..107

8 Conclusion ...109
8.1 Summary of Results ..109

8.2 Future Work...111

8.2.1 Error Coverage ..111

8.2.2 Protecting Against Hardware Faults ...111

8.2.3 Performance Characterization of Commercial Databases...................112

8.2.4 Fault-tolerant System Design..113

9 Bibliography ..114

vii

List of Figures

Figure 1.1 Storage Hierarchy..1

Figure 2.1 Performance Improvement with Reliable Memory...14

Figure 2.2 Execution Profile on Next Generation Machine...15

Figure 3.1 Design Process..27

Figure 3.2 Test Equipment Setup...35

Figure 4.1 Warm Reboot Options..41

Figure 4.2 Comparing Digital Unix Rio Design Alternatives...46

Figure 5.1 Comparing FreeBSD Rio Design Alternatives...55

Figure 5.2 Why is Rio with BIOS Safe Sync More Reliable?..66

Figure 6.1 I/O Interface to Reliable Memory...75

Figure 6.2 Memory Interface to Reliable Memory..77

Figure 6.3 Database Buffer Cache State..80

Figure 6.4 Protected Persistent Database Buffer Cache..83

Figure 7.1 Effects of Faults During System Crash...90

Figure 8.1 Increasing the Availability of Reliable Memory Systems...............................112

viii

List of Tables

Table 2.1 Features of Software-Implemented Fault Injection Tools.................................20

Table 3.1 Relating Faults to Programming Errors..29

Table 4.1 Specifications of Experimental Platform..37

Table 4.2 Comparing Disk and Memory Reliability..39

Table 4.3 Performance Comparison..48

Table 5.1 Comparing Reliability..53

Table 5.2 Design Iterations for Reliable File Cache..54

Table 5.3 Categories of Fault Symptoms for Default FreeBSD Sync..............................57

Table 5.4 Categories of Fault Symptoms for Basic Safe Sync..60

Table 5.5 Categories of Fault Symptoms for Enhanced Safe Sync...................................63

Table 5.6 Categories of Fault Symptoms for BIOS Safe Sync...65

Table 5.7 Performance Comparison..68

Table 5.8 Why is Rio Faster?..69

Table 6.1 Comparing Reliability..84

Table 6.2 Proportional Mapping...86

Table 6.3 Weighted Mean Corruption Rates...87

Table 7.1 Applicability of Reliability Memory Design Techniques.................................91

Table 7.2 Characterization of Fault Detection Techniques..92

Table 7.3 Breakdown of Corruptions for FreeBSD Rio File Cache..................................94

Table 7.4 Breakdown of Corruptions for Write-through File Cache................................96

Table 7.5 Performance of Rio File Cache with Different Protection Settings...............97

Table 7.6 Evaluating the Effectiveness of Reset Key and Watchdog Timers...............100

Table 7.7 Effect of Physical Memory Size on Reliability..105

1

Chapter 1

Introduction

1.1 Problem Statement

A modern storage hierarchy (see Figure 1.1) combines random-access memory, mag-

netic disk, and possibly optical disk or magnetic tape to try to keep pace with rapid

advances in processor performance. I/O devices such as disks and tapes are considered

fairly reliable places to store long-term data such as files. However, random-access mem-

ory (RAM) is commonly viewed as an unreliable place to storepermanent data (files)

because it is perceived to be vulnerable to power outages and operating system (OS)

crashes [Tanenbaum95, page 146].

Disk File System

RAM

CPU

File Cache

 B
et

te
r

R
es

po
ns

e
T

im
e

Low
er C

ost

Figure 1.1 Storage Hierarchy

B
etter R

eliability

2

Memory’s vulnerability to power outages is easy to understand and fix. A $100 unin-

terruptible power supply (UPS) can keep a system running long enough to dump memory

to disk in the event of a power outage [APC96], or one can use non-volatile memory such

as Flash RAM [Wu94]. We do not consider power outages further in this dissertation.

Memory’s vulnerability to OS crashes is less concrete. Most people would feel ner-

vous if their system crashed while the sole copy of important data was in memory, even if

the power stayed on [DEC95, Tanenbaum95 page 146, Silberschatz94 page 200]. As evi-

dence of this view, most systems periodically write file data to disk, and transaction pro-

cessing applications view transactions as committed only when the changes are made to

the disk copy of the database.

The assumption that memory is unreliable hurts system performance, reliability, sim-

plicity, semantics, and cost.

• Because memory is unreliable, systems that require high reliability, such as databases,

write new data or its log through to disk, but this slows performance to that of disks.

Many systems, such as UNIX file systems, mitigate the performance loss caused by

extra disk writes by writing only new data to disk every 30 seconds or so, but this risks

the loss of data written within 30 seconds of a crash [Ousterhout85]. In addition, 1/3 to

2/3 of newly written data lives longer than 30 seconds [Baker91, Hartman93], so a large

fraction of writes must eventually be written through to disk anyway. A longer delay

can decrease disk traffic due to writes, but only at the risk of losing more data. The

extreme approach is to use a pure write-back scheme where data is written to disk only

when the memory is full. This is an option only for applications where reliability is not

an issue, such as compiler-generated temporary files.

3

• Memory’s unreliability also increases system complexity. Increased disk traffic due to

extra write backs forces the use of extra disk optimizations such as disk scheduling and

disk reorganization [Ganger94b]. It is also common in file and database systems to have

several levels of cache to reduce the need for disk access [Rahm92]. This hierarchy of

storage complicates system design as there are many system parameters (cache size,

replacement policy, etc.) to consider, and no settings will satisfy all applications.

Many of these complex techniques also do not scale well with faster CPU speeds. For

example, transaction systems overlap I/O to increase the system’s multiprogramming

level. While this increases the system’s throughput, it does not reduce the individual

transaction’s response time. It does not scale well with faster CPU speeds as higher

concurrency increases data contention and lock synchronization.

• Ideal semantics, such as atomicity for every transaction, are also sacrificed. Because

disk accesses are slow and memory is unreliable, application programmers commonly

forsake a simpler synchronous programming model for a harder asynchronous model.

This allows the programmer to schedule disk I/O asynchronously and move on to other

tasks, instead of waiting for the I/O to complete. An interrupt service routine is subse-

quently invoked when the disk I/O completes. While this approach gives better perfor-

mance, it can complicate program development as an asynchronous program has a non-

sequential program flow that is counter-intuitive for most programmers. Moreover, an

asynchronous program is non-deterministic, further complicating performance analy-

sis. It is also less reliable, as it could potentially lose data during system crashes.

4

• Finally, memory’s unreliability increases system cost. It forces systems to keep a copy

of permanent memory data on disk; this shrinks the available storage capacity. Applica-

tions requiring fast reliable memory have to rely on expensive hardware solutions like

solid state disks.

The reason most people view battery-backed memory as unreliable yet view disk as

reliable is theinterface used to access the two storage media. The interface used to access

disks is explicit and complex. Writing to disk uses device drivers that form I/O control

blocks and write to I/O registers. Functions that use the device driver are checked for

errors, and functions that do not use the device driver are unlikely to mimic accidentally

the complex actions performed by the device driver. In contrast, the interface used to

access memory is simple—any store instruction by any kernel function can easily change

any data in memory simply by using the wrong address. It is hence relatively easier for

many simple software errors (such as de-referencing an uninitialized pointer) to acciden-

tally corrupt the contents of memory [Baker92a].

1.2 Two Approaches for Reliable Memory

Many commercial I/O devices contain memory. This memory is assumed to be reli-

able because of the I/O interface used to access it. These devices include solid-state disks,

non-volatile disk caches, and write-buffers such as Prestoserve [Moran90]. While these

can improve performance over disks, their performance is limited by the low bandwidth

and high overhead of the I/O bus and device interface. There is also no experimental data

that show that disk I/O interface offers better protection against software errors than main

memory on processor bus.

5

A better approach is to use ordinary main memory to store files and protect main

memory using fault tolerant techniques. Most systems already have a relatively large

amount of main memory and can access it very quickly. Further, main memory is random-

access, unlike special-purpose devices. The main obstacle to using main memory as stable

store is that it is vulnerable to software errors and system crashes [Tanenbaum95,

Silberschatz94]. Several researchers attempt to overcome this by incorporating fault toler-

ant techniques into main memory to protect it from various hardware and software faults

[Banatre91, Gait90, Abbott94]. These fault tolerant techniques include redundancy (dupli-

cated data, memory controllers, etc.), protection (hardware controllers to enforce protec-

tion on memory access), and watchdog timers (to detect processor crashes). While most of

these fault-tolerant devices are attached to the memory bus, they are still several times

slower than conventional RAM [Banatre91]. They are also much more expensive than

main memory due to the need for specialized hardware and redundant configuration.

Moreover, with the exception of the Hive firewall described in [Chapin95], none of these

papers attempt to evaluate the effectiveness of their proposals with experiments.

1.3 Our Solution: Rio (RAM I/O)

Our approach to reliable memory design is to use existing main memory as the under-

lying storage, and protect it from software errors and system crashes using software-based

techniques. This approach incurs very little additional cost as it uses main memory that is

already available on a computer. It is also portable as it does not require specialized hard-

ware. The main potential drawbacks are performance and reliability. Software-based pro-

tection may have very high overheads [Wahbe92], and there are very little experimental

data on its effectiveness against software errors.

6

We address these concerns by implementing reliable memories on two different hard-

ware platforms (DEC Alpha and Intel PC) and application domains (operating systems

and databases). We present benchmark results to illustrate the substantial performance

benefits of our reliable memory design. We also study the reliability of our design by ana-

lyzing its reliability during system crashes. A major concern in using main memory to

store permanent data is its vulnerability to software errors. For example, a pointer contain-

ing an invalid address can easily overwrite data in memory [Sullivan91b]. Although it is

common to assume that files in main memory are vulnerable to operating system crashes,

there is remarkably little data on how often these crashes actually do corrupt files in mem-

ory. We first quantify the vulnerability of memory and disk to OS crashes. This allows us

to compare quantitatively our reliable memory design to memory and disk-based system,

and to provide insights into developing effective fault tolerant techniques.

The ideal way to measure how often system crashes corrupt files in memory or disk

would be to examine the behavior of real system crashes. Unfortunately, data of this nature

is not recorded (or is not available) from production systems. Other approaches, such as

analytical modeling, are not appropriate for very large systems like UNIX operating sys-

tems or database management systems [Kao93, Kanawati95]. Our approach is to use a

software fault injection tool to study system reliability. We use software fault injection to

induce a wide variety of operating system crashes in our target system (DEC Alphas run-

ning Digital UNIX and Intel PC running FreeBSD) and measure the amount of corruption

after the crashes.

1.4 Contributions

In summary, the main contributions of this dissertation are:

7

• We design and implement three reliable main memories on Intel PC running the

FreeBSD operating system (OS), Digital Alpha workstation running the Digital UNIX

OS, and Postgres database management system.

• We apply an iterative design methodology to design reliable main memory.

• We evaluate the critical design factors that make main memory reliable against soft-

ware errors.

• We evaluate the effectiveness of our fault-tolerant techniques in a systematic and quan-

titative manner.

1.5 Outline of Dissertation Proposal

The section outlines the dissertation proposal and lists its overall results by chapters.

Chapter 2 reviews the work most closely related to this research. First, it gives more

motivation for our research by describing the benefits of reliable memory. The next section

surveys major work on field studies of system crashes. Although these papers do not pro-

vide specific information on how often system crashes corrupt file cache, they provide

valuable information on software errors that cause system crashes. The next two sections

describes a variety of software fault injection tools, and how these tools are used to design

fault-tolerant systems. The last section lists various techniques used to protect memory

from hardware and software faults.

Chapter 3 describes our design methodology and fault model. The first section

describes our design methodology. We use an iterative approach to design our reliable

main memory. In each iteration we measure the reliability of our design, identify catego-

ries of weakness in the design, and improve on our design. We use fault injection tools to

8

quantify the reliability of our design. The next section describes the fault model we devel-

oped to drive the fault injection tests. We have built a flexible fault injection tool that

dynamically injects software faults into a running kernel or application. This is comple-

mented by several tools to accurately measure corruption in memory. The last section dis-

cusses how we conduct our fault injection tests.

Chapter 4 describes the design and implementation of a reliable file cache on Digital

UNIX operating system on Digital Alpha workstation. Our baseline system is a write-

through file cache. We require two design iterations to make our Digital UNIX Rio file

cache as reliable as a write-through file cache. The first section describes the warm reboot

technique we used in the first design iteration. Warm reboot ensures that data in memory is

restored to disk after system crashes. We address two main design issues: what additional

data should be maintained during normal operation, and when to restore the file cache

content. We present experimental results on the reliability of our first design, and analyze

how we can limit the corruptions due to copy overrun faults. The next section explains

how we use virtual memory protection to protect against software errors and describes two

different techniques to deal with physical memory access. We find that the file cache is

almostnever corrupted during software crashes, and protecting memory makes it more

reliable than disk. The last section presents the performance of Rio file cache against vari-

ous file system benchmarks. Our results show that reliable memory significantly improves

file system performance.

Chapter 5 describes the design and implementation of a reliable file cache on the

FreeBSD operating system on Intel-based PCs. We discuss the challenges in implement-

ing reliable memory on Intel PCs in the first section, and contrast the differences with the

9

Digital Alpha platform. We require four design iterations to make FreeBSD Rio file cache

as reliable as a write-through file cache. We describe our design and analysis in the next

four sections. We present detailed performance results in the last section.

Chapter 6 describes different ways to integrate reliable memory in databases. We

show that our approach can be generalized to other application domains. We conduct fault

injection tests to measure the reliability of three different designs. We find that mapping

reliable memory into the database address space does not significantly affect reliability.

These results mean that it is possible to create an area of main memory that is as safe as

disk from process or operating system crashes.

Chapter 7 examines the design dimensions for reliable memory. We categorize the

various design techniques we implemented in Chapters 4, 5 and 6, and analyze these tech-

niques in greater detail. We describe various fault detection techniques in the first section.

Our results show that we can quickly detect corruption by protecting the buffer data using

VM protection mechanism, and correctly recover from system hang by using a reset key

and a watchdog timer. We describe various fault recovery techniques in the next section.

We examine the effect of system memory size on the design techniques in the last section.

Our results show that it is critical to protect buffer data for large memory system.

The concluding chapter summarizes our findings and proposes further research to

extend our work.

10

Chapter 2

Related Work

This chapter reviews the work most closely related to our research. The first section

provides the motivation for our research. It describes the benefits of reliable memory, and

explains the growing importance of disk I/O in computer system performance. Section 2.2

surveys major work on field studies of system crashes, which provide valuable insights on

software errors that cause system crashes. These studies inspire the fault model used in our

study to model realistic software crashes. Section 2.3 describes various software fault

injection tools. We use fault injection to simulate operating system crashes and to quantify

system reliability. Section 2.4 examines three different ways in which fault injection tools

are used in fault-tolerant system design and describes how we integrate these different

approaches into a unified design methodology for reliable memory design. The last sec-

tion describes various techniques used to protect memory from hardware and software

faults. We rely on some of these techniques to protect the data in our reliable main mem-

ory from software errors.

2.1 Benefits of Reliable Memory

Reliable memory can improve a computer system’s performance, availability and

cost. Any application that writes data to disk will run faster on reliable memory as main

memory is much faster than disk. This will especially benefit applications requiring high

reliability, like many types of UNIX file systems [McKusick96] which write metadata

synchronously to disk to maintain file system integrity, and transaction processing system

11

[Gray93] which write either the log or data synchronously to disk before committing a

transaction. Reliable memory can also be used to help a system recover quickly by pre-

serving the system state across system crashes. It can either preserve the system state used

in recovery [Baker92_1, Abbott94], file caches, or the whole main memory [Chen96a].

This allows a system to avoid retrieving these data from disk after a system crash and

reboot quickly. Using reliable memory can ultimately result in cheaper system as it greatly

improve system performance and availability on general purpose PCs and workstations.

This allows system designer to support high performance applications on low cost com-

modity systems (e.g. a PC with a single PCI bus is much cheaper than a PC with multiple

PCI buses). It can also support new applications like lightweight transactions [Lowell97]

and fast checkpoints [Chen98]. These applications need the high bandwidth and low

latency of reliable memory, and they cannot be easily supported on disk-based system.

Most prior work on reliable memory tend to focus on the performance advantage of

reliable memory, and not the cost or availability advantages of reliable memory. This is

because most commercial and experimental reliable memories are built from costly pro-

prietary hardware parts [Banatre91, Abbott94]. Most also have inadequate protection from

software hazards [Abbott94] such as wild pointers and copy overruns, and are not suitable

for storing system state. We will examine in greater detail prior work that quantify the per-

formance benefits of using reliable memory in file systems and databases in the following

sections.

2.1.1 Benefits of Reliable Memory for File Systems
Baker et al. analyze how non-volatile memory can improve I/O performance in a dis-

tributed file system [Baker92a]. Two configurations are analyzed: non-volatile file caches

12

on client workstations to reduce write traffic to file servers, and write buffers for write-

optimized file systems to reduce server disk accesses. The results show that a megabyte of

NVRAM on diskless clients reduces the amount of file data written to the server by 40 to

50%. On the server side, providing a one-half megabyte write-buffer per file system

reduces disk accesses by about 90% on one heavily-used file system.

Akyurek et al. [Akyurek95] analyze the management of partially safe buffers using

trace-driven simulation. Partially safe buffers consist of both reliable memory and volatile

memory. Akyurek studies different buffer management policies, including cache replace-

ment strategies, safe buffer cache size, workload characteristics, and buffer write-back

strategies. The main design parameter is safety of data in memory. The study found that a

small amount of reliable memory (~3% of total memory) is sufficient for significant per-

formance gains, and under lightly loaded hard disks, partially safe buffer performs as well

as volatile buffers.

2.1.2 Benefits of Reliable Memory for Databases
Reliable memory can be used to store the log (or the tail of the log). Keeping the log

in reliable memory removes all synchronous disk writes from the critical path of a transac-

tion [Copeland89]. This decreases transaction commit time and can help to reduce lock

contention and increase concurrency [DeWitt84]. It also removes the need for group com-

mit, which improves log throughput at the cost of increased transaction commit time. Stor-

ing the log in reliable memory can also decrease disk bandwidth waste due to logging,

because many log records can be removed before being written to the log disk [DeWitt84,

Hagmann86]. For example, undo records may be removed if they belong to transactions

that have committed, and redo records may be removed if they belong to transactions that

13

have aborted. Finally, critical information may be stored in the stable memory to help

improve recovery time. For example, storing an appropriate pointer in reliable memory

can save scanning the log to find the last checkpoint [DeWitt84].

A more aggressive use of reliable memory is to store the database buffer cache, or to

store an entire main-memory database [GM92, Bohannon97]. This makes all buffer cache

changes permanent without writing to disk. Like the force-at-commit policy, this elimi-

nates the need for checkpoints and a redo log in recovering from system crashes (partial

redo) [Haerder83, Akyurek95]. This simplifies and accelerates recovery, because there is

no need to redo incomplete operations; each commit is essentially a transaction consistent

checkpoint. The redo log is still needed in recovering from media failures (global redo);

however, redundant disk storage makes this scenario less likely [Chen94]. Because undo

records can be eliminated after a transaction commits, removing the redo log implies that

no log records need be written if memory is large enough to contain the undo records for

all transactions in progress [Agrawal89]. In addition, storing the database buffer cache in

reliable memory allows the system to begin operation after a crash with the contents

present prior to the crash (a warm cache) [Sullivan93, Elhardt84, Bhide93].

Several studies have looked at the performance advantage of a main memory database

versus a traditional database system with a large buffer cache. Lehman compares the per-

formance of a memory resident DBMS, which store the entire database in memory, and a

disk-oriented DBMS that keeps the entire database cached in its memory buffer in

[Lehman92]. The memory resident DBMS out-performs the disk-oriented DBMS by a

factor of four, based on the Wisconsin benchmark [Bitton83]. A newer study by Oracle on

VLM (Very Large Memory) database systems compares the performance of conventional

14

disk-based and memory-resident DBMSs on a variety of benchmarks, ranging from

sequential scan to four-way joins. The performance improvement for the memory-resident

benchmark ranges from 3 (sequential scan) to 140 times (four-way joins). A related study

[Kawaf96] investigates why VLM database systems perform better than a conventional

database systems. The study indicates that VLM improves the use of hardware and soft-

ware caches, main memory, and I/O systems. It also results in fewer processor stalls and

provides faster locking in multiprocessor configuration.

Storing the log and/or the buffer cache in reliable memory can thus simplify and

accelerate database systems. A recent study shows that using a persistent database buffer

cache can yield a system 40 times faster than using a non-persistent buffer cache, even

when both run on reliable memory [Lowell97]. Figure 2.1 compares the performance of

Figure 2.1 Performance Improvements with Reliable Memory. This figure shows
the performance of three different transaction systems on a DEC 3000/600 with 256
Mbyte memory, running a workload based on TPC-B. RVM is a simple transaction
system without reliable memory. Running RVM on Rio (RVM-Rio) provides an I/O
interface to reliable memory and speeds RVM up by a factor of 13. Vista uses a memory
interface to reliable memory and achieves a factor of 40 speedup over RVM, even though
both run on Rio.

0 100 200 300
Database Size (MB)

10

100

1,000

10,000

100,000

T
ra

ns
ac

tio
ns

/S
ec

on
d

Vista

RVM-Rio

RVM

15

three systems on a workload based on TPC-B. RVM is a simple transaction system with a

redo log and achieves about 100 transactions/second without reliable memory

[Satyanarayanan93]. Running RVM on Rio with an I/O interface to reliable memory

speeds it up by a factor of 13. Vista is a transaction system tailored to run on Rio. By using

a persistent buffer cache, Vista achieves a factor of 40 improvement over RVM, even

though both run on Rio. Vista also avoids the double buffering that causes RVM-Rio per-

formance to drop at 100 MB.

2.1.3 Benefits of Reliable Memory for Future Applications
Reliable memory is going to be even more important for future applications. Figure

2.2 [Rosenblum95] shows the simulated normalized execution time of database and pro-

gram development workloads on three different machine model: 1994, 1996 and 1998. It

is can be seen that disk I/O is a first order bottleneck for application performance. For the

database workload, the fraction of execution time spent in disk I/O increases from 36% of

100

80

60

40

20

0
1994 1996 1998

Disk I/O
Other

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(%
)

Figure 2.2 Execution Time Profile on Next-Generation Machines. This figure is
taken from [Rosenblum95] and shows execution time of a database (Sybase SQL server
running the TPC-B benchmark) and program development workload on three machine
models. The time is normalized to the speed of the 1994 model. Without reliable memory,
disk I/Os will be the first-order bottleneck to higher performance.

