
The VLDB Journal (1998) 7: 194–204 The VLDB Journal
c© Springer-Verlag 1998

Integrating reliable memory in databases
Wee Teck Ng, Peter M. Chen

Computer Science and Engineering Division, Department of Electrical Engineering and Computer Science, 1301 Beal Avenue, University of Michigan,
Ann Arbor, MI 48109-2122, USA

Edited by M. Jarke. Received January 1, 1998 / Accepted June 20, 1998

Abstract. Recent results in the Rio project at the Univer-
sity of Michigan show that it is possible to create an area of
main memory that is as safe as disk from operating system
crashes. This paper explores how to integrate the reliable
memory provided by the Rio file cache into a database sys-
tem. Prior studies have analyzed the performance benefits
of reliable memory; we focus instead on how different de-
signs affect reliability. We propose three designs for integrat-
ing reliable memory into databases: non-persistent database
buffer cache, persistent database buffer cache, and persis-
tent database buffer cache with protection. Non-persistent
buffer caches use an I/O interface to reliable memory and
require the fewest modifications to existing databases. How-
ever, they waste memory capacity and bandwidth due to
double buffering. Persistent buffer caches use a memory in-
terface to reliable memory by mapping it into the database
address space. This places reliable memory under complete
database control and eliminates double buffering, but it may
expose the buffer cache to database errors. Our third design
reduces this exposure by write protecting the buffer pages.
Extensive fault tests show that mapping reliable memory into
the database address space does not significantly hurt relia-
bility. This is because wild stores rarely touch dirty, com-
mitted pages written by previous transactions. As a result,
we believe that databases should use a memory interface to
reliable memory.

Key words: Reliability – Recovery – Main memory database
system (MMDB)

1 Introduction

Current database systems store data on disk and in memory.
Disks are considered stable storage; they are assumed to sur-
vive system crashes and power outages. On the other hand,
database systems traditionally assume that the contents of
main memory (RAM) are lost whenever the system crashes
[Gray81, Haerder83], an assumption that appears to have its
roots in the switch from core memories to volatile DRAM
[Gray78].
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Fig. 1. Database Execution time profile on next-generation machines. This
figure is taken from [Rosenblum95] and shows execution time of a database
workload (Sybase SQL server running the TPC-B benchmark) on three
machine models. The time is normalized to the speed of the 1994 model.
Without reliable memory, disk I/Os will be the first-order bottleneck to
higher performance

Memory is considered unreliable for two reasons: power
outages and software crashes. Memory’s vulnerability to
power outages is straightforward to understand and fix. A
$100 uninterruptible power supply can keep a system run-
ning long enough to dump memory to disk in the event of a
power outage [APC96], or one can use non-volatile memory
such as Flash RAM [Wu94]. Critical database installations
often use uninterruptible power supplies to protect against
power failure. Memory’s vulnerability to software crashes
is more challenging to fix; thus database systems assume
the contents of buffers in memory are lost when either the
operating system or database system crashes.

The assumption that memory is unreliable hurts database
performance and complicates database system design. Sys-
tems use strategies such as logging and group commit to
minimize disk I/O, but these strategies complicate locking
and recovery and do not improve commit response time.
Even with logging and group commit, disk bandwidth is
a significant and growing bottleneck to high performance
(Fig. 1) [Rosenblum95].

Recent results in the Rio project at the University of
Michigan show that it is possible to create memory that
is as safe as disk from operating system crashes [Chen96].
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This paper explores how to integrate the reliable memory
provided by the Rio file cache into a database system. In par-
ticular, we examine how different software designs expose
the memory to database crashes. We evaluate the reliability
of three designs.

• I/O interface (non-persistent database buffer cache).
Hide the reliable memory under the file system interface
and use file system operations (read/write) to move data
to the reliable memory. Databases see the standard I/O
interface to stable storage, and hence this design should be
as safe as a standard database from database crashes. This
design is attractive, as it requires no database changes.

• Memory interface (persistent database buffer cache).
Map the reliable memory into the address space of the
database system, and allocate the database’s buffer cache
(or log) from this region. This increases the exposure of
reliable memory to database crashes, but eliminates the
double buffering experienced by the I/O interface design.
We can also achieve better performance than the first de-
sign, as the database manages the buffer cache directly.

• Memory interface with protection (persistent, protected
database buffer cache). Map the reliable memory into
the address space of the database system, and use virtual
memory protection at the user level to protect reliable
memory from database crashes. This design offers more
protection than the first two designs, but manipulating pro-
tections may slow performance.

Our main conclusion is that mapping reliable memory
into the database address space does not significantly de-
crease reliability. To our knowledge, this is the first work that
measures how often data is corrupted by database crashes.

2 Benefits of reliable memory

This section summarizes the main benefits of reliable mem-
ory, which have been discussed and quantified by many stud-
ies [Copeland89, Bhide93, Lowell97].

