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is also an inherent uncertainty in the data collection and
classification process that is not explicitly addressed in
these studies.

Our platform consists of a modern 64-bit RISC proces-
sor, and a monolithic kernel derived from the popular
UNIX and Mach OS. We believe our results apply to a
broad range of research and commercial environments, but
further experiments are required to prove this.

9 Conclusions and future work
We have shown that memory is remarkably resistant to

operating system crashes. Only 10 of the 650 crashes we
observed (1.5%) corrupted any file cache data; disk was
corrupted at a similar rate (1.1%). This data contradicts the
common assumption that operating system crashes corrupt
files in memory much more often than files on disk.

Thus, even without special mechanisms for protecting
files in memory, battery-backed memory may already be
as reliable as disks. For situations where greater protection
against operating system crashes is required, we have
implemented a simple, low-overhead software scheme that
controls access to file cache buffers based on virtual mem-
ory protection [Chen96].

To gather more realistic data on crashes, we have
installed a departmental file server that uses warm reboot
and disables reliability-induced disk writes. Among other
things, this file server stores this paper and the sole copy of
the authors’ mail. Another direction for future work is to
redo this study on a different operating system or to per-
form a similar fault-injection experiment on a database
system. We believe these will extend the applicability of
our conclusions.

If main memory is indeed safe from system crashes,
battery-backed main memory should be viewed as stable
storage in the same way that disks are. We believe the
availability of a fast, safe storage medium will provide
new opportunities for any application that uses persistent
data.
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and the MVS and Tandem studies, together with the result-
ing weights.

Table 6 shows the mean corruption rate (95% confi-
dence interval). In all cases, memory has higher mean cor-
ruption rate than disk. However, we note that the absolute
difference in mean corruption rate is very small (0.21% to
0.46%), and thus, the mean memory corruption rates for
both MVS and Tandem fault distributions are less than
1.5%. We have also implemented a low overhead memory
protection scheme that lowers memory’s corruption rate to
be even better than that of disk [Chen96].

These results stand in sharp contrast to the general feel-
ing among computer scientists that operating system
crashes often corrupt files in memory. While slightly less
reliable than disk, memory ismuch more reliable than we
had expected and is reliable enough for most systems. To
illustrate this level of reliability, consider a system that
crashes once every two months (a somewhat pessimistic
estimate for production-quality operating systems). If
these crashes were the sole cause of data corruption, the
MTTF (mean time to failure) of a disk-based system
would be 15 years, and the MTTF of memory would be 11
years. That is, if your system crashes once every two
months, you can expect to lose a few file blocks about
once a decade with memory! Even though the faults we
inject probably do not perfectly represent real-world
crashes, the conclusion is clear:warm reboot enables
memory to be about as reliable as disk.

7 Discussion
In this section, we discuss why memory reliability is

nearly as good as disk reliability.
First, the huge majority of operating system crashes do

not corrupt files in memory. This is due to the multitude of
consistency checks present in a production operating sys-
tem, which stop the system very soon after a fault is

injected and thereby limit the amount of damage. In addi-
tion to the standard sanity checks written by programmers,
the virtual memory system implicitly checks each
load/store address to make sure it is a valid address. Partic-
ularly on a 64-bit machine, most errors are first detected
by issuing an illegal address [Kao93, Lee93]. Thus, sys-
tems tend to fail quickly due to virtual memory protection
and kernel consistency checks, and errors do not tend to
propagate between different kernel modules [Kao93].

Second, even if an operating system error does corrupt
memory, the corruption will often find its way back to the
on-disk copy of the file. This is because memory serves as
an intermediary between the processor and disk. Most sys-
tems have a file cache, and any corruption of the file cache
will eventually get written back to disk if the system stays
up long enough. Even if a system crashes soon after an
error (before the corrupted memory has a chance to get
written to disk), many systems try to write all dirty file
cache data back to disk as the last step before halting (e.g.
Linux, NetBSD, Digital Unix, Sprite). If memory is cor-
rupted as a result of the crash, this faulty data is guaran-
teed to be made permanent! For example, half the
corrupted files in the memory tests were not in memory at
all—they had already been written back to disk.

Some may claim that the 30-second write-back delay
imposed by most Unix systems actuallyincreases disk
reliability by deliberately throwing away data written
within 30 seconds of a crash. Even if this is true, it is triv-
ial to implement the same delay for memory data; simply
mark memory data as permanent 30 seconds after you
write it.

8 Limitations
This paper describes a controlled experiment to mea-

sure disk and file cache corruption. No prior studies have
directly quantified memory’s vulnerability to software
crashes. However, it would be dangerous to indiscrimi-
nately apply our results, and hence we address in this sec-
tion some possible limitations of our work.

We attempt to model realistic faults by implementing
common programming errors and those faults reported in
field studies of system crashes. We also generate alarge
number andwide variety of system crashes in an attempt
to capture a significant portion of the fault space. We
ensure that this sampling of the fault universe is indepen-
dent of the workload [Powell95] by selecting the fault ran-
domly from the fault set, injecting it at some random delay
after initiating the test, and allowing the workload to warm
up. The only major uncertainty is how accurately our fault
model represents the real world. We attempt to provide
realistic weights by mapping our fault models to published
results on field crash analysis. But this mapping is limited
as we cannot possibly model all faults identified, and there

Table 6: Comparing disk and memory reliability.
This table shows the average corruption rate (95%
confidence). Our tests show that memory’s reliability is
nearly as high as a write-through system. The corruption
rate of memory can be reduced to even better than that of
disk using a simple memory protection scheme
[Chen96].