1994 1996 1998
Database Program Development

16

the workload on the 1994 model to 75% of the time in the 1996 model and over 90% of

the 1998 model. Conventional techniques to hide disk latencies, like prefetching and write

buffers, are not effective, as all disk accesses bypass the file system interface, and there is

little that the operating system can do to reduce the I/O time. There is thus a strong need to

look into reliable memory now.

2.2 Field Studies of System Crashes

Studies have shown that software has become the dominant cause of system outages

[Gray90, Gray91]. Gray analyzed the field data for fault-tolerant Tandem systems in

[Gray90], and found that system outage caused by software grew from 33% to 60% from

1985 to 1990. In comparison, system outage caused by hardware decreased from 50% to

10%. This trend is likely to continue given the rise in program size and features, increased

use of parallel and distributed applications, improvements in hardware and maintenance,

and inadequacy of current techniques to tolerate software design faults [Gray91].

Many studies have investigated system software errors. The studies most relevant to

this dissertation investigate operating system errors on production IBM and Tandem sys-

tems. Sullivan and Chillarege classified software faults in the MVS operating system and

DB2 and IMS database systems; in particular, they analyzed faults that corrupt program

memory (overlays) [Sullivan91b, Sullivan92]. Their study found that most overlay errors

are due to boundary conditions and allocation problems, and not timing or synchroniza-

tion problems. They also found that most overlays are small, and corrupt data near the data

that the programmer meant to update. Their research provides valuable insights into com-

mon programming mistakes that cause software to fail, events that cause latent errors in

programs to surface in the field, and failure symptoms.

17

Lee and Iyer studied and classified software failures in Tandem’s Guardian operating

system using memory dumps collected from field software failures [Lee93a, Lee93b].

They also identified the effects of software faults on the system, and traced the propaga-

tion of the effects to other subsystems. Their results indicate that the fault-tolerant Tandem

system tolerates 82% of the reported field software faults, that 72% of reported field soft-

ware failures are recurrences of known software faults, and that the majority of the faults

(82%) are either quickly detected or do not propagate to other subsystems.

A recent study by Thakur and Iyer provides a detailed classification of faults on a

modern UNIX operating system (Tandem’s NonStop-UX) [Thakur95]. Their results iden-

tify the modules (e.g. device drivers, memory subsystem, streams mechanism, etc.) in the

operating system that generate the most faults and the modules in which most errors are

detected. The paper also presents the distributions of the failure and repair times, which

can offer insights into software quality.

These studies provide valuable information about failures in production environ-

ments; in fact many of the fault types analyzed in Chapter 4 were inspired by the major

error categories from [Sullivan91b], [Lee93a] and [Thakur95]. However, they do not pro-

vide specific information about how often system crashes corrupt the permanent data in

memory.

2.3 Using Software to Inject Faults

Software fault injection is a popular technique for evaluating how prototype systems

behave in the presence of hardware and software faults. We review some of the most rele-

vant prior work; see [Iyer95] for an excellent introduction to the overall area and a sum-

mary of much of the past fault injection techniques.

18

The most relevant work to this dissertation is the FINE fault injector and monitoring

environment [Kao93]. FINE uses software to emulateboth hardware (memory, CPU and

bus) and software (initialization, assignment, condition check and function) bugs. Both

types of faults can be dynamically injected into user program or operating system via ker-

nel trap. The results from fault injection experiments on UNIX operating system indicate

that memory and software faults have longer latency than bus faults and CPU faults. The

latter category of faults tend to crash the system immediately. Only 8% of faults were

found to propagate to other UNIX subsystems.

FERRARI also uses software to inject various hardware faults [Kanawati95,

Kanawati92]. FERRARI is extremely flexible: it can emulate a large number of data,

address, and control faults, and it can inject permanent or transient faults into user pro-

gram. As in FINE, the user can control the type, location and time of injection of the

faults, and the faults are injected using traps and system calls. The results from fault injec-

tion experiments on user programs demonstrate that the tool is effective, and the system

behaves differently under transient faults than permanent faults. This implies that a perma-

nent fault injection method, such as bit flips in program memory image, cannot model the

full spectrum of hardware faults.

Another tool, FIAT, uses software to emulate hardware faults. It injects memory bit

faults into various code and data segments [Segall88, Barton90] of an application program

or operating system. The fault injection mechanism is emulated using information from

the compiler and loader to corrupt the program memory image. Unlike FERRARI, FIAT

cannot inject transient faults.

19

All the above tools inject faults by modifying the target application, inserting soft-

ware traps into the target code, or running the target application in special trace mode. In

contrast, Xception [Carreira95] uses the processor’s debugging and performance monitor-

ing features to inject faults and monitor the activation of the faults and their impact on the

target system behavior. This approach has several desirable features that makes it suitable

to evaluate a wide variety of applications. It does not modify the target application, and

allows the application to run at full speed. It can also simulate transient faults in the pro-

cessor, memory and address bus. However, Xception can only emulate hardware transient

faults, and it is difficult to extend it to inject high-level software errors.

As with field studies of system crashes, these papers on fault injection inspired many

of the fault categories and injection techniques used in our research. However, no papers

on fault injection have specifically measured the effects of faults on permanent data in

memory. Thus, we have created a new fault injection tool to measure memory’s resistance

to operating system crashes. We have implemented our tool on the Digital UNIX and

FreeBSD operating systems.

Table 2.1 compares the features of various software fault injection tools. Our tool dif-

fers from the above tools in the following ways:

• We need a flexible tool to cover most interesting faults, including high-level software

faults like memory leak and copy overrun. FIAT, FERRARI and Xception can only

inject hardware faults, while FINE can inject both hardware and software faults.

• Our detection mechanism can accurately measure memory reliability by a combination

of checksumming and comparison with known data. The other tools are tailored

towards detecting faults, and measuring fault latency or propagation characteristics.

20

• Our target platform are modern multithreaded UNIX kernels (Digital UNIX and

FreeBSD). The other platforms are single-threaded UNIX OS (IBM RT or Sun OS4.X),

or experimental OS (PARIX in Xception).

• Most of the existing tools are used to characterize the system failure process (e.g. fault

propagation, error detection latency). Some are used to validate the dependability and

fault tolerance properties of a fault-tolerant system, or to compare the robustness of dif-

ferent designs. We use our tool for all these purposes to design and implement our reli-

able memory.

Tool FIAT FERRARI FINE Xception Rio

Hardware PC RT Sun SPARC Sun SPARC PowerPC
DEC Alpha
and Intel PC

Injection
Target

OS,

Applications

Applications OS,

Applications

OS,

Applications

OS,

Applications

Monitor Software Software Software Software Software

Fault types

Memory

CPU

Communica-
tion

Memory

CPU

Bus

Control flow

Memory

CPU

Bus

Software

Memory

CPU

Memory

CPU

Control flow

Software

To evaluate
Characterize
failure

Characterize
failure

Characterize
failure

Validation

Characterize
Failures,

Validation,
Robustness
benchmark

Table 2.1 Features of Software-Implemented fault Injection Tools.This table extends
Table 3.3 from [Iyer95]. The hardware platform is relevant here since most fault injection tool
is tailored to a specific platform. Injection target refers to where the bug is injected into the
system: the operating system (OS) or applications. Monitor refers to the mechanism used to
monitor the progress of the fault injection experiments. A software monitor is more flexible
but it may not be able to monitor processor states not visible to higher level software (e.g. bus
signal). Fault type refers to the type of faults that the tool can inject. Most tools are used to
characterize the failure process and validate dependability properties.

21

2.4 Using Fault Injection to Design Fault-tolerant Systems

Software fault injection can be used for many purposes, such as understanding how

systems behave during a fault, validating fault-tolerant mechanisms, and comparing the

robustness of different systems.

Fault injection is traditionally used to understand how systems behave during a fault.

Chillarege et al. [Chillarege89] use fault injection to characterize large system failures.

They inject software bugs on a commercial transaction processing system, and analyze the

crash data to measure system component failure rates and fault latency. Barton et al.

[Baron90] use the FIAT fault injection tool to inject memory bit faults into data and code

of two different applications. They produce detailed statistics on fault manifestations and

error detection latencies. Kao et al. [Kao93] use the FINE fault injection tool to study fault

propagation in the UNIX operating system and construct a fault propagation model based

on Markov chains.

Fault injection is also widely used to validate fault-tolerant mechanisms and system

dependability. Arlat et al. [Arlat90] use fault injection to validate the dependability of

fault-tolerant systems against transient hardware/software faults. They develop a valida-

tion methodology, and demonstrate it on two different systems. Hudak et al. [Hudak93]

conduct fault injection tests to determine the effectiveness of various fault-tolerant soft-

ware techniques, such as n-version programming, against design and hardware faults. Rela

et al. [Rela96] use fault injection to evaluate the effectiveness of software consistency

checks against transient hardware faults. They inject pin-level faults into a processor and

measure its effect on software applications. Silva et al. [Silva96] uses Xception fault injec-

tion tool [Carreira98] to injection transient faults into parallel computers running large

22

applications. They measure the effectiveness of various fault tolerant techniques (e.g.

memory protection, assertions, etc) in increasing the system’s error detection coverage.

There are many recent work that use fault injection to compare the robustness of dif-

ferent systems. Siewiorek et al. [Siewiorek93] propose a benchmark suite to measure sys-

tem robustness using fault injection. The system components under study include file

management system, memory access, fault tolerant mechanisms in user application and C

library functions. Tsai et al [Tsai96] extend the benchmark approach to dependable sys-

tems. They used the FTAPE tool to evaluate two fault tolerant computers. Koopman et al.

measure the robustness of various commercial UNIX operating systems [Kropp98] and

different releases of the same operating systems [Koopman99]. They inject faults into sys-

tem calls by changing the input data values, and observe the system response. Their

benchmark results can be use to identify weakness of different release of the same operat-

ing system, or operating systems from different vendors.

Our design methodology also uses fault injection. However, unlike the above studies,

we use fault injection to quantify the reliability of our design, understand why our design

fails, and evaluate the effectiveness of different fault-tolerant design techniques. We are

not aware of any prior work that uses fault injection for all three of these purposes to guide

the design and implementation of a fault-tolerant system.

2.5 Protecting Memory

This section reviews several proposals to protect memory from software and hardware

failures. With the exception of [Chapin95], none of these papers attempt to evaluate their

proposals with experiments.

23

Phoenix is the only file system we are aware of that attempts to make all permanent

files reliable while in main memory [Gait90]. Phoenix keeps two versions of an in-mem-

ory file system. One of these versions is kept write-protected; the other version is unpro-

tected and evolves from the write-protected one via copy-on-write. At periodic

checkpoints, the system write-protects the unprotected version and deletes obsolete pages

in the original version. Our proposed reliable memory, Rio, differs from Phoenix in two

major ways: 1) Phoenix does not ensure the reliability of every write; instead, writes are

made permanent only at periodic checkpoints; 2) Phoenix keeps multiple copies of modi-

fied pages, while Rio keeps only one copy.

Harp protects a log of recent modifications byreplicating it in volatile, battery-backed

memory across several server nodes [Liskov91]. Harp designers considered using warm

reboot to protect against software bugs that crash both nodes. Unfortunately, the

MicroVax’s used to run Harp overwrote memory during a reboot, making warm reboot

impossible [Baker94].

The Recovery Box stores system state used in recovery in a region of memory

[Baker92_1]. Recovery box memory is preserved across crashes and used during the

reboot of file servers. Baker and Sullivan expect few crashes to corrupt the contents of the

Recovery Box and so rely primarily on checksums to verify that data is intact. They lower

the chance of corruption by 1) writing to the Recovery Box through a careful interface that

checks for errors and 2) storing the Recovery Box within the kernel text segment, where it

is less likely to be corrupted by random pointer errors. If checksums indicate that the

Recovery Box is corrupted despite these precautions, the system discards the data and per-

forms a full recovery.

24

Rio differs from Recovery Box in the degree to which the system depends on memory

being intact, as well as the use and size of the data. Data in the Recovery Box is seen

strictly as a hint; if the data is wrong, the system can recover all information. In contrast,

Rio sees memory as reliable enough to store the sole copy of data. This allows Rio to store

a wider range and larger amount of data. In particular, Rio stores file data and can thus

improve file system performance under normal operation.

Rio’s protection mechanism is similar to the scheme in [Baker94] and the “expose

page” scheme in [Sullivan91a], but Rio additionally protects against physical addresses

that would otherwise bypass the TLB. Sullivan and Stonebraker measure the overhead of

“expose page” to be 7% on a debit/credit benchmark. The overhead of Rio’s protection

mechanism, which is negligible, is lower for two reasons. First, Rio is implemented in the

kernel and needs no system call to change a page’s protection. Second, data in the file

cache is written in larger blocks than in debit/credit; this amortizes the cost of changing

protection over more bytes.

Banatre, et. al. implement stable transactional memory, which protects memory con-

tents with dual memory banks, a special memory controller, and explicit calls to allow

write access to specified memory blocks [Banatre91]. In contrast, Rio makes all files in

memory reliable without special-purpose hardware or replication.

A variety of general-purpose hardware and software mechanisms may be used to help

protect memory from software faults. Papers by Johnson and Wahbe suggest various hard-

ware mechanisms to trap updates to certain memory locations [Johnson82, Wahbe92].

Hive uses the Flash firewall to protect memory against wild writes by other processors in a

multiprocessor [Chapin95]. Hive preemptively discards pages that are writable by failed

25

processors, an option not available when storing permanent data in memory. Object code

modification has been suggested as a way to provide data breakpoints [Kessler90,

Wahbe92] and fault isolation between software modules [Wahbe93].

Other projects seek to improve the reliability of memory against hardware faults such

as power outages and board failures. eNVy implements a memory board based on non-

volatile, flash RAM [Wu94]. eNVy uses copy-on-write, page remapping, and a small, bat-

tery-backed, SRAM buffer to hide flash RAM’s slow writes and bulk erases. The Durable

Memory RS/6000 uses batteries, replicated processors, memory ECC, and alternate paths

to tolerate a wide variety of hardware failures [Abbott94]. These schemes complement

Rio, which protects memory from operating system crashes.

2.6 Summary

In this chapter we survey relevant research that will help us design and implement our

reliable file cache. We look at past studies on the importance of reliable main memory, and

survey field studies on large system failures. The field studies allow us to understand how

large system fails and to construct a fault model that emulates realistic software crashes.

We then examine various fault injection tools, and study how these tools are used to design

fault-tolerant system. This allow us to apply a systematic approach to design our reliable

main memory using fault injection. We also look at various memory protection tech-

niques, which can be used to protect data in memory against software corruptions.

26

Chapter 3

Reliable Memory Design Methodology

This chapter describes the design methodology we used to design our reliable main

memory. Our reliable main memory is called the Rio file cache. Our goal is to make Rio

file cache as reliable as a write-through file cache. Write-through file caches are consid-

ered very reliable against software crashes because they propagate data immediately to

disk, and disks are not easily corrupted by operating system crashes [Silberschatz94,

Tanenbaum95, Chen96a]. Rio file cache is a pure write-back file cache, it writes to the

disk only when the file cache overfills. Normal write-back file caches are very fast but are

much less reliable than write-through caches [Chen96a]. Our challenge is to choose a

strategy that will allow us to makesystematically our design more reliable than a write-

back file cache. Section 3.1 describes our design methodology, which uses fault injection

to guide the design and implementation our reliable file cache. Section 3.2 describes the

fault model we develop to model common software programming errors. Section 3.3

describes our experiment setup.

3.1 Design Methodology

We follow an iterative approach, as described in [Siewiorek98], to improve the robust-

ness of a reliable file cache in the presence of operating system errors (Figure 3.1). At each

iteration, we use fault injection to evaluate the reliability of our design, identify vulnera-

bilities, and provide quantitative results that help select techniques to address these vulner-

abilities. We quantify reliability for a design by injecting various faults into a running

operating system, letting it crash and reboot, and measuring how frequently the file system

27

is corrupted. We repeat the fault injection tests until we have collected sufficient data, and

we define thecorruption rate as the fraction of crashes that corrupt file data. We consider

a particular design to be more reliable than another design if it has a lower corruption rate.

We also use the data collected during fault injection to analyze and fix faults. Note that we

do not merely fix the faults we ourselves have injected. Rather, we use the bugs we inject

to reveal categories of faults, then we fix the entire category.

We continue to iteratively improve on our design until we achieve a design that is as

reliable as our baseline system, a write-through file cache. We find that several design iter-

ations are needed to reach our reliability goal, because the first iteration may introduce

new bugs, or may leave secondary vulnerabilities hidden. A key feature of our methodol-

ogy is that we use fault injection to remove faults on real systems, unlike prior simulation-

based fault removal studies [Iyer95]. Because we inject faults into real systems, we can

Initial write-back

measure reliability of design

is reliability
better than

write-through?

done

yes

via fault injection tests

analyze fault symptoms
& improve design

Figure 3.1 Design Process. The bold boxes represent the stages that use fault injection
data to guide the design process.

file cache design

no

28

accurately characterize the system failure process and fault propagation without the per-

formance overheads of simulation-based tools.

3.2 Fault Model

An important component of our design methodology is the fault model we use to

drive our fault inject tests. We want our fault model to model common software program-

ming errors and to generate realistic operating system crashes. We focus on modeling soft-

ware errors because:

• Past field studies on commercial operating systems [Gray90, Lee93a, Thakur95] and

databases [Sullivan92] failures show that software errors are the dominant cause of fail-

ures.

• Kernel programming errors are most likely to circumvent hardware error correction

schemes and to corrupt memory.

• Software errors (like most design flaws) are difficult to model and understand. After all,

if you knew exactly what was wrong with your program, you’d fix it! Our understand-

ing of software errors is hazy, which erodes our confidence that memory will survive a

crash caused by a software bug.

Ideally, we would like to inject real software bugs into our system, using bug reports

and field data collected from real system crashes. An alternative approach is to use field

data to generate an error set that emulates realistic software faults [Christmansson96].

However, data on real crashes is rarely on the platform of interest, usually describes rela-

tively few crashes, and almost never contains enough detail to repeat the crash (and most

crashes are not easily repeatable). Yet many experiments require a controlled environment

29

with hundreds of crashes, and measuring how often files are corrupted is one of these

experiments. We therefore chose to focus instead on generating alarge number andwide

variety of system crashes. Our fault models are derived from studies of commercial oper-

ating systems and databases [Sullivan92, Sullivan91b, Lee93a] and from prior models

used in fault-injection studies [Barton90, Kao93, Kanawati95, Chen96a]. The faults we

inject range from low-level hardware faults such as flipping bits in memory to high-level

software faults such as memory allocation errors. Each succeeding fault category is pro-

gressively more realistic. See Table 3.1 for examples of how real-world programming

errors can manifest themselves as the faults we inject in our experiments.

Table 3.1 Relating faults to programming errors.This table shows examples of how
real-world programming errors can manifest themselves as the faults we inject in our
experiments. None of the errors shown above (except for uninitialized variable) would be
caught during compilation.

Fault Type
Example of Programming Error

Correct Code Faulty Code

destination reg.
numFreePages =

count(freePageHeadPtr)
numPages =

count(freePageHeadPtr)

source reg.
numPages =

physicalMemorySize/pageSize
numPages =

virtualMemorySize/pageSize

delete branch while (flag) {body} while (!flag) {body}

delete random inst. for (i=0; i<10; i++,j++) {body} for (i=0; i<10; i++) {body}

initialization function () {int i=0; ...} function () {int i; ...}

pointer ptr = ptr->next->next; ptr = ptr->next;

allocation
ptr = malloc(N); use ptr; use ptr;

free(ptr);
ptr = malloc(N); use ptr;
free(ptr) ; use ptr again;

copy overrun
for (i=0; i<sizeUsed; i++)

{a[i] = b[i]};
for (i=0; i<sizeTotal; i++)

{a[i] = b[i]};

off-by-one for (i=0; i<size; i++) for (i=0; i<=size; i++)

synchronization
getWriteLock; write();

freeWriteLock;
write();

30

3.2.1 Random Bit Flips
The first category of faults flips randomly chosen bits in the kernel’s address space

[Barton90, Kanawati95]. We target three areas of the kernel’s address space: thekernel

text, heap, andstack. For kernel text tests, we corrupt ten randomly chosen instructions in

memory after the system is up and running. These faults are easy to inject, and they cause

a variety of different crashes. They are the least realistic of our bugs, however. It is difficult

to relate a bit flip with a specific error in programming, and most hardware bit flips would

be caught by parity on the data or address bus.

3.2.2 Low-Level Software Faults
The second category of fault changes individual instructions in the kernel text. These

faults are intended to approximate the assembly-level manifestation of real C-level pro-

gramming errors [Kao93]. We corrupt assignment statements by changing thesource or

destination register. We corrupt conditional constructs by deletingbranches. We also

deleterandom instructions (both branch and non-branch).

3.2.3 High-Level Software Faults
The last and most extensive category of faults imitate specific programming errors in

the operating system [Sullivan91b]. These are targeted more at specific programming

errors than the previous fault category. We inject aninitialization fault by deleting instruc-

tions responsible for initializing a variable at the start of a procedure [Kao93, Lee93a]. We

injectpointer corruption on Intel Pentium processors by corrupting the addressing bytes of

instructions which access operands in memory [Sullivan91b, Lee93a]. We either flip a bit

within the addressing-form specifier byte (ModR/M) or the scale, index or base (SIB) byte

following the instruction opcode [Int97c]. On Digital Alpha processors, we inject pointer

corruption by 1) finding a register that is used as a base register of a load or store and 2)

31

deleting the most recent instruction before the load/store that modifies that register. We do

not corrupt the stack pointer registers (i.e.esp andebp registers on Intel processors) as

these are used to access local variables instead of as a pointer variable. We inject anallo-

cation management fault by modifying the kernel’s malloc procedure to occasionally free

the newly allocated block of memory after a delay of 0-64 ms. Malloc is set to inject this

error every 1000-4000 times it is called; this fault occurs approximately every 10 seconds

on our system. We inject acopy overrun fault by modifying the kernel’s data copy proce-

dures to increase occasionally the number of bytes they copy. The length of the overrun is

distributed as follows: 50% corrupt one byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4

KB. This distribution was chosen by starting with the data gathered in [Sullivan91b] and

modifying it according to our specific platform and experience. The copy routines are set

to inject this error every 1000-4000 times it is called; this fault occurs approximately every

5 seconds on our system. We injectoff-by-one errors by changing conditions such as > to

>=, < to <=, and so on. We mimic commonsynchronization errors by randomly causing

the procedures that acquire/free a lock to return without acquiring/freeing the lock. We

inject memory leaks by modifying free() to return occasionally without freeing the block

of memory. We injectinterface errors by corrupting one of the arguments passed to a pro-

cedure.

3.3 Experiment Setup

This section describes how we inject faults into our design, measure its reliability, and

automate our experiments.