Reliable memory can be used to store the log (or the tail
of the log). Keeping the log in reliable memory removes all
synchronous disk writes from the critical path of a transac-
tion [Copeland89]. This decreases transaction commit time
and can help to reduce lock contention and increase concur-
rency [DeWitt84]. Storing the log in reliable memory can
also decrease disk bandwidth due to logging, because many
log records can be removed before being written to the log
disk [DeWitt84, Hagmann86]. For example, undo records
may be removed if they belong to transactions that have
committed, and redo records may be removed if they belong
to transactions that have aborted. Finally, critical informa-
tion may be stored in the stable memory to help improve
recovery time. For example, storing an appropriate pointer
in reliable memory can save scanning the log to find the last
checkpoint [DeWitt84].

A more aggressive use of reliable memory is to store the
database buffer cache, or to store an entire main-memory
database [GM92, Bohannon97]. This makes all buffer cache
changes permanent without writing to disk. Like the force-
at-commit policy, this eliminates the need for checkpoints
and a redo log in recovering from system crashes (partial
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Fig. 2. Performance improvements with reliable memory. This figure shows
the performance of three different transaction systems on a DEC 3000/600
with 256 MB memory, running a workload based on TPC-B. RVM is a
simple transaction system without reliable memory. Running RVM on Rio
(RVM-Rio) provides an I/O interface to reliable memory and speeds RVM
up by a factor of 13. Vista uses a memory interface to reliable memory and
achieves a factor-of-40 speedup over RVM, even though both run on Rio

redo) [Haerder83, Akyurek95]. This simplifies and acceler-
ates recovery, because there is no need to redo incomplete
operations; each commit is a transaction-consistent check-
point. Recovering from media failures (global redo) still re-
quires a redo log; however, redundant disk storage makes
this scenario less likely [Chen94]. Since undo records can
be eliminated after a transaction commits, removing the redo
log implies that no log records need be written to disk if
memory is large enough to contain the undo records for all
transactions in progress [Agrawal89]. In addition, storing the
database buffer cache in reliable memory allows the system
to begin operation after a crash with the contents present
prior to the crash (a warm cache) [Sullivan93, Elhardt84,
Bhide93].

Storing the database or the log in reliable memory is
a more powerful technique than group commit (an opti-
mization commonly used to improve transaction throughput)
[DeWitt84]. Systems that perform group commit wait for a
number of committing transactions to accumulate, then syn-
chronously write to disk all commit records for this group
in one I/O. While group commit does improve throughput,
it suffers from several problems. First, it does not improve
response time; waiting for a group of transactions to accumu-
late lengthens the response time of an individual transaction.
Second, throughput for large transactions can be limited by
the speed of writing to the redo log. Third, group commit
works only if there are many concurrent transactions. Single-
threaded applications with dependent transactions cannot use
group commit because earlier transactions are delayed; these
applications need the fast response times provided by reli-
able memory.

Storing the log and/or the buffer cache in reliable mem-
ory can thus simplify and accelerate database systems. A
recent study shows that using a persistent database buffer
cache can yield a system 40 times faster than using a non-
persistent buffer cache, even when both run on reliable mem-
ory [Lowell97]. Figure 2 compares the performance of three
systems on a workload based on TPC-B. RVM is a sim-
ple transaction system with a redo log and achieves about
100 transactions/second without reliable memory [Satya-
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Fig. 3. Increasing the availability of reliable memory systems

narayanan93]. Running RVM on Rio with an I/O interface
to reliable memory speeds it up by a factor of 13. Vista is a
transaction system tailored to run on Rio. By using a persis-
tent buffer cache, Vista achieves a factor-of-40 improvement
over RVM, even though both run on Rio. Vista achieves this
remarkable performance by eliminating the redo log, all sys-
tem calls, and all but one copy. The performance improve-
ment resulting from the simplicity of Vista (Vista is roughly
1/10 the size of RVM) is difficult to quantify but is prob-
ably also significant. For example, Vista’s small code size
leads to much shorter code paths for a transaction than RVM.
Vista also avoids the double buffering that causes RVM-Rio
performance to drop at 100 MB.

The performance gain provided by reliable memory is
most dramatic for applications whose working sets fit in
main memory, like main-memory databases. However, reli-
able memory can also improve database performance when
data sets are larger than main memory. Reliable memory can
be used in this case to delay writing new data to disk. De-
laying the writes allows some data to be overwritten and the
remaining data to be written efficiently to disk (for example,
by writing new data to disk when the disk head passes over
that track).

3 The Rio file cache

The Rio file cache is an area of memory, maintained by the
operating system, that buffers file system data [Chen96]. It is
protected from operating system crashes by virtual memory
protection, and this protection is enhanced by configuring
the processor to force all addresses through the translation-
lookaside buffer. Protection adds negligible overhead when
writing to a file using write system calls and does not affect
the performance of mmap’ed files at all, because it changes
only the kernel’s protection map. Upon reboot, the file cache
is restored to the file system on disk, a technique called
warm reboot. Six machine months of continuously crash-
ing the operating system (about 2000 crashes) showed that
these techniques make the Rio file cache even safer from
operating system crashes than a disk-based (write-through)
file system. Of the crashes, 1.1% corrupted some data in
a disk-based (write-through) file system, and 0.6% of the
crashes corrupted some data in a file system using the Rio
file cache. See [Chen96] for more details on these experi-
ments and subsequent improvement in performance.

