
Integrating Reliable Memory
in Databases

Wee Teck Ng, Peter M. Chen

Computer Science and Engineering Division
Electrical Engineering and Computer Science

University of Michigan



Objectives

Intr oduce the Rio file cache

software-based reliable memory

Examine three different ways of using reliable
memory and their implications

I/O interface: non-persistent database buffer cache
memory interace: persistent database buffer cache
protected memory interface: protected persistent

database buffer cache

Show quantitati vely that it is safe to mmap reliable
memory directly into database address space

simplify database design
significant performance advantage



Reliable Memory

Reliable memory = main memory as safe as disk
from operating system crashes

Reliable memory is important for current and future
database systems [Rosenblum95]

100

80

60

40

20

0
1994 1996 1998

Disk I/O
Other

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e 

(%
)



Benefits of Reliable Memory

Simplify database design

fast recovery (no redo log, checkpt, warm cache)
direct control of buffer cache (optimized for DB)
simpler and smaller code (less bugs)

Significant performance improvements

0 100 200 300

Database Size (MB)

10

100

1,000

10,000

100,000

T
ra

ns
ac

tio
ns

/S
ec

on
d Vista

RVM-Rio

RVM

Memory interface

I/O interface

Disk interface



Rio: A Reliable File Cache

Remove reliability-induced writes to disk (sync,
fsync, bwrite, bawrite)

Makes memory safe from operating system crashes,
requires no hardware

reboot

protect memory restore memory
during crash during reboot



I/O Interface to Reliable Memory

Benefits

+ performance improvement without any change
to application code

+ as safe as standard database from operating
system crashes

Drawbacks

- performance (we can do better)
- double buffering

database

write()

read()

database system operating system

Rio file cache
(reliable memory)buffer cache

(non-persistent)



Memory Interface to Reliable Memory

Benefits

+ significant performance improvements
+ simplify database design
+ safe from operating system and database failures

Drawbacks

- require some changes in database design
- increase database’s vulnerability to software

errors

database

storeload

database system operating system

Rio file cache
(reliable memory)

buffer cache
(non-persistent)



Protected Memory Interface

Benefits

+ same as memory interface
+ minimize database’s vulnerability to software

errors
Drawbacks

- affect performance due to protection overheads
- does it really help?

database

storeload

database system operating system

Rio file cache
(reliable memory)

buffer cache
(non-persistent)



Fault Models

Goal is wide variety and realism [Sullivan91]

Fault Type Example of Programming Error
destination register numFreePages = count(freePageHeadPtr)
source register numPages =physicalMemorySize/pageSize
delete branch if while (...) {body}
delete random inst. for (i=0; i<10; i++,j++) {body}
initialization function () {int i=0; ...}
pointer ptr = ptr->next->next;

allocation
ptr = malloc(); use ptr; use ptr; free(ptr);

copy overrun for (i=0; i<sizeUsed; i++) {a[i] = b[i]};
off-by-one for (i=0; i < <= size; i++)
synchronization getWriteLock; write(); freeWriteLock;
memory leak {code} free(ptr); {more code}
interface error insert(bufTemp, index);



Reliability Results

Fault Type
I/O

Interface
kernel text 1
kernel heap
kernel stack
destination register 4
source register 2
delete branch 1
delete random inst. 2
initialization
pointer
allocation
copy overrun
off-by-one 5
synchronization
memory leak
interface error 4

Total
19 of 750
(2.5%)



Memory
Interface

1

5
2
1
2
1

5

3
20 of 750
(2.7%)



Protected
Memory I/F

1

5
2

2
1

3

3
17 of 750
(2.3%)



Conclusions

Reliable memory yields huge benefits, particularly
when using a memory interface to it (persistent
buffer cache)

Memory interface does not hurt reliability, so we
should use it

Need to verify our findings on commercial database

More information available at

http://www.eecs.umich.edu/~pmchen/