32

3.3.1 Injecting Faults
Our fault injection tool uses object-code modification to inject bugs into the kernel text.

It is embedded into the kernel and, when triggered, selects an instruction in the kernel text

and corrupt it. Some fault types, such as memory leaks, are implemented by modifying the

relevant kernel routines (e.g. malloc) to fail occasionally when the fault is triggered. The

fault trigger and injection location within the kernel text are determined by a random seed.

We do not inject fault into the recovery and fault-tolerant code we added into the system.

Unless otherwise stated, we inject 10 faults for each run to increase the chance of trig-

gering a fault. Most crashes occur within 10 seconds from the time the fault was injected.

If a fault does not crash the operating system after fifteen minutes, we restart the system

and discard the run; this happens about 40% of the time. Note that faults that leave the sys-

tem running will corrupt data on disk for both write-back and write through file caches, so

these runs do not change the relative reliability between file caches.

3.3.2 Detecting Corruption after a Crash
File corruption can occur in two ways. Indirect corruption, a series of events eventu-

ally causes a procedure (usually a non-I/O procedure) to accidentally write to file data.

Memory is more vulnerable than disks to direct corruption, because it is nearly impossible

for a non-disk procedure to directly overwrite the disk drive. However, direct memory cor-

ruption can affect disk data if the system stays up long enough to propagate the bad mem-

ory data to disk. Inindirect corruption, a series of events eventually causes a procedure to

call an I/O procedure with the wrong parameters. The I/O procedure obediently carries out

the request and corrupts the file cache. Disks and memory are both vulnerable to indirect

corruption.

33

We use two strategies to detect file corruption: checksums detect direct corruption,

and a synthetic workload calledmemTest detects direct and indirect corruption.

The first method to detect corruption maintains a checksum of each memory block in

the file cache [Baker92_1]. We update the checksum in all procedures that write the file

cache; unintentional changes to file cache buffers result in an inconsistent checksum. We

identify blocks that were being modified while the crash occurred by marking a block as

changing before writing to the block; these blocks cannot be identified as corrupt or intact

by the checksum mechanism. Files mapped into a user’s address space for writing are also

marked changing as long as they are in memory, though this does not occur with the work-

loads we use.

Catching indirect corruption requires an application-level check, so we create a spe-

cial workload calledmemTest whose actions and data are repeatable and can be checked

after a system crash. Checksums andmemTest complement each other. The checksum

mechanism provides a means for detecting direct corruption for any arbitrary workload;

memTest provides a higher-level check on certain data by knowing its correct value at

every instant. Our experimental results (see Chapter 4) indicated that the corruptions

detected bymemTest are a superset of those detected by checksum. Thus the checksum

mechanism is used only in our first reliable memory implementation (see Chapter 4) to

verify the effectiveness ofmemTest.

memTest generates a repeatable stream of file and directory creations, deletions, reads,

and writes, reaching a maximum file set size equal to the system’s physical memory size.

Actions and data inmemTest are controlled by a pseudo-random number generator. After

each step,memTest records its progress in a status file across the network. After the system

34

crashes, we reboot the system and runmemTest until it reaches the point when the system

crashed. This reconstructs the correct contents of the test directory at the time of the crash,

and we then compare the reconstructed contents with the file cache image in memory.

In addition tomemTest, we run four copies of the Andrew benchmark [Howard88], a

general-purpose file-system workload. Andrew creates and copies a source hierarchy;

examines the hierarchy using find, ls, du, grep, and wc; and compiles the source hierarchy.

As with all file activity besidesmemTest, the correctness of Andrew’s files is checked only

with the checksum mechanism.

3.3.3 Test Setup
We automate many aspects of our experiment to expedite gathering results. We con-

duct our experiments in parallel on several test systems (see Figure 3.2). Each test system

runs a specific implementation of our file cache design. The test system contains a file par-

tition that is reconstructed for each experiment (e.g. using the FreeBSDnewfscommand

on the file system), and several script files that start a workload, select a type of fault and

inject it, and log data to a network disk attached to a control host.

The experiments are controlled by a control host located on the same Local Area Net-

work (LAN) as the test systems. The control host stores all configuration data on a shared

disk that is exported via Network File System (NFS) protocol to the test systems. We also

redirect the console from the test system to its serial port, and link it to the control host via

a serial cable. This allows us to log crash data (crash latencies, fault symptoms, etc.) to the

control host for subsequent analysis and debug the test system remotely without being

physically present at the test system.

35

3.4 Summary

We describe a systematic design methodology to design our reliable file cache. A key

feature of our methodology is using quantitative data to guide the design and implementa-

tion of the system. At each iteration, we use fault injection to evaluate the reliability of our

design, identify vulnerabilities, and provide quantitative results that help select techniques

to address these vulnerabilities. We develop a fault model to model common software pro-

gramming errors. The fault model is used in our fault injection experiments to simulate a

wide variety of realistic system crashes. We also develop a test setup that automates our

injection experiments.

Figure 3.2 Test Equipment Setup.

Ethernet LAN

control host
serial
port
conc.

test system

network disk

36

Chapter 4

Reliable File Cache in Digital UNIX

This chapter describes our implementation of Digital UNIX Rio file cache. We use the

design methodology described in Chapter 3 to iteratively refine our reliable file cache

design. Section 4.1 describes our implementation platform. Section 4.2 describes the two

design iterations we need to achieve our design goal. Our first design uses warm reboot to

ensure that the memory content survives an operating system crash. We found that this

design is less reliable than the write-through file cache. This is largely due to a significant

number of corruptions caused by the copy overrun fault type. Our next design protects the

data in memory and eliminates the data corruptions due to copy overrun fault type. Section

4.3 quantifies the performance advantages of our Rio file cache. Section 4.3 discusses the

architecture support for reliable file cache. The material presented in this chapter first

appeared in the 1996 International Conference on Architectural Support for Programming

Languages and Operating Systems [Chen96a].

4.1 Implementation Platform

We implement Rio file cache on DEC Alpha 3000/600 (see Table 4.1) workstations

running the Digital UNIX V3.0 operating system. Digital UNIX is a monolithic kernel

derived from Mach 2.5 and OSF/1.

Digital UNIX stores file data in two distinct buffers. Directories, symbolic links,

inodes, and superblocks are stored in the traditional UNIX buffer cache [Leffler89], while

regular files are stored in the Unified Buffer Cache (UBC). The buffer cache is wired in

37

virtual memory so that it cannot be paged out, and is usually only a few megabytes. The

UBC is not normally mapped into the kernel’s virtual address space to conserve space in

the address translation cache; instead it is accessed using physical addresses. The virtual

memory system and UBC dynamically trade off pages depending on system workload.

For the I/O-intensive workloads we use in this chapter, the UBC uses 80 MB of the 128

MB on each computer.

4.2 Design Iterations

This section describes the two design iterations we went through to arrive at the final

system. Each subsection (4.2.1-4.2.2) describes the write-back file cache used in a design

iteration, presents the fault-injection test results, analyzes the results to understand why

our design fails, and select fault-tolerant techniques to fix the revealed weakness.

In all our designs, we modify the Digital UNIX file cache in three ways to be a pure

write-back file cache. First, we disable all reliability-induced writes to disk. Digital UNIX

includes tunable parameters to turn off reliability writes for the UBC. We disable buffer

cache writes as in [Ohta90] by turning most bwrite and bawrite calls to bdwrite; we mod-

ify sync and fsync calls to return immediately1; and we modify the panic procedure to

Table 4.1 Specifications of Experimental Platform[Dutton92].

machine type DEC 3000

model 600

CPU chip Alpha 21064, 175 MHz

SPECint92 114

SPECfp92 165

memory bandwidth 207 MB/s

memory capacity 128 MB (512 MB max capacity)

system bus Turbochannel

system bus bandwidth 100 MB/s

38

avoid writing dirty data back to disk before a crash. With these changes, writes to disk

occur only when the UBC or buffer cache overflows, so dirty blocks can remain in mem-

ory indefinitely. Less extreme approaches such as writing to disk during idle periods may

improve system responsiveness, and we plan to experiment with this in the future. The

focus of this chapter is reliability, hence we take the extreme approach of delaying writes

to disk as long as possible. Second, metadata updates in the buffer cache must be as care-

fully ordered as those to disk, because buffer cache data is now permanent. Third, mem-

ory’s high throughput makes it feasible to guarantee atomicity when updating critical

metadata information. When the system wants to write to metadata in the buffer cache, it

first copies the contents to a shadow page and changes the registry entry to point to the

shadow. When it finishes writing, it atomically points the registry entry back to the origi-

nal buffer.

We configure our test systems and measure the corruption rate using the method

described in Chapter 3. Table 4.2 summarizes the corruption rate by fault category of all

our designs in this chapter. It presents reliability measurements for three systems: a disk-

based (write-through) file cache, Rio without protection (just warm reboot), and Rio with

protection. We conducted 50 tests for each fault category for each of the three systems;

this represents 6 machine-months of testing.

Table 4.2 shows that corruption in write-through file cache is quite infrequent, which

agrees with our intuition that disks are usually safe from operating system crashes. Of 650

crashes, only seven crashes (1.1%) corrupted any file data, and each of those runs cor-

1. We do provide a way for a system administrator to easily enable and disable reliability disk writes for
machine maintenance or extended power outages.

39

rupted only a few (1-4) files/directories. Our design goal for Digital UNIX Rio file cache

is to achieve a reliability that is less than or equal to 1.1%.

4.2.1 Design Iteration 1: Rio without Protection

4.2.1.1 Design
Our main technique to achieve persistent memory is to do awarm reboot. That is,

when the system is rebooted, it must read the file cache contents that were present in phys-

ical memory before the crash and update the file system with this data. Because system

Table 4.2 Comparing Disk and Memory Reliability.This table shows how often each
type of error corrupted data for three systems. We conducted 50 tests for each fault type
for each of three systems. The disk-based system uses fsync after every write, achieving
write-through reliability. The two Rio systems test memory reliability by turning off
reliability writes to disk and using warm reboot to recover the in-memory data after a
crash. Blank entries had no corruptions. The last row shows the 95% confidence interval
for the mean corruption rate.

Fault Type Disk-Based
Rio without
Protection

Rio with
Protection

kernel text 2 1

kernel heap

kernel stack 1 1

destination reg.

source reg. 2

delete branch 1 1 1

delete random inst. 1

initialization 1

pointer 1

allocation

copy overrun 4

off-by-one 1 2 1

synchronization

Total 7 of 650 (1.1%) 10 of 650 (1.5%) 4 of 650 (0.6%)

95% Confidence
Interval

0.1%-2.0% 0.1%-2.9% 0.0%-1.2%

40

crashes are infrequent, our first priority in designing the warm reboot is ease of implemen-

tation, rather than reboot speed.

Two issues arise when doing a warm reboot: 1) what additional data the system main-

tains during normal operation, and 2) when in the reboot process the system restores the

file cache contents.

Maintaining additional data during normal operation makes it easier to find, identify,

and restore the file cache contents in memory during the warm reboot. Without this addi-

tional data, the system would need to analyze a series of data structures, such as internal

file cache lists and page tables, and all these intermediate data structures would need to be

protected. Instead of understanding and protecting all intermediate data structures, we

keep and protect a separate area of memory, which we call theregistry, that contains all

information needed to find, identify, and restore files in memory. For each buffer in the file

cache, the registry contains the physical memory address, file id (device number and inode

number), file offset, and size. Registry information changes relatively infrequently during

normal operation, so the overhead of maintaining it is low. It is also quite small; only 40

bytes of information are needed for each 8 KB file cache page.

The second issue is when to restore the dirty file cache contents during a system

crash. Figure 4.1 shows the time-line of events during a system crash and recovery pro-

cess. We can restore the file cache content before or after the system reboots. The former

approach is harder, since it assumes that we are able to get control of the system when it

crashes, and the restore process will proceed flawlessly during the system crash. However,

this approach is attractive as it is applicable for systems that do not preserve memory con-

tent during reset. For example, Intel PC BIOS lacks a console interface, and we cannot

41

prevent the BIOS from erasing memory. We have to restore dirty data in memory to disk

before memory is re-initialized.

Since it is sometimes impossible to have control of the system when it crashes (e.g.

the system may be deadlocked or seriously crippled by the fault), it is usually preferable to

restore while the system boots up. In our implementation, we restored file cache after the

system crashes to minimize the changes needed to the VM and file system initialization

procedures. This is possible on Digital Alpha workstation as the system console has an

option to turn off initializing of memory during bootup. We currently perform the restora-

tion very early in the system bootup process (right after the kernel is loaded into memory)

to ensure that file cache content is not modified by the booting kernel. After the kernel text

is loaded, we scan the registry, and write all dirty pages to disk using console (PROM)

routines.

4.2.1.2 Results and Analysis
The middle section of Table 4.2 shows the reliability of the Rio file cache with warm

reboot. Out of 650 crashes, ten crashes (1.5%) corrupted any file data. As with the disk

tests, each corruption affected a small number of files/directories, usually just a small por-

tion of one file.memTest detected all ten corruptions, and checksums detected five of the

ten. Interestingly, the corrupted data in the other five corruptions resided on disk rather

Figure 4.1 Warm Reboot Options

system panic

system reset

loading kernel

safe sync warm reboot

system booted

42

than the file cache. This implies that the system remained running long enough to propa-

gate the corruption to disk.

While less reliable than disks, Rio without protection ismuch more reliable than we

had expected. These results stand in sharp contrast to the general feeling among computer

scientists that operating system crashes often corrupt files in memory. We believe the

results are due to the multitude of consistency checks present in a production operating

system, which stop the system very soon after an injected fault is encountered and thereby

limit the amount of damage. In addition to the standard sanity checks written by program-

mers, the virtual memory system implicitly checks each load/store address to make sure it

is a valid address. Particularly on a 64-bit machine, most errors are first detected by issu-

ing an illegal address [Kao93, Lee93a].

We also observe from Table 4.2 that the fault type with the highest corruption rate is

copy overruns. It is responsible for 40% (4/10) of the corruptions. Copy overruns have a

relatively high chance of corrupting the file cache because the injected fault directly over-

writes a portion of memory, and this portion of memory has a reasonable chance of over-

lapping with a file cache buffer. We attempt to eliminate these corruptions in our next

design iteration by protecting the file cache buffer.

4.2.2 Design Iteration 2: Rio with Protection
To protect the memory content from erroneous writes, we need to ensure that the sys-

tem does not accidentally overwrite the file cache while it is crashing. In hard disk, this

protection is usually achieved by having an explicit and complex I/O interface. Writing to

disk uses device drivers that form I/O control blocks and write to I/O registers. Calls to the

device driver are checked for errors, and procedures that do not use the device driver are

unlikely to accidentally mimic the complex actions performed by the device driver. In con-

43

trast, the interface used to access memory is simple—any store instruction by any kernel

procedure can easily change any data in memory simply by using the wrong address. It is

hence relatively easy for many simple software errors (such as de-referencing an uninitial-

ized pointer) to accidentally corrupt the contents of memory [Baker92a].

Thus, the main issue in protection is how to control accesses to the file cache. We

want to make it unlikely that non-file-cache procedures will accidentally corrupt the file

cache, essentially making the file cache a protected module within the monolithic kernel.

To accomplish this, we use ideas from existing protection techniques such as virtual mem-

ory [Sullivan91a] and code patching [Wahbe93].

4.2.2.1 Virtual Memory (VM) Protection
At first glance, the virtual memory protection of a system seems ideally suited to pro-

tect the file cache from unauthorized stores [Copeland89, Sullivan91a]. By turning off the

write-permission bits in the page table for file cache pages, the system will cause most

unauthorized stores to encounter a protection violation. File cache procedures must enable

the write-permission bit in the page table before writing a page and disable writes after-

wards. The only time a file cache page is vulnerable to an unauthorized store is while it is

being written, and disks have the same vulnerability, because a disk sector being written

during a system crash can be corrupted. File cache procedures can check for corruption

during this window by verifying the data after the write. Alternatively, the file cache pro-

cedures can create a shadow copy in memory and implement atomic writes.

Unfortunately, many systems allow certain kernel accesses to bypass the virtual mem-

ory protection mechanism and directly access physical memory [Kane92, Sites92]. For

example, addresses in the DEC Alpha processor with the two most significant bits equal to

44

10 bypass the TLB; these are calledKSEG addresses. This is especially significant on the

DEC Alpha because the bulk of the file cache (the UBC) is accessed using physical

addresses to conserve TLB slots. We have implemented two different methods to protect

against bad accesses via physical addresses.

Our current method disables the ability of the processor to bypass the TLB, that is, all

addresses are mapped through the TLB. This can be done on the Alpha 21064, Intel x86,

Sparc, PowerPC, and possibly other CPUs. On the Alpha 21064, a bit in the ABOX CPU

control register can be set to map all KSEG addresses through the TLB. The page tables

must be expanded to map these KSEG addresses to their corresponding physical addresses

so the kernel can still access data such as page tables and the UBC. While issuing a KSEG

address accesses the same memory location as before, the system is able to write-protect

file cache pages. Disabling KSEG addresses in this manner adds essentially no overhead

(see Table 4.3).

4.2.2.2 Code Patching
For processors that cannot prevent physical addresses from bypassing the TLB, a sec-

ond method calledcode patching can be used, which modifies the kernel object code by

inserting a check before every kernel store [Wahbe93]. If the address is a physical address,

the inserted code checks to make sure the address is not in the file cache, or that the file

cache has explicitly registered the address as writable. The idea of inserting code before

every store instruction sounds prohibitively slow, but we have implemented several opti-

mizations to minimize the actual overhead:

• The checking code is very efficient: 6 instructions for a virtual address (the normal

case), 28 instructions for a physical address. We gain efficiency over more general tools

45

such as ATOM [Srivastava94] by inlining the check for virtual addresses and by

increasing each procedure’s stack rather than creating a temporary stack frame for each

check.

• Modifications to the stack pointer occur much less frequently than stores to memory

that use the stack pointer. In addition, the stack pointer is almost always modified in

small increments, and these small increments cannot change a virtual address to a phys-

ical address. We can hence replace the checks on local and stack variables with a few

checks on the stack pointer [Wahbe93].

• We replace individual checks in commonly used loops with a few higher-level checks.

For example, procedures such as bcopy modify sequential blocks of data; these blocks

can be checked once rather than checking every individual store.

• Further optimizations are possible, such as recognizing loop invariants and eliminating

redundant checks within a basic block. Trends toward moving functionality out of the

kernel and toward relatively faster CPUs will further lower the overhead of code patch-

ing.

However, even after a number of optimizations to reduce the number of checks, the

performance of code patching is still 20-50% slower than with our current protection

method [Chen96b]. Hence code patching should be used only when the processor cannot

be configured to map all addresses through the TLB.

Another issue involves mmap (memory map) data. When a kernel mmaps a file, it can

write to the file via a simple store instruction to the corresponding mmapped address

space. Thus, kernels that use memory-mapping to cache files must be modified to map the

file read-only. Kernel procedures that write to the memory-mapped file must be modified

46

(e.g. using code patching) to first enable writes to memory. Some OS, like Digital UNIX

and Linux, does not use memory-mapping in the kernel. User memory-mapped files

require no changes to the kernel because these files are not mapped into the kernel address

space and hence the kernel cannot corrupt them.

This scheme protects memory solely from kernel crashes. Naturally, a faulty user pro-

gram can still corrupt any file to which it has write access.

4.2.2.3 Results and Analysis
The rightmost section of Table 4.2 shows the reliability of the Rio file cache with pro-

tection turned on. Out of 650 crashes, we measured only four corruptions (0.6%). This

implies that the VM protection technique we implemented in this design iteration is very

successful, and we have eliminated the corruptions due to copy overrun fault type. We use

the visual test approach proposed in Section 13.4.3 of [Jain91] to compare our design with

the write-through file cache. Figure 4.2 plots the 95% confidence intervals of the corrup-

tion rates and the mean corruption rates for the write-through file cache and both Rio file

Figure 4.2 Comparing Design Alternatives.This figure plots the 95% confidence
interval of mean corruption rate for all three file caches. The mean corruption rates for
both Rio designs are in the confidence interval of the write-through file cache, and we
conclude with 95% confidence that all three file caches have comparable reliability.

3%

2%

1%

0%M
ea

n
C

or
ru

pt
io

n
R

at
es

Write-through
File Cache

Rio without
Protection

Rio with
Protection

Legends
Confidence
Interval
Mean

47

cache designs. We observe significant overlap in confidence intervals between our designs

and a write-through file cache, and the mean corruption rates of both Rio file caches are in

the confidence interval of the write-through file cache (shaded box in Figure 4.2). We thus

conclude that both Rio file cache designs have comparable reliability as a write-through

file cache.

We recorded eight crashes where the Rio protection mechanism was invoked to pre-

vent an illegal write to the file cache (six for copy overrun and two for initialization); these

indicate cases where the file cache would have been corrupted had the protection mecha-

nism been off. Rio’s protection mechanism provides higher reliability than a write-through

file cache because it halts the system when it detects an attempted illegal access to the file

cache. Write-through file caches, in contrast, may continue to run and later propagate the

corrupted memory data to disk.

4.3 Performance

The main benefit of Rio discussed so far is reliability: all writes to the file cache are

immediately as permanent and safe as files on disk. In this section, we show that Rio also

improves performance by eliminating all reliability-induced writes to disk. The main

results were reported in [Chen96a], and are reproduced here.

Table 4.3 compares the performance of Rio with different UNIX file systems, each

providing different guarantees on when data is made permanent. UFS is the default Digital

UNIX file system. It writes data asynchronously to disk when 64 KB of data has been col-

lected, when the user writes non-sequentially, or when the update daemon flushes dirty file

data (once every 30 seconds). UFS writes metadata synchronously to disk to enforce

ordering constraints [Ganger94a].

48

UFS’s poor performance is due in large part to its synchronous metadata updates. To

eliminate this bottleneck, we enhanced UFS to delay all data and metadata until the next

time update runs; this is the optimal “no-order” system in [Ganger94a]. This improves

Table 4.3 Performance Comparison. This table compares the running time of Rio with
different UNIX file systems, each providing different guarantees on when data is made
permanent. cp+rm recursively copies then recursively removes the Digital UNIX source
tree (40 MB); Andrew models software development but is dominated by CPU-intensive
compilation. Rio achieves performance comparable to a memory-resident file system
while providing the reliability of a write-through file system. Rio’s protection
mechanism adds essentially no overhead, yet enables Rio to surpass the reliability of a
write-through file system. Rio is 2-14 times as fast as the default UNIX file system.
Delaying metadata writes by 30 seconds enables UFS to match Rio’s speed on some
workloads, but Rio is still 3 times as fast on cp+rm. Rio is 4-22 times as fast as systems
that guarantee data permanence after each file write or close.