Rio’s focus is reliability (not losing data). It achieves this
by protecting memory during system crashes and recover-

ing memory using warm reboot. In general, achieving high
availability (being able to access data continuously) requires
replication of the storage devices and/or computers [Gray93,
Cardoza96]. By replicating the memory or computer, Rio can
also provide high availability. This replication can be done
lazily or eagerly. An inexpensive example of lazy replication
is to connect a serial line between the memory controllers of
two computers, and to connect disks to both I/O controllers
(Fig. 3a). This provides low-bandwidth access to the data in
memory while rebooting or during hardware failures. A more
expensive solution is to eagerly replicate the file cache data
on a remote computer [Papathanasiou97] using a high-speed
network such as Memory Channel [Gillett96], Scalable Co-
herent Interface [Scott92], or a LAN (Fig. 3b). This provides
higher availability if one machine is permanently disabled.

The goal of this paper is to explore how to use the Rio file
cache to provide reliable memory for databases. Database
systems traditionally encounter two problems in trying to
use buffer caches managed by the operating system (the file
cache) [Stonebraker81].

First, buffer caches managed by the file system make
it difficult for the database to order updates to disk. These
writes to disk need to be done in order to obey the con-
straints imposed by write-ahead logging [Gray78]. To order
updates to disk, databases either use fsync or bypass the file
cache entirely using direct I/O. The Rio file cache solves
this problem completely, because data is persistent as soon
as it enters the file cache. Thus, databases control the order
of persistence by controlling the order that I/O is done to
the file cache; no fsync is needed.

Second, databases can manage memory more optimally
than a file system can, because databases know more about
their access patterns. Our second software design (Sect. 5.2)
addresses this problem by mapping the Rio file cache into
the database address space. This exposes reliable memory to
database crashes, and we quantify the increased risk posed
by this design.

4 The Postgres storage system

We use the Postgres95 database management system devel-
oped at U. C. Berkeley as the database in our experiments
[Stonebraker87]. Postgres has a few unique features which
are relevant to this paper, but our results should apply to
more conventional databases as well.

One novel aspect of Postgres is that it appends new data
at commit. In contrast, conventional databases with write-
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Fig. 4. I/O interface to reliable memory. This design hides the reliable mem-
ory under the file system interface. The database uses read() and write()
system calls to write data to the reliable memory. This design uses a tra-
ditional, non-persistent database buffer cache and thus requires change to
the database. Because the interface to stable storage has not changed, this
design is as safe as a standard database system from database crashes

ahead logs write undo/redo records at commit, then later
write new data in place over the old version of the data.
Postgres’ scheme forces new data to disk at commit, whereas
a conventional scheme forces only the log at commit (a no-
force policy for the actual data). A force-at-commit policy
decreases the amount of time database buffers are vulnerable
to database crashes (Sect. 5.2).

As with nearly all database systems, Postgres keeps a
database buffer cache in main memory to store frequently
used data. Transactions modify the buffer cache data, then
force the modified data to disk on commit. Because Postgres
appends new data rather than overwriting it, a steal policy
may be used without an explicit undo log. If a transaction
aborts, the old copy of the data can be recovered from disk.
Our second software design (Sect. 5.2) makes the database
buffer cache persistent, and hence delays writing data to disk
until after commit.

5 Software designs for integrating reliable memory

In this section, we describe three ways databases can in-
clude reliable memory and the implication of each design
on reliability and performance.

5.1 I/O interface to reliable memory
(non-persistent database buffer cache)

Our first design minimizes the changes needed to the data-
base system by hiding the reliable memory under the file
system interface (Fig. 4). The Rio file cache is used auto-
matically when accessing the file system, so the database
need only write persistent data to the file system instead
of to the raw disk (or via direct I/O). No fsync is needed,

because all file system writes to Rio are persistent immedi-
ately as soon as the data enters the file cache. In fact, Rio
implements fsyncs as null operations. This removes all syn-
chronous writes from the critical path of any transaction.
This design requires no changes to the database; it needs
only run on top of the Rio file system.

Because the interface to stable storage has not changed,
this design is as safe as a standard database from database
crashes. Recall that the Rio file cache is responsible for pro-
tecting and restoring the file system data if the operating
system should crash. This transparency and reliability incurs
some costs, however.

Using an I/O interface to reliable memory partitions main
memory between the Rio file cache and the database buffer
cache. The operating system would like the Rio file cache
to be large so it can schedule disk writes flexibly and allow
the largest number of writes to die in the file cache. But
larger file caches reduce the size of memory available to
the database. This partitioning creates two copies of data in
memory (double buffering), one in the Rio file cache and
one in the database buffer cache. Not only does this waste
memory capacity, it also causes extra memory-to-memory
copies.

One possible solution to these problems is to eliminate
the database buffer cache and have the database use the file
cache to store frequently used data. This is likely to make
memory less effective at buffering database data, however,
because a database can manage its buffer cache more effec-
tively than file systems can (databases have more informa-
tion on usage patterns). Researchers have proposed various
ways for applications to control memory [Harty92, Patter-
son95, Bershad95, Seltzer96], and eventually this may en-
able the file cache to be as effective as a database buffer
cache. At least for now, however, the best performance will
be achieved by databases that wire down memory in their
buffer caches and control it completely.

5.2 Memory interface to reliable memory
(persistent database buffer cache)

Our second design maps the Rio file cache directly into the
database system’s address space using the mmap system call
(Fig. 5). The database system allocates the database buffer
cache (or redo log) from this area and wires these pages in
memory. This design allows the database to manipulate reli-
able memory directly, using ordinary load/store instructions.

Using a memory interface to reliable memory has several
advantages over the first design. First, management of this
area of memory is completely under database control. Hence,
no special support is required from the operating system to
allow the database to determine replacement and prefetching
policies.

Second, this design eliminates double buffering and ex-
tra memory-to-memory copies. The database simply manipu-
lates data in its buffer cache, and these changes are automat-
ically and instantly permanent. Hence, this design performs
better than the non-persistent buffer cache (Fig. 2).

Third, this design can simplify databases by eliminating
the need for redo logs and checkpoints (Sect. 2).
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Fig. 5. Memory interface to reliable memory. This designmaps the Rio
file cache directly into the database system’s address space using the mmap
system call. The database system can allocate its buffer cache from this
region to make a persistent buffer cache. Access to stable storage (the
persistent database buffer cache) takes place using load/store instructions to
memory. This design eliminates double buffering and can simplify database
recovery. However, database crashes can more easily corrupt stable storage
than in the I/O interface design

Lastly, this design reduces the system recovery time, as
it allows the database to start with a warm cache in the event
of database process or operating system failures.

To implement the persistent database buffer cache, we
map the buffer cache space into the Rio file cache. In this
way, the database buffer cache’s contents are preserved if
Postgres or the operating system crashes. If Postgres crashes,
the latest copy of the database buffer cache will be in the Rio
file cache. If the operating system crashes, Rio will restore
the contents of the Rio file cache in memory to the memory-
mapped file on disk. In both instances, Postgres will restart
with a warm cache, because the buffer cache file contains the
exact copy of the database buffer cache prior to the crash.
We modified Postgres slightly to avoid initializing the buffer
cache during startup. The recovery process is idempotent,
because the contents of reliable memory survive repeated
crashes during system reboot.

Making the database buffer cache persistent leads to a
few changes to the database. These changes are the same as
those needed by a database using a steal policy [Haerder83].
The steal policy allows dirty buffers to be written back
to disk (that is, made persistent) at any time. In particu-
lar, buffers may be made persistent before the transaction
commits. This policy requires an undo log, so that the orig-
inal values may be restored if the transaction aborts. Per-
sistent database buffer caches require an undo log for the
same reason, because all updates to the buffer cache are
instantly persistent, just as if they had been stolen immedi-
ately. We implement the undo log in Postgres using shadow
pages [Gray81]. When the system wants to write to database
buffer cache, it first copies the contents to a shadow page and
points the database buffer header to the shadow page. When
the transaction is ready to commit later, it atomically points

the database buffer cache header to the original buffer. Re-
covering from system crashes is done automatically, as the
buffer header will be pointing to the before-image of the
buffer data.

Other designs are possible that map the Rio file cache
into the database address space. For example, the database
log could be stored in reliable memory. Or an entire database
could be mmap’ed, and the database could trust the virtual
memory and file system of the operating system to page
in and out appropriate pages. This latter approach may be
appropriate for situations where the database program is one
of several concurrent jobs (perhaps a machine running a
client database program). In general, however, we believe
that databases prefer to manage their own memory. Because
of this, we mmap only the database buffer cache, and we
lock these pages in memory to prevent paging.

The main disadvantage to using a memory interface to
reliable memory is an increased vulnerability to software er-
rors. The interface to stable storage with this design is now
much simpler: load/store instructions instead of read/write
system calls. Hence, it is easier for a software bug in the
database to accidentally overwrite persistent data [Rahm92,
Sullivan91a]. This section discusses the increased vulnera-
bility conceptually, and Sect. 6 compares quantitatively the
chances of data corruption among the different designs.

Consider the possible states of a database buffer (see
Fig. 6). It may be clean or dirty, where dirty means the mem-
ory version of the buffer is different than the disk version.
Dirty buffers may contain committed or uncommitted data.
In our modification of Postgres95, we keep commit and dirty
flags for each database buffer. After a database crash, we
restore to disk only those pages that are marked as com-
mitted and dirty. Dirty pages that are not yet committed are
restored to their before-image using the undo log. The fol-
lowing compares the vulnerabilities of different buffer states
for persistent and non-persistent database buffer caches.