Data Permanent
cp+rm

(seconds)
Andrew
(seconds)

Memory File System never
21

(15+6)
13

UFS with delayed data
and metadata

after 0-30 seconds,
asynchronous

81

(76+5)
13

AdvFS (log metadata
updates)

after 0-30 seconds,
asynchronous

125

(110+15)
16

UFS
data after 64 KB,

asynchronous
metadata synchronous

332

(245+87)
23

UFS with write-through
after each close

after close,
synchronous

394

(274+120)
49

UFS with write-through
after each write

after write,
synchronous

539

(419+120)
178

Rio without protection
after write,

synchronous
24

(18+6)
12

Rio with protection
after write,

synchronous
25

(18+7)
13

49

performance significantly over the default UFS; however, the optimization risks losing 30

seconds of both data and metadata.

We measure the behavior of two file systems that write data synchronously to disk.

UFS with write-through-on-close makes data permanent upon each file close by calling

fsync. UFS with write-through-on-write makes data permanent upon each file write by

mounting all file systems with the “sync” option and also calling fsync after each close.

Note that only UFS with write-through-on-write achieves the same reliability as Rio.

The Memory File System, which is completely memory-resident and does no disk

I/O, is shown to illustrate optimal performance [McKusick90]. AdvFS is a journalling file

system that reduces the penalty of metadata updates by writing metadata sequentially to a

log.

We run two workloads, cp+rm and Andrew. cp+rm recursively copies then recursively

removes the Digital UNIX source tree (40 MB). Andrew models software development

but is dominated by CPU-intensive compilation [Howard88]. All results represent an aver-

age of at least 5 runs.

The last two rows of Table 4.3 show that Rio’s protection mechanism adds almost no

performance penalty, even on very I/O intensive workloads such as cp+rm. Since Section

4.2.2.3 shows that Rio’s protection mechanism enables memory to be even safer than a

write-through file system, we recommend that protection be turned on.

Table 4.3 shows that Rio performs as fast as a memory file system and significantly

faster than all other file systems. As expected, Rio’s performance improvement is largest

over systems that provide similar reliability guarantees—Rio performs 4-22 times as fast

as UFS write-through-on-write and write-through-on-close.

50

Other file systems can shrink the gap in performance by sacrificing reliability. Rio is

2-14 times as fast as the standard UFS file system, yet Rio provides synchronous data

updates. Rio is 1-3 times as fast as UFS with delayed data and metadata. Yet while the

optimized UFS system risks losing 30 seconds of data and metadata on a crash, Rio loses

no data or metadata.

4.4 Discussion

We have shown that memory can safely store permanent data in the presence of oper-

ating system crashes. This has several implications for computer architects. First, design-

ers of memory-management hardware should continue to provide the ability to force all

accesses through the TLB, as is done in most microprocessors today. Without this ability,

the processor can bypass the TLB at any time, and code patching must be used to protect

the file cache from corruption.

Second, since memory contains long-term data, the system should treat memory like a

peripheral that can be removed from the rest of the system. If the system board fails, it

should be possible to move the memory board to a different system without losing power

or data [Moran90, Baker92a]. Similarly, the system should be able to be reset and reboo-

ted without erasing the contents of memory or CPU caches containing memory data. DEC

Alphas allow a reset and boot without erasing memory or the CPU caches [DEC94]; the

PCs we have tested do not.

Storing permanent data both on disk and in memory makes data more vulnerable to

hardware failures than simply storing data on disk. Being able to remove the memory sys-

tem without losing data can reduce but not eliminate the increased vulnerability. Because

software crashes are the dominant cause of failure today [Gray90], we do not consider the

51

increased vulnerability to hardware failures a serious limitation of Rio. However, if mem-

ory or CPU failures becomes the most common cause of system failure, extra redundancy

may need to be added to compensate for the larger number of components holding perma-

nent data.

4.5 Summary

We present a systematic and quantitative approach for using software-implemented

fault injection to guide the design and implementation of a fault-tolerant system. Our goal

was to build a write-back file cache on Digital Alpha workstation that was as reliable as a

write-through file cache. We followed an iterative approach to improve the robustness of a

write-back file cache in the presence of operating system errors. In each iteration, we mea-

sured the reliability of the system, analyzed the fault symptoms that led to data corruption,

and applied fault-tolerant mechanisms that address the fault symptoms. Our first design

using warm reboot enables memory to achieve reliability close to that of a write-through

file system. We observed that the major cause of corruption is due to the copy overrun

fault type. In our next design iteration, we protect the buffer data using VM protection

mechanism to limit these corruptions. Adding protection makes memory even safer than a

write-through file system while adding essentially no overhead. Our statistical analysis

indicates that Rio file cache has comparable reliability as a write-through file cache. Elim-

inating all reliability-induced writes to disk enables Rio to run 4-22 times as fast as sys-

tems that give comparable reliability guarantees, 2-14 times as fast as a standard, delayed-

write file system, and 1-3 times as fast as an optimized system that risks losing 30 seconds

of data and metadata.

52

Chapter 5

Reliable File Cache in FreeBSD

This chapter describes the implementation of our reliable file cache on an Intel PC run-

ning the FreeBSD OS. Section 5.1 describes the challenges posed by the PC platform, and

why we cannot use the warm reboot technique we develop for our Digital UNIX Rio. Sec-

tion 5.2 describes how we develop systematically a new technique,safe sync, to safely

restore memory contentduring a system crash. Section 5.3 compares the performance of

our reliable file cache versus different UNIX file systems (UFS). Section 5.4 discusses the

scalability, portability and cost of our design methodology. The material presented in this

chapter first appeared in the 1999 Symposium on Fault-Tolerant Computing [Ng99].

5.1 Implementation Platform

Our new platform is a PC running the FreeBSD 2.2.7 OS [McKusick96]. Each PC has

an Intel Pentium processor, 128 MB of memory, a 2 GB IDE hard drive, and a Phoenix 4.0

BIOS. The PC platform differs from the Digital Alpha workstation described in Chapter 4

in several ways. First, most PC console (BIOS) firmware clears memory during the initial

phase of boot. Second, the PC reset button (if it exists) often erases memory and processor

cache. Third, the Intel CPU cache uses a write-back policy and is also reset at the begin-

ning of boot. This prevent us from using warm reboot described in Section 4.2.1 to write

file cache data to disk during reboot. The Pentium processor is also a 32-bit processor,

compare to the 64-bit Digital Alpha processor. Thus there is a greater chance that an errant

pointer will actually point to a valid and dirty buffer page in the 32-bit address space.

53

5.2 Design Iterations

Our goal is to make Rio (our write-back file cache) as reliable as a write-through file

cache. We configure FreeBSD to use a write-through file cache, then measure the corrup-

tion rate to be 3.1% using the method described in Chapter 3. That is, 3.1% of the crashes

corrupt some data in the file system. Table 5.1 summarizes the corruption rate by fault cat-

egory of all our designs in this chapter.

Table 5.1 Comparing Reliability. This table shows how often each type of fault
corrupts data for a write-through file cache and the four designs for a reliable write-back
file cache. We conduct 1500 crashes for each system (100 for each fault type). The last
row shows the 95% confidence interval for the mean corruption rate.

Fault Type
Write-

Through
File Cache

Write-Back File Caches

Default
FreeBSD

Sync

Basic
Safe Sync

Enhanced
Safe Sync

BIOS
Safe Sync

text 3 51 7 5 2

stack 0 3 3 2 0

heap 5 28 8 3 1

initialization 10 45 9 7 4

del. random inst. 4 43 8 2 4

destination reg. 4 42 9 5 2

source reg. 4 43 10 3 1

delete branch 4 51 14 4 5

pointer 3 38 5 4 2

allocation 0 100 5 0 0

copy overrun 4 36 1 3 2

synchronization 0 3 1 0 0

off-by-one 4 59 16 9 3

memory leak 0 0 0 0 0

 interface error 1 47 8 3 2

Total
46 of 1500

(3.1%)
589 of 1500

(39.3%)
104 of 1500

(6.9%)
50 of 1500

(3.3%)
28 of 1500

(1.9%)

95% Confi-
dence Interval

2.2%-
3.9%

36.8%-
41.8%

5.6%-
8.2%

2.4%-
4.3%

1.2%-
2.6%

54

This section describes the four design iterations we went through to arrive at the final

system. Each subsection (5.2.1-5.2.4) describes the write-back file cache used in a design

iteration, presents results from the fault-injection tests on that design, then analyzes the

results to select techniques to fix the revealed fault categories. Table 5.2 summarizes the

four design iterations.

In all our designs, we modify the FreeBSD file cache in two ways to be a pure write-

back file cache. First, FreeBSD normally writes dirty file data to disk every 30 seconds or

when a full file block is written. We disable this reliability-induced write-back, so the sys-

tem writes data back to disk only when dirty blocks are replaced in the file cache. Second,

FreeBSD normally limits the amount of dirty file cache data to 10% of available system

memory. We increase this limit by allowing dirty file data to migrate from the file cache to

the virtual memory system, as is done in memory-mapped file systems [Bensoussan72].

5.2.1 Design Iteration 1: Default FreeBSD Sync

5.2.1.1 Design
We start the design process with the default sync used in FreeBSD. Sync refers to the

routine that writes dirty file-cache data to disk during a crash. FreeBSD’s default sync rou-

tine examines all blocks in the file cache and writes dirty blocks to disk using normal file

system routines.

Table 5.2 Design Iterations for FreeBSD Rio File Cache.

Section Design Iteration Fault-Tolerant Mechanisms

5.2.1 default FreeBSD sync default sync used in FreeBSD during crashes

5.2.2 basic safe sync add VM protection, reset key, registry, safe sync

5.2.3 enhanced safe sync
fix VM protection bugs; add watchdog timer, pri-
vate stack; disable debugging prints; map kernel
code read-only; initialize segment registers

5.2.4 BIOS safe sync physical addressing, BIOS disk I/O

55

5.2.1.2 Results and Analysis
Unfortunately, the default FreeBSD sync is not very robust during operating system

crashes. As shown in Table 5.1, 39% of crashes corrupted some file system data when

using the default FreeBSD sync. This corruption rate is 13 times as high as that of a write-

through file cache. We also observe from Table 5.1 that there is no overlap in confidence

interval between the our first design and the write-through file cache. This can be clearly

seen in Figure 5.1, which depicts the mean corruption rate and 95% confidence intervals

for the write-through file cache and all our designs. Thus, we conclude with 95% confi-

dence that our basic safe sync design is less reliable than the write-through file cache.

We next examine the corrupted runs in greater detail, focusing on where the faults are

injected into the system and how the system crashes. We determine how the system

Figure 5.1 Comparing Design Alternatives.This figure plots the 95% confidence
interval of mean corruption rate for the write-through file cache and all our designs. We
use the approximate visual test [Jain91] to compare our designs.

3%

2%

1%
0%

M
ea

n
C

or
ru

pt
io

n
R

at
es

Write-through
File Cache

Default
FreeBSD Sync

.

.

.

4%
5%

6%

36%

Basic
Safe Sync

Enhanced
Safe Sync

BIOS
Safe Sync

Legends
Confidence
Interval
Mean

.

.

less reliable than
write-through

comparable to write-through

need to do the t-testfile cache

file cache

56

crashes by looking at the crash messages and tracing fault propagation with the aid of the

FreeBSD kernel debugger. Our fault-injection tool helps by printing the kernel routine

name and location of corrupted code. We use this information to divide the fault symp-

toms into categories:

• Hang before sync: Most data corruptions occur because the system hangs and fails to

call the sync routine. Many workstations have a reset key that allows the user to drop the

system into the console prompt. The user can then issue a sync command directly or ini-

tiate recovery using a user-written routine. But most PCs do not have such a feature, and

those that are equipped with a reset switch typically erase memory (including dirty file

cache data).

• Page fault during sync: Sync often fails because it encounters a page fault while trying

to write dirty file cache data to disk. The page fault occurs when the operating system

accesses unmapped data or mapped data with the wrong permission settings. It can also

happen when the code is invalid or unmapped. The FreeBSD sync routine uses many

different kernel routines and data structures (e.g. mounted file system list, vnode data

structures, buffer hash list), so this fault is quite common.

• Buffer locked during sync: FreeBSD’s sync routine obeys the locking protocol used dur-

ing normal operation. It does not write to disk any file cache blocks that are locked, so

data in these blocks are lost.

• Double fault: The Pentium processor calls a double-fault handler if it detects an excep-

tion while servicing a prior exception [Int97b]. The processor will reset and abandon

sync if another exception occurs when the double fault handler is being serviced.

• File system errors: Our tool may inject faults into any part of the kernel. Faults that are

57

injected into file system routines often cause data corruption. For example, the file sys-

tem’s write routine might be changed to write to the wrong part of the file. We do not

attempt to fix this fault symptom because the write-through file cache is also susceptible

to these errors.

• Device Timeout: Sync sometimes fails because it experiences repeated device timeouts

when writing to the hard drive.

• Unknown: A few data corruptions are due to unknown causes. For these corruptions, the

sync routine appears to be successful, and the injected bugs appear to be benign. We do

not attempt to overcome this problem because of the lack of information and the low

frequency of this fault symptom.

Table 5.3 summarizes the categories of fault symptoms and some potential solutions we

develop (discussed in the next section) to reduce the vulnerability of the system to that

fault symptom.

Table 5.3 Categories of Fault Symptoms for Default FreeBSD Sync.

Fault Symptom # of Corruptions
Solutions Used in the Next

Design (Section 5.2.2.1)

hang before sync 268 (17.9%) software reset key

page fault during sync 163 (10.9%) registry, safe sync

buffer locked during sync 89 (5.9%) registry, safe sync

double fault 39 (2.6%) disable interrupt in safe sync

file system error 25 (1.7%)

device timeout 3 (0.2%)

unknown 2 (0.1%)

Total 589 of 1500 (39.3%)

58

5.2.2 Design Iteration 2: Basic Safe Sync

5.2.2.1 Design
A write-back file cache must perform two steps to write dirty data back to disk during a

crash. First, the system must transfer control to the sync routine. Second, the sync routine

must write dirty file data successfully to disk. Most of the corruptions experienced using

the default FreeBSD sync fail one of these two steps.Hang before sync fails to transfer

control to the sync routine during a crash. Most of the other fault symptoms transfer con-

trol to sync but experience an error during sync.

We address errors in these two steps separately. First, we must make it more likely that

the system will successfully transfer control to the sync routine during a crash. To fixhang

before sync, we use a software reset key that calls sync when pressed. We modify the low-

level keyboard interrupt handler of FreeBSD to call sync whenever it detects a certain key

sequence (e.g. control-alt-del). This addresses the dominant fault symptom in Table 5.3.

Second, we must make it more likely that the sync routine, once called, will write dirty

file data successfully to disk. Default FreeBSD sync fails this step because it depends on

many parts of the kernel. The default FreeBSD sync calls many routines and uses many

different data structures. Sync fails ifany of the routines or data structures are corrupted.

To make sync more robust, we must minimize the scope of the system that it depends on.

To minimize data dependencies, we implement informational redundancy [Johnson89]

by creating a new data structure called theregistry. The registry contains all information

needed to find, identify, and write all file cache blocks. For each block in the file cache, the

registry contains the physical memory address, file ID (device number and inode number),

file offset, and size. The registry allows sync to operate without using previously needed

kernel data structures, such as file system and disk allocation data. The registry is wired in

59

memory to reduce the likelihood of page faults during sync. Registry information changes

relatively infrequently during normal operation, so the overhead of maintaining it is low.

We replace FreeBSD’s default sync routine with a new routine (calledsafe sync) that

uses the registry when writing data to disk. Safe sync examines all valid entries in the reg-

istry and writes dirty file cache data directly to disk. By using information in the registry,

safe sync does not depend on normal file system routines or data structures. Safe sync also

takes additional precautions to increase its chances of success. First, safe sync operates

below the locking protocol to avoid being stymied by a locked buffer. Second, safe sync

disables interrupts to reduce the likelihood of double faults while writing to disk.

In addition to adding the registry and using a new sync routine, we also use the virtual

memory system to protect file cache data from wild stores [Chen96a]. We turn off the

write-permission bits in the page table for file cache pages, causing the system to generate

protection violations for unauthorized stores. File cache procedures must enable the write-

permission bit in the page table before writing a page and disable writes afterwards.

5.2.2.2 Results and Analysis
Fault injection tests on the new design show substantial improvement over the default

FreeBSD sync. Table 5.1 shows that the new design has a corruption rate of 6.9%, which

is six times better than the default FreeBSD sync. However, it still has twice as many cor-

ruptions as a write-through file cache. We observe from Figure 5.1 that there is no overlap

in confidence interval between the our first design and the write-through file cache. We

thus conclude with 95% confidence that our new design is less reliable than a write-

through file cache.

60

Table 5.4 breaks down the fault symptoms for our current design. The fault symptoms

are very similar to those in Table 5.3, but the corruption rates are reduced significantly due

to the fault-tolerant measures introduced in Section 5.2.2.1. We analyze the fault symp-

toms from this design to see how we can make safe sync more robust in the next iteration:

• Hang before sync: Table 5.4 shows that the reset button reduces the corruption rates sub-

stantially from the default FreeBSD sync (from 17.9% to 3.0%). We examine the

remaining cases and the keyboard interrupt handler to determine what causes the reset

key to fail. The dominant reason is that FreeBSD sometimes masks keyboard interrupts.

If the system hangs while keyboard interrupts are masked, the reset key will not transfer

control to safe sync. To fix this, we add a watchdog timer to the system timer interrupt

handler [Johnson89]. The system timer interrupt handler watches for pending keyboard

interrupts and calls safe sync if the keyboard interrupt does not get serviced for a long

time. For five of the corruptions, the fault was injected into the terminal output routine,

and safe sync failed when it tried to print some debugging information. We fix this fault

by disabling debugging print statements during safe sync.

Table 5.4 Categories of Fault Symptoms for Basic Safe Sync.

Fault Symptom # of Corruptions
Solutions Used in the Next Design

(Section 5.2.3.1)

hang before sync 45 (3.0%) watchdog timer, disable print

file system error 24 (1.6%)

page fault during sync 18 (1.2%)
read-only text, private stack, restore
segment registers

data corruption 11 (0.7%) fix VM protection

double fault 4 (0.3%) private stack

device timeout 2 (0.1%)

Total 104 of 1500 (6.9%)

61

• File system error: Again, we do not attempt to fix this fault symptom because the write-

through file cache is also susceptible to these errors. Note that the corruption rate for file

system errors is similar between Table 5.3 and Table 5.4. The slight differences are due

to the non-determinism inherent to testing a complex, timing-dependent system.

• Page fault during sync: This fault symptom occurs for a variety of reasons, and we

develop a variety of solutions to fix it. For example, some faults corrupt the Intel seg-

ment registers that are used by some instructions in safe sync. To fix this error, we re-

initialize the segment registers to their correct value at the beginning of safe sync. Other

faults cause wild stores to write over kernel code. To fix this error, we map the kernel

code as read-only (of course, our fault injector can still modify kernel code).

• Data corruption: Some faults corrupted data in the file cache before crashing the sys-

tem. For these runs, safe sync completed successfully but wrote out the corrupted data.

While investigating the source of this corruption, we uncovered a bug in FreeBSD’s pro-

tection code that sometimes allowed wild stores to overwrite the file cache and kernel

code.

• Double fault: This bug occurs when part of the stack segment is unmapped by the

injected fault but the TLB is not invalidated. The system will continue to function until

the stack pointer advances beyond the valid page in the TLB, and encounter multiple

page faults when it tries to fault in subsequent pages from the bogus stack. To fix this,

we pre-allocate a stack for safe sync during bootup and wire it in memory. Safe sync’s

first action is to switch to this private stack.

62

5.2.3 Design Iteration 3: Enhanced Safe Sync

5.2.3.1 Design
Our next design improves on the basic safe sync design from the last iteration using the

fixes suggested in Section 5.2.2.2. First, we add a watchdog timer to call safe sync if the

system hangs with keyboard interrupts disabled. Second, we disable print statements dur-

ing safe sync to remove dependencies on the print routines. Third, we re-initialize the seg-

ment registers to their proper value. Fourth, we map the kernel code as read-only and fix a

bug in FreeBSD’s protection code. Finally, we switch to a pre-allocated, wired stack at the

beginning of safe sync to remove dependencies on the system stack.

5.2.3.2 Results and Analysis
We conduct fault injection tests on the new design and find that it has a corruption rate

of 3.3%, versus 6.9% for the basic safe sync design of iteration 2. Enhanced safe sync is

nearly as reliable as a write-through file cache. We observe from Figure 5.1 that there is

significant overlap in confidence interval between the our new design and the write-

through file cache, and the mean corruption rate of our new design falls in the confidence

interval of the mean corruption rate of the write-through file cache. We thus conclude with

95% confidence that our new design has comparable reliability as a write-through file

cache.

We choose to improve on our current design until we can conclude with a high degree

of confidence that our design is more reliable than the write-through file cache. Table 5.5

breaks down the fault symptoms of our current design. There are two basic dependencies

remaining in our system. First, all kernel code, including safe sync, runs in virtual-

addressing mode with paging enabled [Int97d], which uses virtual addresses to access

63

code and data. Because safe sync accesses virtual addresses, it depends on the FreeBSD

virtual memory code and data (such as the doubly linked address map entries [Rashid88]).

To fix this dependency, we must configure the processor to use physical addresses during

safe sync.

Second, safe sync uses the low-level kernel device drivers to write data to disk. The

FreeBSD disk device drivers are quite complex, and there is no simple disk device driver

routine to initialize the device driver state or reset the hard drive and disk controller card.

Our safe sync code can thus hang or timeout whenever it access the disk. To remove this

dependency, we must bypass the complex device driver for a simpler disk interface.

5.2.4 Design Iteration 4: BIOS Safe Sync

5.2.4.1 Design
In our final design, we want to remove dependencies on the virtual memory system and

device drivers. We remove dependencies on the virtual memory system by switching the

processor to use physical addresses [Int97d]. We remove dependencies on the kernel

device drivers by using the BIOS interface to the disk [Gilluwe97]. BIOS (Basic

Input/Output Service) routines are implemented in the firmware of the I/O controller. Both

Table 5.5 Categories of Fault Symptoms for Enhanced Safe Sync.

Fault Symptom # of Corruptions
Solutions Used in the Next Design

(Section 5.2.4.1)

hang before sync 21 (1.4%) BIOS I/O, real-mode addressing

file system error 20 (1.3%)

page fault during sync 4 (0.3%) real-mode addressing

device timeout 3 (0.2%) BIOS I/O

data corruption 2 (0.1%)

Total 50 of 1500 (3.3%)

64

physical addressing and BIOS routines have limited features and are used normally to load

the operating system from disk during system boot. Modern operating systems like

FreeBSD use virtual addressing and replace the BIOS with their own device drivers.

Our final design replaces the safe sync code used in design iteration 3. The new safe

sync procedure is summarized below (the full source code is available at

http://www.eecs.umich.edu/Rio):

• Part 1: Initial setup: we followed the instructions outlined in Section 8.8.1 of [Int97d],

which includes setting up a linearly mapped segments for data and code, setting the glo-

bal (code/data) and interrupt descriptor table registers for real-mode operation, and

making a long jump to the real-mode switch code.

• Part 2: Mode switching: the real-mode switch code disables paging, loads the segment

registers with real-mode segments, and clears the paging enable bit before making a

jump to the real-mode safe sync code. This jump brings the processor to real-mode

operation.

• Part 3: Real-mode setup: BIOS safe sync begins by initializing the remaining segment

registers, setting the interrupt controllers to real-mode operation [Int97a], and initializ-

ing the video console and disk controller using the BIOS interface [Gilluwe97]. The rest

of BIOS safe sync is fairly straightforward and is generated from the C version of

enhanced safe sync. We modify the resulting assembly code by adding address/data

overrides [Int97d] and using a large data segment (i.e. big real-mode [Shanley96]) to

access data beyond the first 1 MB of memory. During sync, we copy the file cache data

into the lower 1 MB of memory because the BIOS disk interface uses 16-bit segment

addressing.

65

Part 1 of BIOS safe sync is a C function and can be invoked directly by the FreeBSD

kernel. The rest of BIOS safe sync code is written in assembly and is not accessible to the

FreeBSD kernel, because it resides in unmapped physical memory pages that are hidden

from the FreeBSD page allocator.

5.2.4.2 Results and Analysis
We conduct fault injection tests on our BIOS safe sync. Table 5.6 breaks down the fault

symptoms for our latest design. The mean corruption rate is 1.9%, which is 40% lower

than the mean corruption rate of the write-through file cache. We also observe from Figure

5.1 that the confidence interval of our new design overlaps slightly with that of the write-

through file cache, and Rio’s mean corruption rate is not in the confidence interval of the

write-through file cache. We use a more elaboratet-test statistical procedure explained in

Section 13.4.2 of [Jain91] to compare the two designs. We compute the mean difference in

corruption rates between the two designs, and the standard deviation of mean difference.

This allows us to derive the 95% confidence interval for the difference in mean corruption

rates, which is (1.0%, 2.3%). Because the resulting confidence interval does not include

zero, we conclude with 95% confidence that our BIOS safe sync design is more reliable

than the write-through file cache.

Table 5.6 Categories of Fault Symptoms for BIOS Safe Sync.

Fault Symptom # of Corruptions Possible Solutions

file system errors 17 (1.1%)

hang before sync 5 (0.3%) hardware reset/warm reboot

data corruption 4 (0.3%)

device timeout 2 (0.1%) hardware reset/warm reboot

Total 28 of 1500 (1.9%)

66

Rio is able to achieve higher reliability than a write-through file cache because we have

less corruptions due to the fault symptoms file system errors and VM errors. Figure 5.2

breaks down the fault symptoms for our Rio file cache with BIOS safe sync and a write-

through file cache. A write-through file cache writes all data synchronously to hard disk,

and performs several order of magnitude more disk writes than our Rio file cache. It also

has a larger code path compare to Rio as it needs to write data to stable storage. In con-

trast, Rio executes less code when writing data to persistent storage in main memory.

Thus, there is a higher probability that a write-through file cache will write corrupted data

to disk whenever the file system code is corrupted.

Figure 5.2 Why is Rio with BIOS Safe Sync More Reliable? We breakdown the
fault symptoms for both Rio file cache with BIOS safe sync and write-through file
cache. The y-axis shows the mean corruption rates.

File System Errors
File System Errors

Hang Before Sync

Data Corruption

Device Timeout

VM Errors

Data Corruption

Unknown

Rio File Cache Write-through File Cache

3.0%

2.0%

1.0%

0%

C
or

ru
pt

io
n

R
at

es

67

The write-through file cache also suffers from corruptions due to VM errors. This

occurs when the injected bug corrupts the address mappings for the buffer page, and

causes the wrong data to be written to disk. Rio is not vulnerable to this fault type because

we use the information in the registry to restore file cache data. The registry contains the

physical address of the buffer page. It also has a restricted interface. We perform consis-

tency checks before we update the registry content.

We observe from Figure 5.2 that it may be possible to improve BIOS safe sync by add-

ing a hardware reset key and modifying the PC firmware and motherboard to not initialize

memory on reset/reboot. This would allow the system to do a complete reset, then to per-

form a warm reboot as was done in [Chen96a]. Doing so should fix the remaining hangs

before sync and device timeouts, but it would incur significant system cost.

5.3 Performance

The main benefit of Rio discussed so far is reliability: all writes to the file cache are

immediately as permanent and safe as files on disk. In this section, we show that Rio also

improves performance by eliminating all reliability-induced writes to disk.

Table 5.7 compares the performance of our Rio file cache with different types of file

systems, each providing different guarantees on when data is made permanent. The Mem-

ory File System, which is completely memory-resident and does no disk I/O, is shown to

illustrate optimal performance [McKusick90]. UFS (UNIX File System) is the default

FreeBSD UNIX file system. It writes data asynchronously to disk when 64 KB of data has

been collected, when the user writes non-sequentially, or when the sync daemon flushes

dirty file data (once every 30 seconds). UFS writes metadata synchronously to disk to

enforce ordering constraints [Ganger94a].

68

UFS’s poor performance is due in large part to its synchronous metadata updates. To

eliminate this bottleneck, we measure the behavior of a file system that write both meta-

data and data asynchronously to disk. We delay all data and metadata writes until the next

time update runs. This is the optimal “no-order” system in [Ganger94a] and is faster than

soft update [Mckusick99] file systems as it does not need to maintain dependencies

between updates. Note that we did not use the async mount option in FreeBSD as the

FreeBSD async file system implementation still does a significant number of synchronous

metadata disk writes. This improves performance significantly over the default UFS; how-

ever, the optimization risks losing 30 seconds of both data and metadata. We also measure

the behavior of a write-through file cache which writes all data synchronously to disk.

This achieves the same reliability as Rio but at significant performance penalty.

Table 5.7 Performance Comparison. This table compares the running time of our
reliable write-back file cache (Rio) with different UNIX file systems, each providing
different guarantees on when data is made permanent. cp+rm recursively copies then
recursively removes the FreeBSD source tree (32 MB); Andrew models software
development but is dominated by CPU-intensive compilation. The results are based on an
average of 40 runs (except for write-through file cache and UFS, which is based on an
average of 10 runs). All performance measurements were made on a PC with a 400 MHz
Pentium-II processor, 128 MB of 100 MHz SDRAM, and a IBM DCAS-34330W SCSI
disk (with the disk write-cache enabled) and FreeBSD OS.

File System Data Permanent cp+rm Andrew

Memory File System never 2.80 seconds 1.20 seconds

Rio file cache synchronous 3.20 seconds 1.25 seconds

UFS with delayed data
and metadata

after 0-30 seconds,
asynchronous

5.95 seconds 1.30 seconds

UFS
data asynchronous

metadata synchronous
119.85 seconds 5.15 seconds

write-through file cache synchronous 175.11 seconds 14.60 seconds

69

We run two workloads, cp+rm and Andrew. cp+rm recursively copies then removes

the FreeBSD source tree (32 MB). Andrew models a software development workload. All

results represent an average of 20 runs.

Table 5.7 shows that our Rio file cache is an order of magnitude faster (12-55 times)

than a write-through file cache. It is also significantly faster (4-37 times) than the standard

UNIX file system. Rio’s performance approaches that of an optimal memory-based file

system. It achieves excellent performance without sacrificing reliability. Rio is roughly

equivalent in reliability to a write-through file cache. Both Rio and a write-through file

cache are more reliable than standard UFS. UFS loses up to 30 seconds of data on a crash,

while Rio and a write-through file cache typically lose no data on a crash.

Rio is significantly faster than a write-through file cache because it eliminates all syn-

chronous writes to disk. Table 5.8 breaks down the number of synchronous and asynchro-

nous disk writes for each type of file systems. We observe that file systems with no

synchronous writes, such as Rio, perform significantly better than the other file systems

Table 5.8 Why is Rio Faster? This table breaks down the type of disk writes,
synchronous (sync) or asynchronous (async), for Rio and different file systems.

File System
cp+rm Andrew

time (sec) sync async time (sec) sync async

Memory File System 2.80 0 0 1.20 0 0

UFS with delayed data
and metadata (no sync

daemon)
3.05 0 0 1.20 0 0

Rio file cache 3.20 0 0 1.25 0 0

UFS with delayed data
and metadata

5.95 0 354 1.30 0 5

UFS 119.85 5725 9320 5.15 4725 4031

write-through file cache 175.11 19673 8310 14.60 24150 4366

70

that have synchronous writes. Rio also does not need to sync periodically its file cache

data to disk. All the UNIX file systems run a sync process that periodically (e.g. every 30

seconds) writes dirty file cache data asynchronously to disk. This will increase the number

of asynchronous writes. We disable the sync daemon on a UFS with delay data and meta-

data. This removes all asynchronous writes and allow the file system’s performance to

approach that of MFS.

5.4 Discussion

We have designed two reliable file caches on two separate platforms, Digital Alpha

workstation and Intel PC, using different design techniques (e.g. warm reboot on Alpha

and safe sync on Intel PC). Both platforms also require more than one design iterations.

This allows us to understand the scalability, portability, and cost of our design approach.

We would like to address these issues in this section.

• Scalability: Our target system is fairly representative of a medium-size software devel-

opment project. The relevant operating system code (file system, VM, interrupt, etc.)

spans approximately 40 files and 20,000 lines of code. We added 3 files and 2000 lines

of code. The development effort took one man-year. This includes the substantial time it

took to understand FreeBSD and the Intel PC architecture (microarchitecture, assembly

language, system BIOS). Our experimental setup was fully automated and we had suffi-

cient machines to run the experiments in parallel, so most of our time was devoted to

uncovering fault symptoms and debugging code. The analysis process was largely man-

ual, though we wrote several tools to expedite this process. Our design approach is

applicable to many software development projects as long as there are enough resources

to perform the fault injection experiments, and sufficient expertise to diagnose the faults

71

and implement the fault-tolerant mechanisms. The development effort for the Digital

UNIX Rio file cache is comparable in magnitude.

• Portability: We demonstrated our design methodology on FreeBSD running on Intel

PCs. We have also tried this approach on a limited scale when implementing a reliable

write-back file cache on Digital Alpha workstations (see Chapter 4) and the Postgres

database (see Chapter 6). We are confident that our approach is portable to other sys-

tems.

• Cost: Our FreeBSD Rio design took four iterations, requiring 8 machine-months of

testing. Our Digital UNIX Rio design took two iterations and 6 machines-months of

testing. In both studies, we tackled the dominant fault symptoms in the first iteration,

with diminishing returns on successive iterations. Using software fault injection pro-

vided quantitative data on when our system reached our reliability goal. For example,

we could have stopped after enhanced safe sync, because its corruption rate was statis-

tically indistinguishable from a write-through file cache. Choosing a reliability goal is a

tradeoff between design cost and application requirements.

5.5 Summary

We have implemented the Rio file cache on a more challenging platform, Intel PC

running the FreeBSD OS. We followed an iterative approach described in Chapter 3 to

improve the robustness of a write-back file cache in the presence of operating system

errors. In each iteration, we measured the reliability of the system, analyzed the fault

symptoms that led to data corruption, and applied fault-tolerant mechanisms that address

the fault symptoms. The result of several iterations was a design that improved reliability

by a factor of 21. The resulting write-back file cache is both more reliable (1.9% vs. 3.1%

72

corruption rate) and an order of magnitude faster (12-55 times) than a write-through file

cache for workload that fits in main memory.

73

Chapter 6

Application-Level Reliable Memory

This chapter describes how we implement reliable memory in an application, using

the warm reboot and VM protection techniques described in the previous chapter. We

choose database system as it is representative of large, I/O bound applications that can

benefit significantly from Rio. Section 6.1 briefly describes the database management soft-

ware (Postgres) used in our experiments. Section 6.2 examines three different approaches

of using reliable memory in database systems. Section 6.3 analyzes the reliability of the

our prototypes, and demonstrates that Rio can be applied to database systems without

diminishing the application’s reliability. We conclude by discussing some limitations of

our work. The material presented in this chapter first appeared in the 1997 International

Conference on Very Large Data Bases [Ng97].

6.1 Postgres Database Management System

We use the Postgres95 database management system developed at U.C. Berkeley as

the database in our experiments [Stonebraker87]. Postgres has a few unique features

which are relevant to our work; however our results should apply to more conventional

databases as well.

One novel aspect of Postgres is that itappends new data rather than overwriting the

old version of the data. In contrast, conventional databases with write-ahead logs log

undo/redo records, then later write new data in-place over the old version of the data. Post-

74

gres’ scheme forces new data to disk at commit, whereas a conventional scheme forces

only the log at commit (a no-force policy for the actual data). A force-at-commit policy

decreases the amount of time database buffers are vulnerable to database crashes (Section

6.2.1).

As with nearly all database systems, Postgres keeps a database buffer cache in main

memory to store frequently used data. Transactions modify the buffer cache data, then

force the modified data to disk on commit. Because Postgres appends new data rather than

overwriting it, a steal policy may be used without an explicit undo log. If a transaction

aborts, the old copy of the data can be recovered from disk. Our second software design

(Section 6.2.3) makes the database buffer cache persistent and hence does not force data to

disk at commit.

6.2 Software Designs for Integrating Reliable Memory

In this section, we describe three ways databases can include reliable memory and the

implication of each design on reliability and performance.

The goal of this chapter is to explore how to use the Rio file cache to provide reliable

memory for databases. Database systems traditionally encounter two problems in trying to

use buffer caches managed by the operating system (the file cache) [Stonebraker81].

First, buffer caches managed by the file system do not easily allow the database to

order updates to disk. These writes to disk need to be done in order to obey the constraints

imposed by write-ahead logging [Gray78]. Because of this, databases must use fsync to

force data to disk or use direct I/O, bypassing the file cache entirely. The Rio file cache

solves this problem completely, because data is persistent as soon as it enters the file

75

cache. Thus, databases control the order of persistence by controlling the order that I/O is

done to the file cache; no fsync is needed.

Second, databases manage memory better than a generic file system can, because

databases know more about their access patterns than the file system. Our second software

design addresses this problem by mapping the Rio file cache into the database address

space. This exposes reliable memory to database crashes. Our third design incorporates

virtual memory protection to minimize this vulnerability.

6.2.1 I/O Interface to Reliable Memory (Non-Persistent Database Buffer Cache)
Our baseline design minimizes the changes needed to the database system by hiding

the reliable memory under the file system interface (see Figure 6.1). The Rio file cache is

database

write()read()

database
system

operating
system

Rio file cache
(reliable memory)

Figure 6.1 I/O Interface to Reliable Memory. This design hides the reliable memory
under the file system interface. The database uses read() and write() system calls to write
data to the reliable memory. This design uses a traditional, non-persistent database buffer
cache and thus minimizes changes required to the database. Because the interface to
stable storage has not changed, this design is as safe as a standard database system from
database crashes.

buffer cache
(non-persistent)

76

used automatically when accessing the file system, so the database need only write persis-

tent data to the file system instead of to the raw disk (or via direct I/O). No fsync is

needed, because all file system writes to Rio are persistent immediately as soon as the data

enters the file cache. In fact, Rio implements fsyncs as null operations. This removes all

synchronous writes from the critical path of any transaction. This design requires no

changes to the database; it need only run on top of the Rio file system.

Because the interface to stable storage has not changed, this design is as safe as a

standard database from database crashes. Recall that the Rio file cache is responsible for

protecting and restoring the file system data if the operating system should crash. This

transparency and reliability incurs some costs, however.

Using an I/O interface to reliable memory partitions main memory between the Rio

file cache and the database buffer cache. The operating system would like the reliable

memory area (the Rio file cache) to be large so it can schedule disk writes flexibly and

allow the largest number of writes to die in the file cache. But larger reliable memory areas

reduce the size of memory available to the database. This partitioning creates two copies

of data in memory (double buffering), one in the Rio file cache and one in the database

buffer cache. Not only does this waste memory capacity, it also causes extra memory-to-

memory copies.

One possible solution to these problems is to eliminate the database buffer cache and

have the database use the file cache to store frequently used data. This is likely to make

memory less effective at buffering database data, however, because a database can manage

its buffer cache more effectively than file systems can (databases have more information

on usage patterns). Researchers have proposed various ways for applications to control

77

memory [Harty92, Patterson95, Bershad95, Seltzer96], and eventually this may enable the

file cache to be as effective as a database buffer cache. But for the time being at least, the

best performance will be achieved by databases that wire down memory in their buffer

caches and control it completely.

6.2.2 Memory Interface to Reliable Memory (Persistent Database Buffer Cache)
Our second design maps the Rio file cache directly into the database system’s address

space using the mmap system call (see Figure 6.2). The database system allocates the

database buffer cache from this area and locks these pages in memory to avoid paging.

database

database
system

operating
system

Rio file cache
(reliable memory)

Figure 6.2 Memory Interface to Reliable Memory. This designmaps the Rio file
cache directly into the database system’s address space using the mmap system call. The
database system can allocate its buffer cache from this region to make a persistent buffer
cache. Access to stable storage (the persistent database buffer cache) takes place using
load/store instructions to memory. This design eliminates the double buffering problem
but exposes stable storage to software errors more than the design using an I/O interface
to reliable memory.

buffer cache
(persistent)

storeload

78

This design allows the database to manipulate reliable memory directly using ordinary

load/store instructions.

Using a memory interface to reliable memory has several advantages over the first

design. First, management of this area of memory is completely under database control;

the database system treats this area of memory exactly like a normal database buffer cache

(that happens to be persistent). Hence no special support is required from the operating

system to allow the database to help manage replacement and prefetching policies.

Second, this design eliminates double buffering and extra memory-to-memory copies.

The database simply manipulates data in its buffer cache and these changes are automati-

cally and instantly permanent. Hence this design performs better than the non-persistent

buffer cache.

Making the database buffer cache persistent leads to a few changes to the database.

These changes are essentially the same as those needed by a database using the steal pol-

icy [Haerder83]. The steal policy allows dirty buffers to be written back to disk (that is,

made persistent) at any time. In particular, buffers may be made persistent before the

transaction commits. This policy requires an undo log so the original values may be

restored if the transaction aborts. Persistent database buffer caches require an undo log for

the same reason, becauseall updates to the buffer cache are instantly persistent, just as if

they had been stolen immediately.

Other designs are possible that map the Rio file cache into the database address space.

For example, the database log could be stored in reliable memory. Or an entire database

could be mmapped, and the database could trust the virtual memory and file system of the

operating system to page in and out appropriate pages. This latter approach may be appro-

79

priate for situations where the database program is one of several concurrent jobs (perhaps

a machine running a client database program). In general, however, we believe that data-

bases prefer to manage their own memory. Because of this, we mmap only the database

buffer cache, and we lock these pages in memory to prevent paging.

The main disadvantage to using a memory interface to reliable memory is a slightly

increased vulnerability to software errors. The interface to stable storage with this design

is now much simpler: load/store instructions instead of read/write system calls. Hence it is

easier for a software bug in the database to accidentally overwrite persistent data

[Rahm92, Sullivan91a]. This section discusses the increased vulnerability conceptually;

Section 6.3 compares quantitatively the chances of data corruption among the different

designs

Consider the possible states of a database buffer (see Figure 6.3) during a transaction.

For both persistent and non-persistent database buffer cache designs, a transaction begins

with a clean buffer. This buffer will become dirty and uncommitted when the transaction

modifies the buffer. Dirty means the memory version of the buffer is different than the disk

version. For the non-persistent database buffer cache design, the dirty and uncommitted

buffer will be written to disk when the transaction commits, and become clean buffer

again. However, for the persistent database buffer cache design, the dirty buffers are not

written out to disk when the transaction commits. Instead, these buffers are marked as

committed data. It will be written out to disk when the buffer is replaced due to capacity

overflow.

80

In our modification of Postgres95, we keep commit and dirty flags for each database

buffer. After a database crash, we restore to disk only those pages that are marked as com-

mitted and dirty. Dirty pages that are not yet committed are restored to their before-image

using the undo log. The following compares the vulnerabilities of different buffer states

for persistent and non-persistent database buffer caches.

• clean: This state (see Figure 6.3) occurs when a piece of data is read from disk or when

a dirty buffer is written back to disk. Buffers in this state are safe from single errors for

both designs. To corrupt stable storage with a non-persistent buffer cache, the system

would need to corrupt the buffer and later force it to disk (a double error). To corrupt

stable storage with a persistent buffer cache, the system would need to corrupt the

Figure 6.3 Database buffer cache state.

writes

transaction endsbuffer replacement

transaction
begins clean dirty

uncommitted

dirty
committed

transaction

writes

transaction ends

begins
dirty

uncommittedclean

Non-persistent Database Buffer Cache

Persistent Database Buffer Cache

81

buffer and mark it as dirty (a double error). With either design, errant stores to buffers

in this state may lead to corruption if other transactions read the corrupted data.

• dirty, uncommitted : This state occurs when a buffer has been modified by a transac-

tion that is still in progress. Buffers in this state are equally vulnerable for both designs.

In either design, stable storage will be corrupted if and only if the buffer is corrupted

and the transaction commits.

• dirty, committed : This state indicates the buffer has been changed by a transaction and

that the transaction has committed, but that the data has not yet been written to disk.

Dirty, committed buffers can exist in a persistent database buffer cache, because data is

not written to disk until the buffer is replaced. Buffers in this state are vulnerable to

software corruption; any wild store by another transaction can corrupt these buffers,

and any change is instantly made persistent.

With non-persistent buffer caches, dirty, committed buffers can exist if the database

uses a no-force policy. Buffers are dirty and committed until being forced to disk, at

which time they are marked as clean. However, non-persistent buffer caches keep these

buffers safer than persistent buffer caches. This is because the recovery process for non-

persistent buffer caches discards memory buffers and uses the redo log to recover the

data. Hence if the database system corrupts a buffer in this state and crashes soon after-

wards, the corrupted data will not be made persistent. Corruption occurs only if the sys-

tem stays up long enough to write the affected buffer to disk.

It is clear from Figure 6.3 that the main difference between the persistent and non-per-

sistent database buffer cache designs is the dirty, committed buffers. Dirty, committed

buffers make systems with persistent buffer caches more vulnerable to software corrup-

82

tion than systems with non-persistent buffer caches. These buffers are vulnerable for a

longer period of time in a system with persistent buffer caches, particularly compared

to systems using a force policy (such as Postgres). And systems with non-persistent

buffer caches experience corruption due to these buffers only if the system remains up

long enough to propagate them to disk.

6.2.3 Memory Interface to Reliable Memory with Protection (Persistent, Protected
Database Buffer Cache)

Our third design also uses a memory interface to reliable memory but uses virtual

memory protection to protect against wild stores to committed, dirty buffers (this scheme

was suggested in [Sullivan91a]). In this system, buffers are normally kept write protected.