• clean. This state occurs when a piece of data is read from
disk or when a dirty buffer is written back to disk. Buffers
in this state are safe from single errors for both designs. To
corrupt stable storage with a non-persistent buffer cache,
the system would need to corrupt the buffer and later force
it to disk (a double error). To corrupt stable storage with a
persistent buffer cache, the system would need to corrupt
the buffer and mark it as dirty (a double error). With either
design, errant stores to buffers in this state may lead to
corruption if other transactions read the corrupted data.

• dirty, uncommitted . This state occurs when a buffer has
been modified by a transaction that is still in progress.
Buffers in this state are equally vulnerable for both de-
signs. In either design, stable storage will be corrupted
if and only if the buffer is corrupted and the transaction
commits.

• dirty, committed . This state indicates the buffer has been
changed by a transaction and that the transaction has com-
mitted, but that the data has not yet been written to disk.

Dirty, committed buffers can exist in a persistent database
buffer cache, because data is not written to disk until the
buffer is replaced. Buffers in this state are vulnerable to
software corruption; any wild store by another transaction
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Fig. 6. Possible states of buffers in a persistent database buffer
cache. The database buffer is initially clean when a transaction
begins. As the transaction writes to the buffer, it becomes dirty
but uncommitted. For a non-persistent database buffer cache, this
buffer will become clean again when the transaction commits.
However, for a persistent database buffer cache, the dirty un-
committed buffers are marked as dirty and committed when the
transaction commits. These dirty committed buffers will remain in
memory until the buffer is replaced, and are vulnerable to software
errors and database crashes

can corrupt these buffers, and any change is instantly made
persistent.

With non-persistent buffer caches, dirty, committed buf-
fers can exist if the database uses a no-force policy. Buffers
are dirty and committed until being forced to disk, at
which time they are marked as clean. However, non-per-
sistent buffer caches keep these buffers safer than persis-
tent buffer caches. This is because the recovery process for
non-persistent buffer caches discards memory buffers and
uses the redo log to recover the data. Hence, if the database
system corrupts a buffer in this state and crashes soon af-
terwards, the corrupted data will not be made persistent.
Corruption occurs only if the system stays up long enough
to write the affected buffer to disk.

Figure 6 shows that dirty, committed buffers make sys-
tems with persistent buffer caches more vulnerable to soft-
ware corruption than systems with non-persistent buffer
caches. Dirty, committed buffers are vulnerable for a longer
period of time in a system with persistent buffer caches,
particularly, compared to systems using a force policy (such
as Postgres). And systems with non-persistent buffer caches
experience corruption due to these buffers only if the system
remains up long enough to propagate them to disk.

5.3 Memory interface to reliable memory with protection
(persistent, protected database buffer cache)

Our third design also uses a memory interface to reli-
able memory but adds virtual memory protection to protect
against wild stores to dirty, committed buffers (this scheme
was suggested in [Sullivan91a]). In this system, clean or
committed buffers are kept write protected. When a trans-
action locks an object, the page containing the object is un-
protected; when the transaction commits, the page is repro-
tected. If multiple transactions use objects on the same page,
the system reprotects the page when all transactions release
their locks.

Figure 7 shows the buffer cache state transition diagram
for the persistent protected database buffer cache. It is very
similar to the persistent database buffer cache design. How-
ever, this scheme protects buffers (dirty committed data) in

the state that our analysis in Sect. 5.2 showed are more vul-
nerable for persistent buffer caches. It also protects clean
buffers when they are not being used. Dirty and uncommitted
data have the same vulnerability in all three designs. Intro-
ducing protection thus increases the reliability of persistent
database buffer caches, because clean and dirty/committed
buffers (clear bubbles with dotted outlines in Fig. 7) are now
protected from software errors.

Because the virtual-memory hardware uses a page gran-
ularity, this scheme exposes unrelated objects that happen to
be on the same page as the locked object. The scheme does
not prevent object-level locking, however, since this lock-
ing can be accomplished independently from our protection
mechanism.

Section 6 measures how effectively the virtual-memory
protection scheme protects dirty, committed, pages from
wild stores. The disadvantage of this scheme is that the extra
protection operations may lower performance.

6 Reliability evaluation

Persistent database buffer caches solve the double-buffering
problem by placing stable storage under database control.
As discussed in Sect. 5.2, however, this design may be more
vulnerable to database crashes. This section compares the
reliability of the different designs quantitatively by injecting
software bugs into Postgres to crash it, then measuring the
amount of corruption in the database. We detect database
corruption by running a repeatable set of database commands
modeled after TPC-B [TPC90] and comparing the database
image after a crash with the image that should exist at the
point at which the crash occurred.