When a transaction locks an object, the page containing the object is unprotected; when

the transaction commits, the page is reprotected. If multiple transactions use objects on the

same page, the system reprotects the page when all transactions release their locks.

Figure 6.4 shows the buffer cache state transition diagram for the persistent protected

database buffer cache. It is very similar to the persistent database buffer cache design.

However, this scheme protects buffers (dirty committed data) in the state that our analysis

in Section 6.2.1 showed are more vulnerable for persistent buffer caches. It also protects

clean buffers as these buffers are not being used. Dirty and uncommitted data has the same

vulnerability in all three designs. Thus, introducing protection makes persistent database

buffer cache more reliable as clean and dirty/committed buffers (clear bubbles with dotted

outlines in Figure 6.4) are now protected from software errors.

83

Because the virtual memory hardware uses a page granularity, this scheme exposes

unrelated objects that happen to be on the same page as the locked object. The scheme

does not prevent object-level locking, however, since this locking can be accomplished

independently from our protection mechanism.

Section 6.3 measures how effectively the virtual memory protection scheme protects

committed, dirty pages from wild stores. The disadvantage of this scheme is that the extra

protection operations may lower performance.

6.3 Reliability Evaluation
Persistent database buffer caches solve the double buffering problem by placing stable

storage under database control. As discussed in Section 6.2.3, however, this design may be

more vulnerable to database crashes. This section compares quantitatively the reliability

of the different designs by injecting software bugs into Postgres to crash it, then measuring

the amount of corruption in the database. We detect database corruption by running a

repeatable set of database commands modeled after TPC-B [TPC90] and comparing the

database image after a crash with the image thatshould exist at the point at which the

crash occurred. Our fault model and experiment are described in Chapter 3.

Figure 6.4 Protected Persistent Database buffer cache state.

writes

transaction endsbuffer replacement

transaction
begins clean dirty

uncommitted

dirty
committed

84

Table 6.1 presents reliability measurements of our three designs. We conducted 50

tests for each fault category for each of the three systems; this represents 2 machine-

months of testing. Individual faults are not directly comparable because of non-determin-

ism in the timing of the faults and differences in code between the different systems;

instead we look primarily at trends between the different systems.

Table 6.1 Comparing Reliability. This table shows how often each type of error
corrupted data for three designs. We conducted 50 tests for each fault type for each of
three systems using the TPC-B benchmark as the workload. The last row shows the 95%
confidence interval. Even without protection, the reliability of the persistent database
buffer cache is about the same as a traditional, non-persistent buffer cache. We have
observed similar results in an earlier experiment with 100 tests for each fault type and the
Wisconsin benchmark [Bitton83] as the workload.

Fault Type

I/O Interface
(Non-Persistent
Database Buffer

Cache)

Memory Interface
(Persistent Database

Buffer Cache)

Memory Interface
with Protection
(Persistent, Pro-
tected Database
Buffer Cache)

text 1 1 1

heap 0 0 0

stack 0 0 0

destination reg. 4 5 5

source reg. 2 2 2

delete branch 1 1 0

delete random inst. 2 2 2

initialization 0 1 1

pointer 0 0 0

allocation 0 0 0

copy overrun 0 0 0

off-by-one 5 5 3

synchronization 0 0 0

memory leak 0 0 0

 interface error 4 3 3

Total 19 of 750 (2.5%) 20 of 750 (2.7%) 17 of 750 (2.3%)

95% Confidence
Interval

1.2%-3.8% 1.4%-4.0% 1.0%-3.5%

85

Overall, all three designs experienced few corruptions—only 2.3-2.7% of the crashes

corrupted permanent data over 2250 tests. This argues that, even with research database

such as Postgres, software bugs may crash the system but usually do not corrupt perma-

nent data. There are several reasons contributing to Postgres’s robustness. First, Postgres

has many programmer assertions that quickly stop the system after a fault is activated.

Detecting the fault quickly and stopping the system prevents erroneous data from being

committed to the permanent database image. Second, the operating system provides built-

in assertions that check the sanity of various operations. For example, dereferencing a

NULL pointer will cause the database to stop with a segmentation violation. In general,

faults that left the system running for many transactions (such as off-by-one and interface)

tended to corrupt data more frequently than faults that crashed the system right away (such

as heap and stack).

We next compare the reliabilities of the three designs. The amount of corruption in all

three systems is about the same. The differences are not large enough to make firm conclu-

sions distinguishing the three systems, however we note that, as expected,

• the traditional I/O interface (non-persistent buffer cache) achieved the highest reliabil-

ity (2.5%)

• the memory interface (persistent buffer cache) showed slightly worse reliability (2.7%)

• adding protection to the persistent buffer cache improved its reliability (2.3%)

As it is difficult to prove that our fault model represents real faults, we present three

different interpretations of Table 6.1 by varying the weights associated with each fault

type according to fault distributions published on DB2 and IMS [Sullivan91b]. Sullivan’s

study includes a detailed breakdown of software errors according to the following classifi-

86

cation: deadlock and synchronization, pointer management, memory leak, uninitialized

data, copy overrun, allocation management, statement logic, data error, interface error,

undefined state, unknown and other error. Table 6.2 shows the mapping between our fault

categories and Sullivan’s studies, together with the resulting weights. Undefined state,

unknown and other errors are too vague to be precisely modeled, so we distribute their

weights evenly across other categories.

Table 6.3 shows the mean corruption rate and the 95% confidence interval for all three

designs. The confidence intervals are computed according to the approach suggested by

Powell et al. [Powell95]. A memory interface generally has a higher mean corruption rate

than an I/O interface. Adding protection to memory interface lowers the mean corruption

Table 6.2 Proportional Mapping.This table shows how we map between the fault
type in our study and those of [Sullivan92], and the corresponding weight assigned to
each fault type.

Fault Type Classification
Weight

DB2 IMS

kernel text statement logic 1.8% 2.1%

kernel heap data error 2.1% 1.1%

kernel stack data error 2.1% 1.1%

destination reg. data error 2.1% 1.1%

source reg. data error 2.1% 1.1%

delete branch statement logic 1.8% 2.1%

delete random inst. statement logic 1.8% 2.1%

initialization initialization 6.3% 6.0%

pointer pointer 10.4% 10.9%

allocation allocation 8.1% 5.0%

copy overrun copy overrun 5.4% 3.5%

off-by-one statement error 1.8% 2.1%

synchronization synchronization 20.3% 4.5%

memory leak memory leak 3.6% 3.5%

interface interface 6.8% 7.5%

87

rates. Because all three designs have significant overlap in confidence interval and their

means are within the confidence intervals of other designs, we conclude with 95% confi-

dence interval that all three designs have comparable reliability.

Our main conclusion is that mapping reliable memory directly into the database

address space does not diminish the overall reliability of the system. This is consistent

with the estimates given in [Sullivan91a, Sullivan93]. There are several factors that mini-

mize the reliability impact of persistent buffer caches. First, most stores in Postgres are not

to the buffer cache. Using the ATOM program analysis tool [Srivastava94], we found that

only 2-3% of stores executed during a run were to the buffer cache. Second, store instruc-

tions that are not intended to access the buffer cache have little chance of accidentally

wandering into buffer cache space, especially with the vast, 64-bit virtual address space on

DEC Alphas. As a result, most corruptions are due to corrupting thecurrent transaction’s

data. These uncommitted buffers are vulnerable to the same degree in all three systems

(Section 6.2).

Table 6.3 Weighted Mean Corruption Rate.This table shows the average corruption
rate and the 95% confidence interval. Our tests show that accessing persistent data via a
memory interface does not significantly hurt reliability compared to accessing it via an
I/O interface. The corruption rate of memory interface can be reduced even further by
using a simple memory protection scheme. There is significant overlap in the
confidence intervals of all three designs, indicating that the designs are comparable in
reliability.

Weight
Distribution

I/O Interface
Memory
Interface

Memory Interface
with Protection

Mean
95% Conf.

Intvl
Mean

95%
Conf. Intvl

Mean
95% Conf.

Intvl

equal 2.5% 1.2%-3.8% 2.7% 1.4%-4.0% 2.3% 1.0%-3.5%

proportional DB2 1.5% 0.6%-2.3% 1.5% 0.7%-2.4% 1.4% 0.5%-2.2%

proportional IMS 2.1% 0.8%-3.3% 2.1% 0.8%-3.3% 1.8% 0.6%-3.0%

88

Thus, mapping reliable memory directly into the database address space does not lower

reliability. Combined with the advantages of persistent buffer caches (reliable memory

under database control, no double buffering, simpler recovery), these results argue

strongly for using a memory interface to reliable memory. Stated another way, the high-

overhead I/O interface to reliable memory is not needed, because wild stores are unlikely

to corrupt non-related buffers.

6.4 Discussion

This chapter describes a controlled experiment to measure database corruption. No

prior studies have directly quantified database’s vulnerability to software crashes. How-

ever, it would be dangerous to indiscriminately apply our results, and hence we address in

this section some possible limitations of our work.

• How can we extrapolate our results to commercial database systems?We modified

the Postgres95 [Stonebraker87] database management system for our experiment. Post-

gres differs from most commercial database systems in several ways. For example, it

does not use conventional write-ahead logging (WAL), and it only provides a flat trans-

action model [Gray93]. Our work is largely independent of these differences—we

focus on the reliability implications of persistent database buffer caches, and all data-

bases use a buffer cache. Our results are also consistent with a prior study on a commer-

cial database [Sullivan92]. We hope to conduct further experiments on commercial

database systems to further support our hypothesis.

• Can state-of-the-art database recovery schemes use reliable memory?As described

in Section 2.1, any database can run unchanged on reliable memory. A reliable file

cache such as Rio simply makes I/O appear faster. Reliable memory also allows state-

89

of-the-art recovery schemes (e.g. ARIES [Mohan92]) to become significantly simpler.

For example, the need for fuzzy checkpoints is reduced because transactions can com-

mit faster. Also, using a force-at-commit policy reduces the need for a redo log.

6.5 Summary

We have proposed three designs for integrating reliable memory into databases. Keep-

ing an I/O interface to reliable memory requires the fewest modifications to an existing

database but wastes memory capacity and bandwidth with double buffering. Mapping reli-

able memory into the database address space allows a persistent database buffer cache.

This places reliable memory under complete database control, eliminates double buffer-

ing, and simplifies recovery. However, it also exposes the buffer cache to database errors.

This exposure can be reduced by write protecting buffer pages.

Extensive fault tests show that mapping reliable memory into the database address

space does not significantly hurt reliability. This is because wild stores rarely touch dirty,

committed pages written by previous transactions. Combined with the advantages of per-

sistent buffer caches, these results argue strongly for using a memory interface to reliable

memory.

90

Chapter 7

Design Dimensions for Reliable Memory

We have described various reliable memory design techniques for three different plat-

forms in Chapters 4, 5 and 6. In this chapter we will examine each technique in greater

detail. We categorize the techniques according to how they are used to protect memory

content during a system crash, and present experimental results on the reliability and per-

formance implications of the techniques. Our key design principles areearly fault detec-

tion andcorrect fault recovery: we detect fault very early in the crash before it has a

chance to corrupt file cache data, and we correctly restore file cache data by depending on

as little system state as possible. Figure 7.1 shows the series of events that occur during a

system crash. When the system experiences a software fault, the error initially propagates

within the system. The error is subsequently detected by our fault detection techniques,

and our fault recovery routine correctly recovers the file cache data in main memory to

disk. Section 7.1 describes the fault tolerant techniques we use to detect faults, which

include VM protection, reset key and watchdog timers. Section 7.2 describes the fault

recovery techniques we use to recover the data in main memory after a fault is detected,

and how we decouple the file cache restore process from kernel state. Section 7.3

fault

Fault Propagation Fault Detection Fault Recovery

Figure 7.1 Effects of Faults During a System Crash.This figure presents a
simplified version of the system-failure response stages found in [Siewiorek98].

91

describes the impact of the system configuration, particularly the physical memory

address size, on the effectiveness of our fault tolerant techniques.

Some of the design techniques are platform specific, and we provide a summary of

the applicability of the design techniques to the three platforms in Table 7.1.

Unless otherwise stated, the results reported in this chapter are measured on PCs

equipped with Intel VS440FX motherboard, 266 MHz Pentium II processor, 128 MB

DRAM, 4GB Seagate SCSI disk, AMIbios v1.00.06.CS1, and FreeBSD OS v2.2.7.

7.1 Fault Detection Techniques

Fault detection techniques are used to detect anomalous conditions in the system.

Most systems already have some mechanisms to detect anomalous conditions. For exam-

ple, most operating systems utilize the exception handling mechanisms offered by modern

processors to detect many types of faults (e.g. divide errors, invalid instruction [Alp92,

Int97d]). In both our FreeBSD and Digital UNIX Rio file caches, we use the default sys-

tem trap handler to detect system fault. We also evaluated three fault detection techniques,

VM protection, reset key and watchdog timer, to complement the default trap handler.We

use VM protection mechanism to detect accidental corruption of file cache data. Reset key

and watchdog timer are used to recover from system hang.

Design Techniques FreeBSD Rio Digital UNIX Rio Postgres DBMS

VM Protection yes yes yes

Software Reset Key yes no (has halt button) no (use UNIX signal)

Watchdog Timer yes no (has halt button) no (use UNIX signal)

Registry yes yes yes

Physical Addressing yes no (use warm reboot) no (application)

Device Driver BIOS BIOS UNIX

Recovery Technique safe sync warm reboot warm reboot

Table 7.1 Applicability of Reliability Memory Design Techniques.

92

Fault detection techniques can be described in four dimensions: detection latency,

redundancy, recovery mechanism, and implementation overheads. Detection latency refers

to the latency between file cache data corruption and detection. Ideally, we want zero

latency to prevent data corruption. This can be achieved by using VM protection mecha-

nism to protect dirty file cache data immediately after we have modified it. Other tech-

niques often detect corruption long after the fault has corrupted data and are less effective.

Redundancy refers to the amount of extra code or data that is required to implement the

fault detection mechanism. VM protection mechanism requires both extra code (e.g. to

protect data before we modify it) and data (e.g. a byte to indicate the protection setting of

the buffer page), while both reset key and watchdog timer use extra code to detect system

hang. Recovery mechanism refers to whether any operator supervision is required to ini-

tiate fault recovery. VM protection mechanism can automatically recover the file cache

data by running safe sync or warm reboot after a fault is detected, while reset key require

the user to manually detect system hang. Overheads refer to the performance overheads

required to implement the fault detection mechanisms. Table 7.2 characterizes the various

fault detection techniques we investigated in our study.

7.1.1 VM Protection
VM protection is a general mechanism offered by modern processors [Alp92, Int97b]

to limit access to code or data based on privilege levels. It can be applied to many parts of

Fault Detection
Dimensions

Detection
Latency

Redundancy
Recovery

Mechanism
Overheads

VM Protection Immediate Code/Data Automatic High

Reset Key Delayed Code Manual Low

Watchdog Timer Delayed Code Automatic Low

Table 7.2 Characterization of Fault Detection Techniques.

93

the system address space: user code and data, kernel code and data (e.g. stack, heap, buffer

page, registry, user-level data, etc). In our study the most critical component is that kernel

code and data needed in the fault recovery phase, so we focus on evaluating the effective-

ness of protecting the kernel code, buffer cache and registry data.

7.1.1.1 Protecting Kernel Code
We protect the kernel code by mapping the whole kernel text as read-only during ker-

nel initialization. This scheme protects against faults that modify the kernel code, which

can either corrupt the file cache restore code or cause incorrect data to be written to the file

cache. For example, some of the injected faults in our FreeBSD Rio study that corrupts the

FreeBSD kernel text will also zero out the whole page. This can potentially wipe out safe

sync code residing in the same page as the corrupted code, causing the safe sync process

to fail. We can prevent this type of fault from occurring by either mapping the kernel text

as read-only, or implementing the warm reboot mechanism used in Digital UNIX Rio (see

Section 4.2.2.1). Warm reboot does not use any kernel code that exists in memory before

the crash. It reloads the kernel image from disk after the crash and thus always runs uncor-

rupted code.

Protecting the kernel text helps to improve reliability by 2% (from 3.47% to 3.53%)

in FreeBSD Rio. Although this type of fault is infrequent, we advocate protecting the ker-

nel text as this scheme improves system reliability with no performance penalty; the per-

formance overhead is incurred only during system startup.

7.1.1.2 Protecting Buffer Cache
We protect the file system buffer by setting the VM protection bits of the buffer page

as read-write before modifying the page, and resetting the protection to read-only after

94

modifying the page. This substantially limits the number of dirty buffer pages that are

writable at any time in the kernel, and prevents accidental corruption of the buffer cache

by faults such as copy overruns and wild pointers [Sullivan91a]. Table 7.3 compares the

reliability of the FreeBSD Rio file cache with and without buffer protection, and catego-

rizes the corruptions according to fault symptoms. We observe from Table 7.3 that the

overall corruption rate is reduced by 37% (from 3.5% to 2.2%) once we protect the buffer

page. We observe similar improvement in reliability on Digital UNIX Rio file cache (43%,

see Table 4.2) and Postgres reliable buffer cache (11%, see Table 6.1).

The most dramatic improvement comes from the reduction of data corruptions fault

symptom, which mainly affects the copy overrun fault type. The number of corruption due

to data corruption is reduced from 6 to 0 with buffer protection for the FreeBSD Rio file

cache (see Table 7.3), and 4 to 0 for the Digital UNIX Rio file cache (see Table 4.2).

Buffer protection is especially important for Rio file cache as Rio can cache significantly

more dirty data in memory than the write-through file cache (see Table 7.4), and is thus

more vulnerable to copy overrun fault type.

Fault Symptoms
No Pro-
tection

Protect
Buffer

Protect
Registry

Protect
Buf & Reg

File system errors 25 20 20 17

Page fault during sync 11 2 7 5

VM errors 6 9 15 10

Data corruption 6 0 4 0

System hang 4 2 5 5

Total
52 of 1500

(3.5%)
33 of 1500

(2.2%)
50 of 1500

(3.3%)
36 of 1500

(2.4%)
Table 7.3 Breakdown of Corruptions according to Fault Symptoms for the
FreeBSD Rio File Cache with 128 MB main memory.

95

Another reason why buffer protection is effective is that it tends to exercise the VM

system frequently. In the FreeBSD OS, the VM protection code potentially needs to mod-

ify the kernel address map [McKusick96] six times when protecting or unprotecting a sin-

gle buffer page. This is because the target buffer has different protection settings from the

other pages in its neighboring virtual address space, so we need to create a new address

map entry for the target buffer. We need to extract the buffer page from its parent map

using the FreeBSDvm_map_clip_start() and vm_map_clip_end()routines, change the

new address map entry’s protection setting, and integrate it into the parent map using the

FreeBSDvm_map_simplify_entry()routine. The integrity of the kernel address map is

implicitly checked in each address map modifications. We thus detect corruptions in the

kernel address map earlier, before the buffer with the corrupted address map entry is com-

mitted to stable store. As shown in Table 7.3, this helps to reduce the corruptions due to

the fault symptoms page fault during sync from 11 to 2.

Protection can also be applied to the write-through file cache. Table 7.4 compares the

reliability of the FreeBSD write-through file cache with and without buffer protection, and

categorizes the corruptions according to fault symptoms. We see from Table 7.4 that pro-

tecting the buffer cache helps to reduce the corruption due to copy overrun from 3 to 0.

However, protection is less effective here because VM errors corruptions outnumber data

corruptions. Unlike the Rio file cache, the write-through file cache does not need to sync

its data to disk during a crash, so it does not suffer from corruptions that can benefit from

VM protection, such as the fault symptoms page fault during safe sync or system hang.

96

Most of the VM errors (4/6 in Table 7.4) are caused by a class of faults that affects

only the write-through file cache. These faults occur when the input parameter or code in

the FreeBSD protection routinesvm_map_protect()andpmap_protect() is corrupted. As

pmap_protect() is a void routine andvm_map_protect() only detects a small number of

failure scenarios, both routines can potentially corrupt the page table entries (PTE) of a

buffer page. A write-through file cache can thus corrupt data on disk when it writes data to

disk, as eachwrite function call invokes the protection routines at least once. The Rio file

cache is unaffected by this type of fault as we update the registrybefore changing the pro-

tection settings. The registry thus contains a valid physical address for the buffer. Other

routines that are vulnerable to this class of faults include void address map manipulation

routines that are invoked by the protection routines, like the FreeBSD

vm_map_clip_start()andvm_map_simplify_entry() routines. This bug affects 16% (0.3%

of 1.9%) of the corruptions in the write-through file cache. We note that this type of bug

can be overcome by delaying the protection change until we have written the buffer to

disk. We do not attempt to fix this as we currently protect the buffer at the earliest

instance (i.e. right after it is written to disk) to minimize the fault detection latency.

Fault Symptoms No Protection Protect Buffer

File system errors 21 19

VM errors 2 6

Data corruption 3 0

Unknown 1 3

Total 27 of 1500 (1.8%) 28 of 1500 (1.9%)
Table 7.4 Breakdown of Corruptions according to Fault Symptoms for the
FreeBSD Write-through File Cache with 128 MB main memory.

97

Protecting the buffer cache adds negligible performance overheads on both FreeBSD

and Digital UNIX Rio file caches. Table 7.5 compares the performance of various

FreeBSD Rio file cache with different protection settings. The benchmark and experiment

configurations can be found in Section 4.3. We observe from Table 7.5 that protecting the

buffer incurs very little performance overheads on both benchmarks (<4%). We also

observe similar overheads on Digital UNIX Rio file cache (see Table 4.3). We manage to

achieve such low overheads because we change a page’s protection settings by updating its

PTE directly instead of using the more expensive OS protection change routine (e.g.

vm_map_protect in FreeBSD).

However, the performance overheads to protect application-level data is quite high for

transaction processing workload. For example, adding page-level protection on Postgres

DBMS increases the transaction latency by 22% to 49% on TPC-A benchmarks. Most of

these overheads are caused by the frequent invocations ofmprotect() system call on fine-

grain data common in TPC transactions (e.g. incrementing the account balance field in an

account record). In contrast, file system workloads tend to work on larger data sets, so the

performance overhead of themprotect()system call is amortized over a full page. Other

Protection Settings
cp+rm

(seconds)
Andrew
(seconds)

Rio with no protection 3.10 1.20

Rio with buffer protection only 3.20 1.25

Rio with registry protection only 3.70 1.30

Table 7.5 Performance Comparison of FreeBSD Rio File Cache with Different
Protection settings.The performance results are based on an average of 40 runs,
measured on a PC running FreeBSD OS 2.2.7. The system configuration is similar to
that described in Chapter 5.

98

researchers have looked at different approaches to minimize the performance overheads of

protecting user-level data for database workload [Sullivan91a, Bohannon97].

7.1.1.3 Protecting Registry
The registry is another important data structure needed for fault recovery, and is used

by both the safe sync and warm reboot data recovery mechanisms. The registry is an array

in memory that contains, for each buffer page, the buffer’s address in memory and disk,

and a status word. We update the registry whenever we modify a buffer page. Each time

we modify a buffer page, we will also set the VM protection bits of the page containing

the registry as read-write before modifying the buffer, and reset the protection of the same

page to read-only after modifying the buffer.

We can see from Table 7.3 that it is not effective to do registry protection as it offers

minimum reliability improvement (3.3% vs. 3.5%). The performance overhead is also

higher here (14% on Andrew benchmark, see Table 7.5). There are several reasons why

we do not improve system reliability when we protect the registry. First, the granularity of

protection is too coarse. Unprotecting a single registry entry also unprotects the page con-

taining many other registry entries (more than 200 entries in FreeBSD Rio). This leaves

many registry entries unprotected. Second, because we do not protect the buffer data, this

results in a number of data corruptions due to copy overrun fault type. Third, registry

entries are also modified much more frequently (e.g. at least twice for Andrew bench-

mark) than data buffers. This increases the chance that a fault might occur while the kernel

address map is being manipulated, thus corrupting the kernel address map or the PTE for

the registry. Our safe sync routine uses virtual addressing and can fail if the VM sub-

system is compromised. We observe from Table 7.3 that the VM error corruptions increase

99

from 6 to 15 when we start protecting the registry. Note that this would not be a problem if

safe sync used physical addressing.

7.1.2 Reset Key and Watchdog Timer
System hang is a major cause of corruption in our fault injection study, it affects 12-

18% of the crash. The ideal solution is to use a reset or halt key that allows us to get con-

trol of the system when it hangs. For example, the Digital Alpha workstation has a hard-

ware halt button that allows us to get control of the system without affecting the processor

cache or main memory. However, it is more difficult to recover from system hang on Intel

PCs. Most PCs wired the reset switch directly to the INIT or RESET [Int97b] pins on the

processor. This complicates data recovery as we can lose file cache data in both the pro-

cessor’s cache and main memory. In most PCs, pressing the reset switch initializes the

processor’s cache and reboots the system. The ensuing reboot also wipes out the system

main memory, as most PC BIOS do not preserve the main memory content during reboot.

We implemented two techniques to recover from system hang on Intel PCs. Most sys-

tem hang occurs when the injected bug causes the system to enter a deadlock, and we can-

not get control of the system from either the keyboard or network. To recover from system

hang, we modify the low-level keyboard interrupt handler (scgetc() in FreeBSD) to inter-

cept keyboard inputs. The keyboard handler invokes safe sync when it detects a “reset

key” input from the keyboard. This is a manual process as we still need to detect that the

system has hung and press the reset key. Table 7.6 compares the effectiveness of utilizing

reset key on two different FreeBSD Rio file cache designs: Rio file cache without buffer

protection, and Rio file cache with buffer protection. We observe that on both designs,

100

implementing the reset key helps to reduce the corruption rate by 82-83% (i.e. from 21.8%

to 4.0% and from 14.9% to 2.6%, see Table 7.6).

Our reset key approach fails when the fault also disables the keyboard software inter-

rupt mask. This prevents the system from servicing any keyboard inputs.We can imple-

ment a watchdog timer [Johnson89] to recover from this fault. We modify the low-level

interrupt handler routine (INTR in FreeBSD) to start a timer once we receive a reset key

Table 7.6 Evaluating the Effectiveness of Reset Key and Watchdog Timer.This table
shows the reliability of Rio File Cache, Rio File Cache with Reset Key, and Rio File
Cache with Reset Keyand Watchdog Timer. Two types of Rio File Cache designs are
evaluated: Rio File Cache without Buffer Protection, and Rio File Cache with Buffer
Protection.

Fault Type

Rio without Protection Rio with Buffer Protection

Rio
Add
Reset
Key

 Add
Watch-

dog
Timer

Rio
Add
Reset
Key

Add
Watch-

dog
Timer

text 7 6 4 3 1 1

heap 4 0 0 2 0 0

stack 2 2 2 2 1 1

initialization 11 4 4 6 5 5

delete random inst. 15 8 6 22 7 5

source reg. 15 3 3 10 5 3

dest. reg. 11 1 1 4 5 4

delete branch 22 8 6 13 4 4

pointer 13 1 1 9 2 2

allocation 100 9 8 100 0 0

copy overrun 9 0 0 2 3 2

synchronization 81 16 15 12 0 0

off-by-one 32 0 0 29 5 5

memory leak 0 0 0 1 0 0

 interface error 5 2 2 9 1 1

Total
327/1500
21.8%

60/1500
4.0%

52/1500
3.5%

224/1500
14.9%

39/1500
2.6%

33/1500
2.2%

101

input. The counter times out if it is not reset after a certain threshold. Table 7.6 shows that

adding a watchdog timer to both Rio file cache designs reduces the corruption rates on

both designs by an additional 13-15%.

We tried two alternative designs to the watchdog timer: fast interrupts and watchdog

event counter. The former approach forces the keyboard handler to use fast interrupt han-

dler (FAST_INTR in FreeBSD), which allows keyboard interrupts to bypass the software

interrupt mask. This approach is unstable as it may cause the system to miss other crucial

interrupts like system timer interrupts during periods of heavy keyboard activities. The lat-

ter approach counts the number of reset key input events, and triggers safe sync if these

events have reached a certain threshold and have not been serviced. This approach does

not work on systems with hardware interrupt controllers (such as the Intel 8259), which

limit the number of unserviced interrupts on the processor.

The reset key and watchdog timer techniques allow us to recover from most types of

system hang. However, both approaches fail if the injected bug also disables the hardware

interrupt mask. This occurs in 0.3% of the crashes in our FreeBSD Rio study (5/1500, see

Table 5.6). In this case, we need a hardware reset key similar to the halt button in the Dig-

ital Alpha workstation. This can be implemented in Intel PC in hardware by using a

peripheral card to generate a non-maskable interrupts (NMI) [Int97d]. We did not pursue

this approach since this type of fault is relatively infrequent, and it requires a hardware

solution.

7.2 Fault Recovery

Fault recovery techniques are used to ensure that we can recover the file cache data in

memory after we detect a system fault. There are four design dimensions to data recovery:

102

when to restore, what information do we need, how to access the data and code, and how

to write to disk.

7.2.1 When to Restore: Warm Reboot vs. Safe Sync
We can either restore the file cache data during a system crash or reboot. It is safer to

restore file cache data during reboot as the system has been reset and is in a “clean” state.

This approach, warm reboot, is used in both our Digital UNIX Rio file cache and Postgres

reliable buffer cache. However, it is difficult to implement warm reboot on platforms such

as Intel PCs, which have a reset key that erases memory. Our second approach, called safe

sync, writes dirty file cache data reliably to disk during the last stage of a crash. Both

approaches work well: we demonstrated in Chapters 4 and 5 that a Rio file cache design

with either safe sync or warm reboot has better reliability than a write-through file cache.

It is difficult to compare the two techniques directly as we did not implement both tech-

niques on the same platform. However, we can analyze the fault symptoms for a safe sync

design and extrapolate how much warm reboot will help to improve system reliability. The

fault symptom classification for BIOS safe sync design is shown in Table 5.6. Warm

reboot can potentially eliminate the fault symptom device timeout as it performs the disk

write after the system has initializes the disk subsystem. Warm reboot can thus potentially

improve the reliability of a safe sync design by 7% (from 1.9% to 1.7%, see Table 5.6).

Warm reboot is also easier to implement as it does not have the complex setup that safe

sync needs to run successfully during a crash. Warm reboot is thus preferable on platform

that supports it.

7.2.2 What Information Do We Need?
We need three types of information to safely restore all the file cache data from mem-

ory to disk. We need to locate all the buffers in memory, and determine the buffer’s loca-

103

tion on disk. We also need the status of the buffer, as we only want to restore valid and

dirty buffer to disk. This information is already contained in memory in data structures

such as the mounted file system list, buffer cache hash list, page tables, etc. However, it is

difficult to gather the information directly from all these diverse data structures. Most of

these data structures are large and are indexed by a hash table or linked list, making them

vulnerable to corruptions during a software crash. Instead, we duplicate key kernel data

structures in an array in memory called the registry. Our experience indicates that the reg-

istry is a critical component in our design. For example, using the registry accounts for a

significant portion of the improvement in reliability between design iterations 1 and 2 in

our FreeBSD Rio file cache design. We observe from Table 5.3 and Table 5.4 that having a

registry and safe sync help to reduce the corruption by approximately 40% (from 39.3% to

23.7%).

7.2.3 How to Access the Data and Code?
Most systems use virtual addressing by default. This works fine if we use warm

reboot, as the restore is performed after a system crash. But virtual addressing may not

work well for safe sync designs. Safe sync runs during a system crash, and the VM system

may be corrupted. We can bypass the VM by accessing the code and data directly using its

physical address. For example, we observe that using physical addressing accounts for a

significant portion of the improvement in reliability between design iterations 3 and 4 in

our FreeBSD Rio file cache design. We observe from Table 5.5 and Table 5.6 that using

physical addressing and BIOS drivers helps to reduce the corruption rate by approximately

42% (3.3% to 1.9%).

104

7.2.4 How to write the data to disk?
We can either use the operating system or BIOS device drivers to write file cache data

to disk during fault recovery. OS device driver is usually large and complex because it

needs to cater to many different failure scenarios. The device driver code and configura-

tion data may be dynamically loaded and allocated to allow greater flexibility in system

configuration. In contrast, the BIOS device driver is usually simpler because it offers only

limited functionality. For example, both the PC BIOS and Digital Alpha PROM disk

device drivers limit the size of the input data. On most systems BIOS drivers are mainly

used to bootstrap the OS. BIOS code and data also resides in protected non-volatile mem-

ory such as EEPROM or CMOS, and are not vulnerable to corruption by faulty kernel or

user code. Since safe sync and warm reboot routines do not need the advanced functional-

ities offered by the OS device drivers, it preferable to use BIOS drivers during fault recov-

ery.

7.3 System Configuration

We have demonstrated that we can build reliable file cache on three diverse platforms,

and developed design techniques that are suitable for a wide range of systems. In this sec-

tion we look at two system configuration parameters, physical memory size and virtual

address size, that affect some of the design techniques. We also discuss the sensitivity of

our design techniques against these configuration parameters.

7.3.1 Physical Memory Size
The effectiveness of the Rio file cache is directly proportional to the size of the file

cache. This is because we can cache more dirty data and filter write traffic more effectively

when we have a larger file cache, i.e. more physical memory. Having more dirty data in

memory makes Rio more vulnerable to software errors. We can limit this vulnerability by

105

protecting the data in memory. This implies that the effectiveness of VM protection of

buffer data may be affected by the physical memory size. The rest of the design techniques

are largely independent of memory size.

Table 7.7 shows the effect of main memory size on four types of file cache: Rio file

cache with no buffer protection, Rio file cache with buffer protection, write-through file

cache with no buffer protection, and write-through file cache with buffer protection. We

Table 7.7 Effect of Physical Memory Size on Reliability.This table shows the
reliability of different file cache system on a system with 128 MB and 512 MB main
memory. The systems studied include Rio file cache with and without buffer protection,
Write-through file cache with and without buffer protection.

Fault Type

Rio File Cache Write-though File Cache

No Protection Protect Buffer No Protection Protect Buffer

128
MB

512
MB

128
MB

512
MB

128
MB

512
MB

128
MB

512
MB

text 4 5 1 1 3 3 0 1

heap 0 0 0 0 0 1 3 1

stack 2 6 1 2 1 2 3 3

initialization 4 3 5 1 7 11 0 4

delete ran. inst. 6 12 5 6 2 8 4 3

source reg. 3 6 3 3 1 1 2 3

dest. reg. 1 4 4 2 1 2 1 2

delete branch 6 10 4 4 2 2 4 5

pointer 1 7 2 6 2 4 2 2

allocation 8 0 0 0 0 0 1 0

copy overrun 0 16 2 8 4 1 2 0

synch. 15 0 0 0 0 0 0 0

off-by-one 0 15 5 6 4 12 4 5

memory leak 0 0 0 0 0 0 0 1

 interface error 2 0 1 1 0 1 2 0

Total (out of
1500)

52
3.5%

84
5.6%

33
2.2%

40
2.7%

27
1.8%

48
3.2%

28
1.9%

30
2.0%

106

observe that the corruption rate increases on all four file systems when the memory size is

increased from 128 MB to 512 MB. The increase is especially pronounced on file cache

without VM protection. The corruption rates increase by 62% (from 3.5% to 5.6%) and

78% (from 1.8% to 3.2%) on Rio file cache without VM protection and write-through file

cache without VM protection, respectively. This is largely due to the fact that there are

more dirty buffers in memory, and this increases the likelihood that an injected fault will

corrupt an unprotected dirty buffer. We can limit the probability of corruption by protect-

ing the buffer.

We also observe that the effectiveness of VM protection increases with larger memory

size. For example, for the Rio file cache with 128 MB memory, protecting the buffer

reduces the corruption rate by 37% (from 3.5% to 2.2%). The reduction is more pro-

nounced (52%, from 5.6% to 2.7%) for Rio file cache with 512 MB memory. Similarly,

there is no reduction in corruption rate (1.8% vs. 1.9%) for a write-through file cache with

128 MB memory when we protect the buffer. However, the corruption rate reduces by

40% (from 3.2% to 2.0%) once the memory size increases to 512 MB.

Our results thus indicate that it is crucial to protect buffer data, particularly for system

with large amount of memory.

7.3.2 Virtual Address Size
Another factor that affects reliability is virtual address size. In this dissertation we

study systems with 64-bit address space (Digital UNIX Rio file cache and Postgres

DBMS) and 32-bit address space (FreeBSD Rio file cache). It is very difficult to explicitly

analyze the effect of virtual address size on system reliability, since all our systems do not

107

provide a virtual address size switch. In this section we will speculate on some of the

effect of a larger address size on system reliability.

We speculate that one of the main reason why we observe low corruption rates on

Digital UNIX Rio file cache (0.6%-1.5%) is that the Digital UNIX OS’s 64-bit address

space help to improve system reliability. It significantly reduces the chance that a random

software bug will generate a valid and mapped address in the large 64-bit address space,

thus offering significant protection from wild pointer and copy overrun fault types. We can

also achieve more distance and better fault isolation by placing the kernel code, stack,

heap, and buffer data in different part of the address space [Baker92_1]. In contrast,

FreeBSD kernel code, stack, heap, and data are more closely packed in virtual address

space than Digital UNIX. For example, the kernel heap typically occupies the address

range 0xf3cff000-0xf5ea3000, while the buffer cache range from 0xf6730000-

0xfc4f0000. A single bit flip in the seventh address byte will cause the heap pointer to

point to the buffer cache. We have observed this type of corruption in one of the crashes

during our fault injection study.

This issue is likely to be less important in future since the trend is towards 64-bit pro-

cessors.

7.4 Summary

We categorize the reliable memory design techniques in this chapter into fault detec-

tion and fault recovery techniques. Our analysis shows that to detect fault early, it is criti-

cal to implement reset key and warm reboot (or to use the halt button if the platform

supports it), and to protect buffer data in memory using VM protection mechanism. The

effectiveness of the latter technique increases with larger physical memory. We also

108

observe that warm reboot is a more effective technique than safe sync for fault recovery

because it does not depend on any pre-crash system state. We can make safe sync nearly as

reliable as warm reboot by minimizing our dependence on system state (i.e. by using

physical addressing and BIOS device drivers for I/O).

109

Chapter 8

Conclusions

We have made a case for reliable file caches: main memory that can survive operating

system crashes and be as safe and permanent as disk. Our reliability experiments show

that our Rio file cache is at least as reliable than a write-through file cache. This conclud-

ing chapter summarizes the results of this dissertation and lists future work in this area.

8.1 Summary of Results

We have presented a systematic and quantitative approach for using software-imple-

mented fault injection to guide the design and implementation of a fault-tolerant system.

Our goal was to build a write-back file cache that is as reliable as a write-through file

cache. We followed an iterative approach to improve the robustness of a write-back file

cache in the presence of operating system errors. In each iteration, we measured the reli-

ability of the system, analyzed the fault symptoms that led to data corruption, and applied

fault-tolerant mechanisms that address the fault symptoms. The result of several iterations

was a design that improved reliability by a factor of 21 (on FreeBSD Rio) and 2.5 (on Dig-

ital UNIX Rio). The resulting write-back file cache is both more reliable (1.9% vs. 3.1%

corruption rate on FreeBSD Rio, 0.6% vs. 1.1% on Digital UNIX Rio) and significantly

faster than a write-through file cache (12-55 times on FreeBSD Rio, 4-22 times on Digital

UNIX Rio). Our results also indicate that it is crucial to protect buffer cache data using

VM protection techniques, especially for systems with large amounts of physical memory.

Reliable file caches have striking implications for future system designers:

110

• Write-backs to disk are no longer needed except when the file cache fills up. This

changes the assumptions about the dominance of write traffic underlying some file sys-

tem research such as LFS [Rosenblum92, Baker91]. Delaying writes to disk until the

file cache fills up enables the largest possible number of files to die in memory and

enables remaining files to be written out more efficiently. Thus Rio improves perfor-

mance over existing delayed-write systems.

• All writes are synchronously and instantly permanent, improving reliability over cur-

rent systems. Fast, synchronous writes improve performance by an order of magnitude

for applications that require synchronous semantics. Applications that do not require

synchronous semantics for reliability may become simpler because synchronous events

are easier to deal with than asynchronous events. For example, the order that synchro-

nous writes become permanent matches the order in which writes are issued.

To further test and prove our ideas, we have installed a departmental file server using

the Rio file cache with protection and with reliability-induced writes to disk turned off.

Among other things, this file server stores our kernel source tree, the only copy of this dis-

sertation, and our mail. The server has been operational for the past four years, and we

experienced more than ten software crashes. The Rio file cache worked remarkably well

during these crashes, and we did not lose any user data.

The Rio file cache provides a new storage component for system design: one that is as

fast, large, common, as cheap as main memory, yet as reliable and stable as disk. We look

forward to seeing how system designers use this new storage component.

111

8.2 Future Work

There are several topics related to reliable memory that are not covered by this disser-

tation. This section lists a few of these topics.

8.2.1 Error Coverage
We have developed a “reasonable” fault model to model common software errors in

our study, but there is always a concern on the validity of our fault model (i.e. do our

injected faults really represent software faults that cause system crashes?). We believe that

our experiments cover a wide range of real-world crashes due to the wide variety of faults

we inject (15 types), the random nature of the faults, the large number of ways the system

crashed in our experiments, and the sheer number of crashes we performed (e.g. more than

7500 crashes for the FreeBSD study). A more direct approach to address this concern is to

inject real operating system bugs into our system. This approach is viable for the FreeBSD

operating system, which maintains a source code repository with detailed bug reports. The

kernel source code repository has recently been made accessible via the internet. We can

access the bug report on-line using Anonymous CVS (Concurrent Versions System)

[Cranor99]. We plan to extract real kernel bugs from the repository and inject these bugs

into the systems to understand how real bugs affect our file cache data. This will also allow

us to determine the fault coverage of our designs. We are not aware of any study that eval-

uates fault coverage of large software systems.

8.2.2 Protecting Against Hardware Faults
Rio’s focus is reliability (not losing data). It achieves this by protecting memory during

system crashes and recovering memory using warm reboot. In general, achieving high

availability (being able to access data continuously) requires replication of the storage

devices and/or computers [Gray93, Cardoza96]. We may want to explore providing high

112

availability in Rio by replicating the memory or computer. This replication can be done

lazily or eagerly. An inexpensive example of lazy replication is to connect a serial line

between the memory controllers of two computers, and to connect disks to both I/O con-

trollers (see Figure 8.1a). This provides low-bandwidth access to the data in memory

while rebooting or during hardware failures. A more expensive solution is to eagerly repli-

cate the file cache data on a remote computer [Papathanasiou98] using a high-speed net-

work such as Memory Channel [Gillett96], Scalable Coherent Interface [Scott92], or a

LAN (see Figure 8.1b). This provides higher availability if one machine is permanently

disabled.

8.2.3 Performance Characterization of Commercial Databases
Recent performance studies [Barroso98, Keeton98, Ranganathan98] on commercial

databases running OLTP (On-line Transaction Processing) applications indicated that

most database engines are not I/O bound. This is in contrast with past studies

[Cvetanovic94, Rosenblum95] which observed that database applications are largely I/O

bound and spend most of their execution time in the operating system. Modern commer-

cial database engines can tolerate I/O latencies and incur much less operating system over-

RioRio

Figure 8.1 Increasing the Availability of Reliable Memory Systems.

Server1 MemoryChannel

clients

Rio
RioRio

Server2

Rio

Disks

serial line between

memory controllers

(a) lazy replication

RioRio

Server1

shared SCSI Bus

clients

Rio
RioRio

Server2

Rio

(b) eager replication

113

heads [Barroso98]. There is thus some doubts as to how much performance gain we can

achieve by using reliable memory on commercial databases. We did not attempt to address

this question in Chapter 6 as we use an experimental database in our study. We did con-

duct some experiments on Informix database server DS7.3 running the TPC-A bench-

mark. We observed 7-12% performance gain when we disable disk writes on the operating

system. A future area of research is to understand how commercial databases can exploit

reliable memory to reduce the logging, synchronization and I/O overheads required to

support advanced disk I/O techniques [Lowell97].

8.2.4 Fault-tolerant System Design
We have focused on the systematic design and implementation of reliable main mem-

ory in this dissertation. We believe that our approach is also applicable to other fault-toler-

ant system designs. We plan to investigate applying our fault-tolerant design methodology

to other systems, such as embedded control systems.

114

Bibliography

[Abbott94] M. Abbott, D. Har, L. Herger, M. Kauffmann, K. Mak, J. Murdock,
C. Schulz, T. B. Smith, B. Tremaine, D. Yeh, and L. Wong. Durable Mem-
ory RS/6000 System Design. InProceedings of the 1994 International Sym-
posium on Fault-Tolerant Computing (FTCS), pages 414–423, June 1994.

[Agrawal89] Rakesh Agrawal and H. V. Jagadish. Recovery algorithms for database ma-
chines with nonvolatile main memory. InDatabase Machines. Sixth Inter-
national Workshop, IWDM ’89 Proceedings., June 1989.

[Akyurek95] Sedat Akyurek and Kenneth Salem. Management of partially safe buffers.
IEEE Transactions on Computers, 44(3):394–407, March 1995.

[Alp92] Alpha Architecture Handbook. Technical report, Digital Equipment Corpo-
ration, February 1992.

[APC96] The Power Protection Handbook. Technical report, American Power Con-
version, 1996.