6.1 Fault models

This section describes the types of faults we inject. Our pri-
mary goal in designing these faults is to generate a wide vari-
ety of database crashes. Our models are derived from studies
of commercial databases and operating systems [Sullivan92,
Sullivan91b, Lee93] and from prior models used in fault-
injection studies [Barton90, Kao93, Kanawati95, Chen96].
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buffer cache. The database buffers are protected using virtual-
memory protection techniques whenever they are not in use. Dirty
uncommitted buffers have the same degree of vulnerability in all
three designs. Since clean and dirty committed buffers are now
protected from accidental writes due to software errors and system
crashes, this makes protected persistent database buffer cache safer
than the first two designs

The faults we inject range from low-level hardware faults,
such as flipping bits, in memory to high-level software faults,
such as memory allocation errors. We classify injected faults
into three categories: bit flips, low-level software faults, and
high-level software faults. Unless otherwise stated, we inject
five faults for each run to increase the chances that a fault
will be triggered. Most crashes occurred within 10 s from
the time the fault was injected. If a fault did not crash the
database after 10 min, we restarted the database (and mea-
sured the amount of corruption as usual). This happened
about 1/3 of the time and led to one instance of corruption.

The first category of faults flips random bits in the
database’s address space [Barton90, Kanawati95]. We target
three areas of the database’s address space: the text, heap,
and stack. These faults are easy to inject, and they cause a
variety of different crashes. They are the least realistic of
our bugs, however. It is difficult to relate a bit flip with a
specific error in programming, and most hardware bit flips
would be caught by parity on the data or address bus.

The second category of fault changes individual instruc-
tions in the database text segment. These faults are intended
to approximate the assembly-level manifestation of real C-
level programming errors [Kao93]. We corrupt assignment
statements by changing the source or destination register. We
corrupt conditional constructs by deleting branches. We also
delete random instructions (both branch and non-branch).

The last and most extensive category of faults imitate
specific programming errors in the database [Sullivan91b].
These are more targeted at specific programming errors than
the previous fault category. We inject an initialization fault
by deleting instructions responsible for initializing a variable
at the start of a procedure [Kao93, Lee93]. We inject pointer
corruption by (1) finding a register that is used as a base
register of a load or store and (2) deleting the most recent
instruction before the load/store that modifies that register
[Sullivan91b, Lee93]. We do not corrupt the stack pointer
register, as this is used to access local variables instead of
as a pointer variable. We inject an allocation management
fault by modifying the database’s malloc procedure to oc-
casionally free the newly allocated block of memory after
a delay of 0–64 ms. Malloc is set to inject this error ev-
ery 1000–4000 times it is called; this occurs approximately
every 10 s. We inject a copy overrun fault by modifying
the database’s bcopy procedure to occasionally increase the
number of bytes it copies. The length of the overrun was
distributed as follows: 50% corrupt one byte; 44% corrupt
2–1024 bytes; 6% corrupt 2–4 KB. This distribution was
chosen by starting with the data gathered in [Sullivan91b]
and modifying it somewhat according to our specific plat-
form and experience. bcopy is set to inject this error every

1000–4000 times it is called; this occurs approximately ev-
ery 5 s. We inject off-by-one errors by changing conditions
such as> to >=, < to <=, and so on. We mimic common
synchronization errors by randomly causing the procedures
that acquire/free a lock to return without acquiring/freeing
the lock. We inject memory leaks by modifying free() to oc-
casionally return without freeing the block of memory. We
inject interface errors by corrupting one of the arguments
passed to a procedure.

Fault injection cannot mimic the exact behavior of all
real-world database system crashes [Iyer95]. However, the
wide variety of faults we inject (15 types), the random nature
of the faults, and the sheer number of crashes we performed
(2250) give us confidence that our experiments cover a wide
range of real-world crashes. Table 1 shows examples of how
real-world programming errors can manifest themselves as
the faults we inject in our experiments.

6.2 Reliability results

Table 2 presents reliability measurements of our three de-
signs. We conducted 50 tests for each fault category for
each of the three systems; this represents 2 machine-months
of testing. Individual faults are not directly comparable be-
cause of non-determinism in the timing of the faults and
differences in code between the different systems; instead
we look primarily at trends between the different systems.

Overall, all three designs experienced few corruptions;
only 2–3% of the crashes corrupted permanent data over
2250 tests. This argues that, even with a research database
such as Postgres, software bugs may crash the system but
usually do not corrupt permanent data. There are several fac-
tors contributing to Postgres’s robustness. First, Postgres has
many programmer assertions that stop the system soon after
a fault is activated. Detecting the fault quickly and stopping
the system prevents erroneous data from being committed to
the permanent database image. Second, the operating system
provides built-in assertions that check the sanity of various
operations. For example, dereferencing a NULL pointer will
cause the database to stop with a segmentation violation. In
general, faults that left the system running for many trans-
actions (such as off-by-one and interface) tended to corrupt
data more frequently than faults that crashed the system right
away (such as heap and stack).

We next compare the reliabilities of the three designs.
The amount of corruption in all three systems is about the
same. The differences are not large enough to make firm
conclusions distinguishing the three systems, however we
note that, as expected, the traditional I/O interface (non-
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Table 1. Relating faults to programming errors. This table shows examples of how real-world programming errors can manifest themselves as the faults
we inject in our experiments. None of the errors shown above would be caught during compilation

Fault type Example of programming error
Correct code Faulty code

destination reg. numFreePages= count(freePageHeadPtr) numPages= count(freePageHeadPtr)
source reg. numPages =physicalMemorySize/page Size numPages =virtualMemorySize/pageSize
delete branch while (flag) {body} while (!flag) {body}
delete random inst. for (i = 0; i < 10; i + +, j + +) {body} for (i = 0; i < 10; i + +) {body}
initialization function (){int i = 0; . . .} function () {int i; . . .}
pointer ptr = ptr→ next→ next; ptr = ptr → next;
allocation ptr = malloc(N); use ptr; use ptr;free(ptr) ; ptr = malloc(N); use ptr;free(ptr) ; use ptr
copy overrun for (i = 0; i < sizeUsed; i + +) {a[i] = b[i]}; for (i = 0; i < sizeTotal; i + +){a[i] = b[i]};
off-by-one for (i = 0; i < size; i + +) for (i = 0; i <= size;i + +)
synchronization getWriteLock ; write(); freeWriteLock ; write();
memory leak free(ptr) ;
interface error insert(buf, index); insert(buf1,index);

Table 2. Comparing reliability. This table shows how often each type of
error corrupted data for three designs. We conducted 50 tests for each fault
type for each of three systems using the TPC-B benchmark [TPC90] as
the workload. We show the corruption rate for three weightings: equal,
DB2, and IMS. Even without protection, the reliability of the persistent
database buffer cache is about the same as a traditional, nonpersistent buffer
cache. We have observed similar results in an earlier experiment using the
Wisconsin benchmark [Bitton83] as the workload

Fault type I/O interface Memory Memory interface
Interface with protection

text 1 1 1
heap 0 0 0
stack 0 0 0
destination reg. 4 5 5
source reg. 2 2 2
delete branch 1 1 0
delete random inst. 2 2 2
initialization 0 1 1
pointer 0 0 0
allocation 0 0 0
copy overrun 0 0 0
off-by-one 5 5 3
synchronization 0 0 0
memory leak 0 0 0
interface error 4 3 3

Total 19 of 750 20 of 750 17 of 750
(2.5%) (2.7%) (2.3%)

DB2 Weights 1.7% 1.8% 1.6%
IMS Weights 2.1% 2.1% 1.8%

persistent buffer cache) is slightly more reliable than the
memory interface (persistent buffer cache) (2.5% corruption
rate versus 2.7%). Also as expected, adding protection to
the persistent buffer cache improves its reliability (2.3%).
Protection can increase reliability over an I/O interface by
trapping errant stores to clean buffers and dirty, committed
buffers.

As it is difficult to prove that our fault model repre-
sents real faults, we present two other interpretations of the
data by varying the weights associated with each fault type
according to fault distributions published on DB2 and IMS
[Sullivan92]. Sullivan’s study includes a detailed breakdown
of software errors according to the following classification:
deadlock and synchronization, pointer management, memory

Table 3. Proportional mapping. This table shows how we map between the
fault type in our study and those of [Sullivan92], and the corresponding
weight assigned to each fault type

Fault Type Classification Weight
DB2 IMS

kernel text statement logic 2.8% 3.9%
kernel heap data error 3.3% 2.1%
kernel stack data error 3.3% 2.1%
destination reg data error 3.3% 2.1%
source reg data error 3.3% 2.1%
delete branch statement logic 2.8% 3.9%
delete random inst statement logic 2.8% 3.9%
initialization initialization 9.7% 11.1%
pointer pointer 15.9% 20.3%
allocation allocation 12.4% 9.3%
copy overrun copy overrun 8.3% 6.5%
off-by-one statement error 2.8% 3.9%
synchronization synchronization 13.8% 8.3%
memory leak memory leak 5.5% 6.5%
interface interface 10.3% 13.9%

leak, uninitialized data, copy overrun, allocation manage-
ment, statement logic, data error, interface error, undefined
state, and other. Table 3 shows the mapping between our
fault categories and Sullivan’s studies, together with the re-
sulting weights. Undefined state and other are too vague to
be precisely modeled, so we distribute their weights evenly
across other categories.

Our main conclusion is that mapping reliable memory
directly into the database address space has only a small ef-
fect on the overall reliability of the system. This is consistent
with the estimates given in [Sullivan91a, Sullivan93]. There
are several factors that minimize the reliability impact of per-
sistent buffer caches. First, most stores in Postgres are not
to the buffer cache. Using the ATOM program analysis tool
[Srivastava94], we found that only 2–3% of stores executed
during a run were to the buffer cache. Second, store instruc-
tions that are not intended to access the buffer cache have lit-
tle chance of accidentally wandering into buffer cache space,
especially with the vast, 64-bit virtual address space on DEC
Alphas. As a result, most corruptions are due to corrupting
the current transaction’s data. These uncommitted buffers are
vulnerable to the same degree in all three systems (Sect. 5.2).
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Thus, mapping reliable memory directly into the database
address space does not significantly lower reliability. Com-
bined with the advantages of persistent buffer caches (reli-
able memory under database control, no double buffering,
simpler recovery), these results argue strongly for using a
memory interface to reliable memory. Stated another way,
the high-overhead I/O interface to reliable memory is not
needed, because wild stores are unlikely to corrupt non-
related buffers.