[Arlat90] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles
Fabre, Jean-Claude Laprie, Eliane Martins, and David Powell. Fault Injec-
tion for Dependability Validation: A Methodology and Some Applications.
IEEE Transactions on Software Engineering, 16(2):166–182, February
1990.

[Baker91] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and
John K. Ousterhout. Measurements of a Distributed File System. InPro-
ceedings of the 13th ACM Symposium on Operating Systems Principles,
pages 198–212, October 1991.

[Baker92a] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo
Seltzer. Non-Volatile Memory for Fast Reliable File Systems. InFifth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-V), pages 10–22, October 1992.

[Baker92b] Mary Baker and Mark Sullivan. The Recovery Box: Using Fast Recovery to
Provide High Availability in the UNIX Environment. InProceedings US-
ENIX Summer Conference, June 1992.

[Baker94] Mary Louise Gray Baker.Fast Crash Recovery in Distributed File Systems.
PhD thesis, University of California at Berkeley, January 1994.

[Banatre91] Michel Banatre, Gilles Muller, Bruno Rochat, and Patrick Sanchez. Design
decisions for the FTM: a general purpose fault tolerant machine. InPro-
ceedings of the 1991 International Symposium on Fault-Tolerant Comput-
ing, pages 71–78, June 1991.

[Baron90] Robert V. Baron, David Black, William Bolosky, Jonathan Chew,
Richard P. Draves, David B. Golub, Richard F. Rashid, Jr.

115

Avadis Tevanian, and Michael W. Young. Mach Kernal Interface Manual.
Technical Report CMU unpublished report, Carnegie Mellon University,
August 1990.

[Barroso98] Luiz Andre Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Mem-
ory System Characterization of Commercial Workloads. InProceedings of
the 1998 International Symposium on Computer Architecture, pages 3–14,
June 1998.

[Barton90] James H. Barton, Edward W. Czeck, Zary Z. Segall, and Daniel P.
Siewiorek. Fault injection experiments using FIAT.IEEE Transactions on
Computers, 39(4):575–582, April 1990.

[Bensoussan72] A. Bensoussan, C.T. Clingen, and R.C. Daley. The Multics Virtual Mem-
ory: Concepts and Design.Communications of the ACM, 15(5):308–318,
May 1972.

[Bershad95] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer,
Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. Ex-
tensibility, Safety and Performance in the SPIN Operating System. InPro-
ceedings of the 1995 Symposium on Operating Systems Principles, pages
267–283, December 1995.

[Bhide93] Anupam Bhide, Daniel Dias, Nagui Halim, Basil Smith, and Francis Parr.
A Case for Fault-Tolerant Memory for Transaction Processing. InProceed-
ings of the 1993 International Symposium on Fault-Tolerant Computing,
pages 451–460, June 1993.

[Bitton83] Dina Bitton, David J. DeWitt, and Carolyn Turbyfill. Benchmarking Data-
base Systems–A Systematic Approach. InVery Large Database Confer-
ence, pages 8–19, October 1983.

[Bohannon97] Philip Bohannon, Daniel Lieuwen, Rajeev Rastogi, S. Seshadri, Avi Silber-
schatz, and S. Sudarshan. The Architecture of the Dali Main-Memory Stor-
age Manager.Journal of Multimedia Tools and Applications, 1997.

[Cardoza96] Wayne M. Cardoza, Frederick S. Glover, and William E. Snaman Jr. De-
sign of the TruCluster Multicomputer System for the Digital UNIX Envi-
ronment.Digital Technical Journal, (1):5–17, June 1996.

[Carreira95] Joao Carreira, Henrique Madeira, and Joao Gabriel Silva. Xception: Soft-
ware Fault Injection and Monitoring in Processor Functional Units. InPro-
ceedings of the 1995 IFIP Working Conference on Dependable Computing
for Critical Applications, pages 135–149, September 1995.

[Carreira98] Joao Carreira, Henrique Madeira, and Joao Gabriel Silva. Xception: A
Technique for the Experimental Evaluation of Dependability in Modern
Computers.IEEE Transactions on Software Engineering, 24(2):125–136,
February 1998.

[Chapin95] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan Te-
odosiu, and Anoop Gupta. Hive: Fault Containment for Shared-Memory

116

Multiprocessors. InProceedings of the 1995 Symposium on Operating Sys-
tems Principles, December 1995.

[Chen94] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and
David A. Patterson. RAID: High-Performance, Reliable Secondary Stor-
age.ACM Computing Surveys, 26(2):145–188, June 1994.

[Chen96a] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher M. Ay-
cock, Gurushankar Rajamani, and David Lowell. The Rio File Cache: Sur-
viving Operating System Crashes. InProceedings of the 1996 International
Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 74–83, October 1996.

[Chen96b] Peter M. Chen, Wee Teck Ng, Gurushankar Rajamani, and Christopher M.
Aycock. The Rio File Cache: Surviving Operating System Crashes. Techni-
cal Report CSE-TR-286-96, University of Michigan, March 1996.

[Chen98] Peter M. Chen, David E. Lowell, and George W. Dunlap. Discount Check-
ing: Transparent, Low-Overhead Recovery for General Applications. In
submitted for publication to the Symposium on Fault-Tolerant Computing,
November 1998.

[Chillarege89] R. Chillarege and N. S. Bowen. Understanding Large System Failure–A
Fault Injection Experiment. InProceedings of the 1989 International Sym-
posium on Fault-Tolerant Computing (FTCS), pages 356–363, 1989.

[Christmansson96] Jorgen Christmansson and Ram Chillarege. Generation of an Error Set
that Emulates Software Faults Based on Field Data. InProceedings of the
1996 Symposium on Fault-Tolerant Computing (FTCS), June 1996.

[Copeland89] George Copeland, Tom Keller, Ravi Krishnamurthy, and Marc Smith. The
Case for Safe RAM. InProceedings of the Fifteenth International Confer-
ence on Very Large Data Bases, pages 327–335, August 1989.

[Cranor99] Charles D. Cranor and Theo de Raadt. Opening the Source Repository with
Anonymous CVS. InProceedings of the 1996 USENIX Annual Technical
Conference: FREENIX Track, June 1999.

[Cvetanovic94] Z. Cvetanovic and D. Bhandarkar. Characterization of Alpha AXP Perfor-
mance Using TP and SPEC Workloads. InProceedings of the 1994 Interna-
tional Symposium on Computer Architecture, pages 60–70, April 1994.

[DEC94] DEC 3000 300/400/500/600/700/800/900 AXP Models System Program-
mer’s Manual. Technical report, Digital Equipment Corporation, July 1994.

[DEC95] August 1995. Digital Unix development team, Personal Communication.

[DeWitt84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and
D. Wood. Implementation Techniques for Main Memory Database Sys-
tems. InProceedings of the 1984 ACM SIGMOD International Conference
on Management of Data, pages 1–8, June 1984.

[Dutton92] Todd A. Dutton, Daniel Eiref, Hugh R. Kurth, James J. Reisert, and

117

Robin L. Stewart. The Design of the DEC 3000 AXP Systems, Two High-
Performance Workstations.Digital Technical Journal, 4(4):66–81, 1992.

[Elhardt84] Klaus Elhardt and Rudolf Bayer. A Database Cache for High Performance
and Fast Restart in Database Systems.ACM Transactions on Database Sys-
tems, 9(4):503–525, December 1984.

[Gait90] Jason Gait. Phoenix: A Safe In-Memory File System.Communications of
the ACM, 33(1):81–86, January 1990.

[Ganger94a] Gregory R. Ganger and Yale N. Patt. Metadata Update Performance in File
Systems.1994 Operating Systems Design and Implementation (OSDI), No-
vember 1994.

[Ganger94b] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt. Scheduling
Algorithms for Modern Disk Drives. InProceedings of the 1994 ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Sys-
tems, May 1994.

[Gillett96] R. B. Gillett. Memory Channel Network for PCI.IEEE Micro, 16(1):12–18,
February 1996.

[Gilluwe97] Frank Van Gilluwe.The Undocumented PC: A Programmer’s Guide to I/O,
CPUs, and Fixed Memory Areas. Addison-Wesley Developer Press, 1997.

[GM92] Hector Garcia-Molina and Kenneth Salem. Main Memory Database Sys-
tems: An Overview.IEEE Transactions on Knowledge and Data Engineer-
ing, 4(6):509–516, December 1992.

[Gray78] J. N. Gray.Operating Systems: An Advanced Course. Springer-Verlag,
1978. Notes on Database Operating Systems.

[Gray90] Jim Gray. A Census of Tandem System Availability between 1985 and
1990.IEEE Transactions on Reliability, 39(4), October 1990.

[Gray91] Jim Gray and Daniel P. Siewiorek. High-Availability Computer Systems.
IEEE Computer, 24(9):39–48, September 1991.

[Gray93] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers, Inc., 1993.

[Haerder83] Theo Haerder and Andreas Reuter. Principles of Transaction-Oriented Da-
tabase Recovery.ACM Computing Surveys, 15(4):287–317, December
1983.

[Hagmann86] Robert B. Hagmann. A Crash Recovery Scheme for a Memory-Resident
Database System.IEEE Transactions on Computers, C-35(9):839–843,
September 1986.

[Hartman93] John H. Hartman and John K. Ousterhout. Letter to the Editor.Operating
Systems Review, 27(1):7–9, January 1993.

[Harty92] Kieran Harty and David R. Cheriton. Application-Controlled Physical
Memory using External Page-Cache Management. InProceedings of the
1992 International Conference on Architectural Support for Programming

118

Languages and Operating Systems (ASPLOS), pages 187–197, 1992.

[Howard88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and
Performance in a Distributed File System.ACM Transactions on Computer
Systems, 6(1):51–81, February 1988.

[Hudak93] John Hudak, Byung-Hoon Suh, Dan Siewiorek, and Zary Segall. Evaluation
and Comparison of Fault-Tolerant Software Techniques.IEEE Transac-
tions on Reliability, 42(2), June 1993.

[Int97a] Intel 82371AB PCI ISA IDE Xcelerator (PIIX4) Datasheet. Intel Corpora-
tion, 1997.

[Int97b] Intel Architecture Software Developer’s Manual: Volume 1: Basic Archi-
tecture. Intel Corporation, 1997.

[Int97c] Intel Architecture Software Developer’s Manual: Volume 2: Instruction Set
Reference. Intel Corporation, 1997.

[Int97d] Intel Architecture Software Developer’s Manual: Volume 3: System Pro-
gramming Guide. Intel Corporation, 1997.

[Iyer95] Ravishankar K. Iyer. Experimental Evaluation. InProceedings of the 1995
International Symposium on Fault-Tolerant Computing, pages 115–132,
July 1995.

[Jain91] Raj Jain. The Art of Computer Systems Performance Analysis. Technical
report, John Wiley & Sons, Inc., 1991.

[Johnson82] Mark Scott Johnson. Some Requirements for Architectural Support of Soft-
ware Debugging. InProceedings of the 1982 International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 140–148, April 1982.

[Johnson89] Barry W. Johnson.Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley Publishing Co., 1989.

[Kanawati92] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FERRA-
RI: a tool for the validation of system dependability properties. InProceed-
ings of the 1992 International Symposium on Fault-Tolerant Computing,
pages 336–344, July 1992.

[Kanawati95] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FERRA-
RI: A Flexible Software-Based Fault and Error Injection System.IEEE
Transactions on Computers, 44(2):248–260, February 1995.

[Kane92] Gerry Kane and Joe Heinrich.MIPS RISC Architecture. Prentice Hall, 1992.

[Kao93] Wei-Lun Kao, Ravishankar K. Iyer, and Dong Tang. FINE: A Fault Injec-
tion and Monitoring Environment for Tracing the UNIX System Behavior
under Faults.IEEE Transactions on Software Engineering, 19(11):1105–
1118, November 1993.

[Kawaf96] Tareef S. Kawaf, D. John Shakshober, and David C. Stanley. Performance

119

Analysis Using Very Large Memory on the 64-bit AlphaServer System.
Digital Technical Journal, (3):58–65, December 1996.

[Keeton98] Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger C. Raphael,
and Walter E. Baker. Performance Characterization of a Quad Pentium Pro
SMP using OLTP Workloads. InProceedings of the 1998 International
Symposium on Computer Architecture, pages 15–26, June 1998.

[Kessler90] Peter B. Kessler. Fast breakpoints: Design and implementation. InProceed-
ings of the 1990 Conference on Programming Language Design and Imple-
mentation (PLDI), pages 78–84, June 1990.

[Koopman99] Philip J. Koopman and John DeVale. Comparing the Robustness of POSIX
Operating Systems. InProceedings of the 1999 Symposium on Fault-Toler-
ant Computing (FTCS), June 1999.

[Kropp98] Nathan P. Kropp, Philip J. Koopman, and Daniel P. Siewiorek. Automated
Robustness Testing of Off-the_shelf Software Components. InProceedings
of the 1998 Symposium on Fault-Tolerant Computing (FTCS), June 1998.

[Lee93a] Inhwan Lee and Ravishankar K. Iyer. Faults, Symptoms, and Software
Fault Tolerance in the Tandem GUARDIAN Operating System. InPro-
ceedings of the 1993 International Symposium on Fault-Tolerant Comput-
ing (FTCS), pages 20–29, 1993.

[Lee93b] Inhwan Lee, Dong Tang, Ravishankar K. Iyer, and Mei-Chen Hsueh. Mea-
surement-Based Evaluation of Operating System Fault Tolerance.IEEE
Transactions on Reliability, 42(2):238–249, June 1993.

[Leffler89] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S.
Quarterman.The Design and Implementation of the 4.3BSD Unix Operating
System. Addison-Wesley Publishing Company, 1989.

[Lehman92] Tobin J. Lehman, Eugene J. Shekita, and Luis-Felipe Cabrera. An Evalua-
tion of Starburst’s Memory Resident Storage Component.IEEE Transac-
tions on Knowledge and Data Engineering, 4(6):555–566, December 1992.

[Liskov91] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba
Shrira, and Michael Williams. Replication in the Harp File System. InPro-
ceedings of the 1991 Symposium on Operating System Principles, pages
226–238, October 1991.

[Lowell97] David E. Lowell and Peter M. Chen. Free Transactions with Rio Vista. In
Proceedings of the 1997 Symposium on Operating Systems Principles, pag-
es 92–101, October 1997.

[McKusick90] Marshall Kirk McKusick, Michael J. Karels, and Keith Bostic. A Pageable
Memory Based Filesystem. InProceedings USENIX Summer Conference,
June 1990.

[McKusick96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S.
Quarterman.The Design and Implementation of the 4.4BSD Operating Sys-
tem. Addison-Wesley Publishing Company, 1996.

120

[McKusick99] Marshall Kirk McKusick and Gregory R. Ganger. Soft Updates: A Tech-
nique for Eliminating Most Synchronous Writes in the Fast Filesystem. In
Proceedings of the 1996 USENIX Annual Technical Conference: FREENIX
Track, June 1999.

[Mohan92] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. ARIES: A Transaction Recovery Method Supporting Fine-Gran-
ularity Locking and Partial Rollbacks Using Write-Ahead Logging.ACM
Transactions on Database Systems, 17(1):94–162, March 1992.

[Moran90] J. Moran, Russel Sandberg, D. Coleman, J. Kepecs, and Bob Lyon. Break-
ing Through the NFS Performance Barrier. InProceedings of EUUG Spring
1990, April 1990.

[Ng97] Wee Teck Ng and Peter M. Chen. Integrating Reliable Memory in Databas-
es. InProceedings of the 1997 International Conference on Very Large
Data Bases (VLDB), pages 76–85, August 1997.

[Ng99] Wee Teck Ng and Peter M. Chen. The Systematic Improvement of Fault
Tolerance in the Rio File Cache. InProceedings of the 1999 Symposium on
Fault-Tolerant Computing (FTCS), June 1999.

[Ohta90] Masataka Ohta and Hiroshi Tezuka. A Fast /tmp File System by Delay
Mount Option. InProceedings USENIX Summer Conference, pages 145–
150, June 1990.

[Ousterhout85] John K. Ousterhout, Herve Da Costa, et al. A Trace-Driven Analysis of the
UNIX 4.2 BSD File System. InProceedings of the 1985 Symposium on Op-
erating System Principles, pages 15–24, December 1985.

[Papathanasiou98] Athanasios Papathanasiou and Evangelos P. Markatos. Lightweight
Transactions on Networks of Workstations. InProceedings of the 1998 In-
ternational Conference on Distributed Computing Systems (ICDCS), May
1998.

[Patterson95] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and
Jim Zelenka. Informed Prefetching and Caching. InProceedings of the 1995
Symposium on Operating Systems Principles, pages 79–95, December
1995.

[Powell95] David Powell, Eliane Martins, Jean Arlat, and Yves Crouzet. Estimators for
Fault Tolerance Coverage Evaluation.IEEE Transactions on Computers,
44(2):261–273, February 1995.

[Rahm92] Erhard Rahm. Performance Evaluation of Extended Storage Architectures
for Transaction Processing. InProceedings of the 1992 ACM SIGMOD In-
ternational Conference on Management of Data, pages 308–317, June
1992.

[Ranganathan98] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve, and
Luiz Andre Barroso. Performance of Database Workloads on Shared-Mem-
ory Systems with Out-of-Order Processors. InProceedings of the 1998 In-

121

ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 307–318, October
1998.

[Rashid88] Richard F. Rashid, Jr. Avadis Tevanian, Michael Young, David Golub,
Robert Baron, David Black, Jr. William J. Bolosky, and Jonathan Chew.
Machine-Independent Virtual Memory Management for Paged Uniproces-
sor and Multiprocessor Architectures.IEEE Transactions on Computers,
37(8):896–908, August 1988.

[Rela96] Mario Zenha Rela, Henrique Madeira, and Joao G. Silva. Experimental
Evaluation of the Fail-Silent Behavior in Programs with Consistency
Checks. InProceedings of the 1996 Symposium on Fault-Tolerant Comput-
ing (FTCS), June 1996.

[Rosenblum92] Mendel Rosenblum and John K. Ousterhout. The Design and Implementa-
tion of a Log-Structured File System.ACM Transactions on Computer Sys-
tems, 10(1):26–52, February 1992.

[Rosenblum95] Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmett
Witchel, and Anoop Gupta. The Impact of Architectural Trends on Operat-
ing System Performance. InProceedings of the 1995 Symposium on Oper-
ating Systems Principles, pages 285–298, December 1995.

[Satyanarayanan93] M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C.
Steere, and James J. Kistler. Lightweight Recoverable Virtual Memory. In
Proceedings of the 1993 Symposium on Operating System Principles, pages
146–160, December 1993.

[Scott92] Steven L. Scott, James R. Goodman, and Mark K. Vernon. Performance of
the SCI Ring. InProceedings of the 1992 International Symposium on Com-
puter Architecture, May 1992.

[Segall88] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton,
R. Dancey, A. Robinson, and T. Lin. FIAT–Fault Injection Based Automat-
ed Testing Environment. InProceedings of the 1988 International Sympo-
sium on Fault-Tolerant Computing (FTCS), pages 102–107, 1988.

[Seltzer96] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith.
Dealing With Disaster: Surviving Misbehaving Kernel Extensions.Operat-
ing Systems Design and Implementation (OSDI), October 1996.

[Shanley96] Tom Shanley.Protected Mode Software Architecture. Addison-Wesley De-
veloper Press, 1996.

[Siewiorek93] Daniel P. Siewiorek, John J. Hudak, Byung-Hoon Suh, and Zary Segal. De-
velopment of a Benchmark to Measure System Robustness. InProceedings
of the 1993 International Symposium on Fault-Tolerant Computing, pages
88–97, June 1993.

[Siewiorek98] Daniel P. Siewiorek.Reliable Computer Systems: Design and Evaluation.
A K Peters, 1998.

122

[Silberschatz94] Abraham Silberschatz and Peter B. Galvin.Operating System Concepts.
Addison-Wesley, 1994.

[Silva96] Joao G. Silva, Joao Carreira, Henrique Madeira, Diamantino Costa, and
Francisco Moreira. Experimental Assessment of Parallel Systems. InPro-
ceedings of the 1996 Symposium on Fault-Tolerant Computing (FTCS),
June 1996.

[Sites92] Richard L. Sites, editor.Alpha Architecture Reference Manual. Digital
Press, 1992.

[Srivastava94] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Cus-
tomized Program Analysis Tools. InProceedings of the 1994 Conference
on Programming Language Design and Implementation (PLDI), pages
196–205, June 1994.

[Stonebraker81] Michael Stonebraker. Operating system support for database management.
Communications of the ACM, 24(7):412–418, July 1981.

[Stonebraker87] M. Stonebraker. The design of the POSTGRES storage system. InPro-
ceedings of the 1987 International Conference on Very Large Data Bases,
pages 289–300, September 1987.

[Sullivan91a] M. Sullivan and M. Stonebraker. Using write protected data structures to
improve software fault tolerance in highly available database management
systems. InProceedings of the 1991 International Conference on Very
Large Data Bases (VLDB), pages 171–180, September 1991.

[Sullivan91b] Mark Sullivan and R. Chillarege. Software Defects and Their Impact on
System Availability–A Study of Field Failures in Operating Systems. In
Proceedings of the 1991 International Symposium on Fault-Tolerant Com-
puting, June 1991.

[Sullivan92] Mark Sullivan and Ram Chillarege. A Comparison of Software Defects in
Database Management Systems and Operating Systems. InProceedings of
the 1992 International Symposium on Fault-Tolerant Computing, pages
475–484, July 1992.

[Sullivan93] Mark Paul Sullivan.System Support for Software Fault Tolerance in Highly
Available Database Management Systems. PhD thesis, University of Cali-
fornia at Berkeley, January 1993.

[Tanenbaum95] Andrew S. Tanenbaum.Distributed Operating Systems. Prentice-Hall,
1995.

[Thakur95] Anshuman Thakur, Ravishankar K. Iyer, Luke Young, and Inhwan Lee.
Analysis of Failures in the Tandem NonStop-UX Operating System. InPro-
ceedings of the 1995 International Symposium on Software Reliability En-
gineering, pages 40–50, October 1995.

[TPC90] TPC Benchmark B Standard Specification. Technical report, Transaction
Processing Performance Council, August 1990.

123

[Tsai96] Timothy K. Tsai, Ravishankar K. Iyer, and Doug Jewett. An Approach to-
wards Benchmarking of Fault-Tolerant Commercial Systems. InProceed-
ings of the 1996 Symposium on Fault-Tolerant Computing (FTCS), June
1996.

[Wahbe92] Robert Wahbe. Efficient Data Breakpoints. InProceedings of the 1992 In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), October 1992.

[Wahbe93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient Software-Based Fault Isolation. InProceedings of the 14th ACM
Symposium on Operating Systems Principles, pages 203–216, December
1993.

[Wu94] Michael Wu and Willy Zwaenepoel. eNVy: A Non-Volatile, Main Memory
Storage System. InProceedings of the 1994 International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 1994.