7 Related work

Section 2 summarized the many benefits of using reliable
memory. In this section, we describe prior studies that have
suggested methods for integrating and protecting reliable
memory in databases.

The study most closely related to this paper was done
by Mark Sullivan in the context of the Postgres project
[Sullivan91a, Sullivan93]. Sullivan implemented two gen-
eral methods for protecting database buffers from database
errors using virtual-memory protection. Expose page unpro-
tects a page before writing to a record on the page and
reprotects the page after the write is done. Our protection
model in Sect. 5.3 is very similar but does not reprotect the
page until the transaction commits. Our method incurs fewer
protection operations and is simpler to implement, because
reprotection operations are localized to the commit function.
Deferred write uses copy-on-write to make a private copy of
a page for a transaction, then copies the data back on com-
mit. Sullivan measures the performance overhead of these
protection mechanisms for a debit-credit-type workload to
be 5–10% when manipulating a database contained in non-
volatile memory (no disk activity) and 2–3% when manipu-
lating a database too large to fit in memory and forcing data
to disk.

Sullivan evaluates the reliability impact of these protec-
tion schemes by examining prior failure studies and esti-
mating which fault categories were most likely to be af-
fected. [Sullivan93] concludes that only 5–7% of errors are
the type of error (wild stores) that would be prevented by
his protection mechanism, although this ignores secondary
effects such as wild stores generated by other errors. [Sulli-
van91a] mentions as future work the type of fault injection
studies performed in this paper. These fault injection stud-
ies can provide more detailed data than extrapolating from
prior failure studies, because the crashes are conducted under
monitored environments.

Other general means to protect memory include us-
ing separate processes [Bartlett81], replication [Liskov91,
Muller96], and software fault isolation [Wahbe93].

[Copeland89] discusses two organizations for integrating
reliable memory (safe RAM) in databases. A separate safe
uses an I/O interface to reliable memory, while an integrated
safe is similar to our memory interface to reliable memory.
[Copeland89] evaluates analytically the performance of the
separate safe, but does not evaluate the effect on reliability
of either organization.

[Rahm92] examines different technologies that can be
used as reliable memory (SSD, disk cache, extended mem-
ory) but assumes these are not directly addressable by the

processor. Hence, he evaluates only the performance benefits
of using an I/O interface to reliable memory.

This paper extends the previous work in the following
ways.

• We discuss the performance and reliability tradeoffs of
different ways to integrate reliable memory provided by an
operating system into a database. We also discuss effects
of persistent buffer caches on undo/redo logging and cache
policies (force, steal).

• We conduct fault experiments to measure the reliability of
the three designs (non-persistent buffer cache, persistent
buffer cache, persistent buffer cache with protection).

• Because the memory area we use is provided by the
Rio file cache, the reliable memory area survives both
database crashes and operating system crashes. Yet we do
this while providing persistence to individual stores and
without needing any extra disk activity. All other work
that has provided a memory-mapped interface to reliable
memory requires extra checkpoint/logging to disk.

8 Limitations

This paper describes a controlled experiment to measure
database corruption. No prior studies have directly quan-
tified database vulnerability to software crashes. However,
it would be dangerous to indiscriminately apply our results,
and hence we address in this section some possible limita-
tions of our work.

How can we extrapolate our results to commercial
database systems?We modified the Postgres95 [Stone-
braker87] database management system for our experiment.
Postgres differs from most commercial database systems in
several ways. For example, it does not use conventional
write-ahead logging (WAL), and it only provides a flat trans-
action model [Gray93]. Our work is largely independent of
these differences; we focus on the reliability implications
of persistent database buffer caches, and all databases use
a buffer cache. Our results are also consistent with a prior
study on a commercial database [Sullivan92]. We hope to
conduct further experiments on commercial database sys-
tems to further support our hypothesis.

Can state-of-the-art database recovery schemes use
reliable memory? As described in Sect. 2, any database can
run unchanged on reliable memory. A reliable file cache such
as Rio simply makes I/O appear faster. Reliable memory
also allows state-of-the-art recovery schemes (e.g., ARIES
[Mohan92]) to become significantly simpler. For example,
the need for fuzzy checkpoints is reduced, because trans-
actions can commit faster. Also, using a force-at-commit
policy (combined with the replication techniques described
in Sect. 3) reduces the need for a redo log.

9 Conclusions

We have proposed three designs for integrating reliable
memory into databases. Keeping an I/O interface to reli-
able memory requires the fewest modifications to an exist-
ing database, but wastes memory capacity and bandwidth
with double buffering. Mapping reliable memory into the
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database address space allows a persistent database buffer
cache. This places reliable memory under complete database
control, eliminates double buffering, and simplifies recov-
ery. However, it also exposes the buffer cache to database
errors. This exposure can be reduced by write protecting
buffer pages.

Extensive fault tests show that mapping reliable memory
into the database address space does not significantly hurt
reliability. This is because wild stores rarely touch dirty,
committed pages written by previous transactions. Combined
with the advantages of persistent buffer caches, these results
argue strongly for using a memory interface to reliable mem-
ory.
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