Weight Dis-
tribution

Disk Memory

Mean
Half-
Width

Mean
Half-
Width

Equal 1.08% 0.87% 1.54% 1.03%

Proportional
MVS

0.18% 0.17% 0.60% 0.68%

Proportional
Tandem

1.25% 1.29% 1.46% 1.71%



As it is difficult to prove that our fault model represents
real faults, we present three different interpretations of
Table 4 by varying the weights associated with each fault

type: equal, proportional MVS and proportional Tandem.
Equal weighting assumes that each type of fault is equally
likely to occur, while proportional weighting assigns a
probability to each fault category according to its likeli-
hood to occur in real environment. The confidence interval
is computed using the approach outlined in [Powell95], by
partitioning the fault space into disjoint sets corresponding
to the fault types.

Ideally, the weights assigned should be derived from
logs of Digital UNIX machines in daily use, but such data
are hard to come by. For example, we only found 2
instances of system crashes on our two non-fault injected
machines over the past year. Moreover, published data
about the frequency of different types of faults is rare. We
rely on the fault distributions published on MVS
[Sullivan91b] and Tandem NonStop-UX [Thakur95] to
determine the weight of each fault category. The MVS
study includes a detailed breakdown of high-impact errors,
with the following classification: deadlock and synchroni-
zation (47%), undefined state (25%), pointer management
(11%), register reuse (4%), uninitialized data (4%), copy
overrun (2%), allocation management (2%), statement
logic (2%), data error (2%), unknown (2%) and other error
(11%). Undefined state, unknown and other errors are too
vague to be precisely modeled, so we distribute their
weights evenly across other categories. The Tandem study
classifies programming mistakes: pointer (28%), missing
check for exception (26%), uninitialized data (4%), mem-
ory allocation (11%), and other instruction errors (31%).
Table 5 shows the mapping between our fault categories

Table 4: Disk and memory reliability. This table shows
how often each type of error corrupted data for disk and
memory. Blank entries had no corruptions.

Fault Type
Number of Corruptions

Disk Memory

kernel text 2 1

kernel heap

kernel stack 1

destination reg.

source reg. 2

delete branch 1 1

delete random inst. 1

initialization

pointer 1

allocation

copy overrun 4

off-by-one 1 2

synchronization

Total
7 of 650
(1.1%)

10 of 650
(1.5%)

Table 5: Proportional mapping. This table shows how we map between the fault type in our study and those of
[Sullivan91b] and [Thakur95], and the weight assign to each fault type.

Fault Type
MVS Tandem NonStop-UX

Classification Weight Classification Weight

kernel text instruction 0.7% instruction 6.2%

kernel heap data 1.4%

kernel stack data 1.4%

destination reg. register reuse 2.7% instruction 6.2%

source reg. register reuse 2.7% instruction 6.2%

delete branch instruction 0.7% missing check 26.0%

delete random inst. instruction 0.7% instruction 6.2%

initialization initialization 5.4% initialization 4.0%

pointer pointer 14.9% pointer 28.0%

allocation allocation 2.7% allocation 11.0%

copy overrun copy overrun 2.7%

off-by-one instruction 0.7% instruction 6.2%

synchronization synchronization 63.5%



then examine the file data to determine the amount of cor-
ruption.

The faults listed in Section 5 were designed to generate
as many different realistic crashes as possible, and they
were very successful at this. We generated a total of 1300
crashes (100 of each type of fault), which took approxi-
mately four machine-months. We observed 74 unique
crash error messages, including 59 different kernel consis-
tency error messages. These error messages are a superset
of those found on logs of non-injected machines. We used
these error messages to divide the crashes into six catego-
ries. The first category is kernel memory fault/unaligned
access. This accounted for the largest fraction of crashes
(57%), which is consistent with prior results in the field
[Lee93, Kao93]. The second largest category is kernel
consistency check (26%), which is the major cause of
crashes in [Thakur95]. The rest of the category are dead-
lock (11%), application failure (4%), illegal instruction
(1%), and hardware error (1%). Table 3 shows the distribu-
tion of crashes for each type of fault.

.Our primary goal in performing this fault-injection
experiment is to measure how often crashes corrupt files
on disk and in memory. We start by measuring disk reli-
ability by using a write-through file cache. We use the
functionality and setup of the default Digital Unix kernel.
That is, we do not use warm reboot, nor do we turn off
reliability-induced disk writes. Our only tool for detecting
corruption on disk ismemTest, because our checksum
method cannot detect disk corruption. Checksumming the

disk data would be done immediately before writing to
disk. Data on disk is not subject to direct corruption, so the
checksum is guaranteed to be correct.

Table 4 shows that disk corruption is quite rare, which
agrees with our intuition that disks are usually safe from
operating system crashes. Of 650 crashes, only seven
(1.1%) corrupted any file data, and each of these runs cor-
rupted only a few (1-4) files/directories. We plan to trace
how faults propagate to corrupt files and crash the system
instead of treating the system as a black box. This is
extremely challenging, however, and is beyond the scope
of this paper [Kao93]

The right section of Table 4 shows the reliability of
memory. We turn off all reliability-related disk writes and
use warm reboot to recover the files in memory after a
crash. These runs thus measure how often files in memory
are corrupted during an operating system crash. We expe-
rienced ten corruptions out of 650 crashes (1.5%). As with
the disk tests, each corruption affected a small number of
files/directories, usually a small portion of one file.
memTest detected all ten corruptions, and checksums
detected five of the ten. Interestingly, the corrupted data in
the other five corruptions resided on disk rather than in the
file cache. This implies that the system remained running
long enough to propagate the corruption to disk. Copy
overruns have a relatively high chance of corrupting the
file cache because the injected fault directly overwrites a
portion of memory, and this portion of memory has a rea-
sonable chance of overlapping with a file cache buffer.

Table 3: Distribution of crashes for each type of fault. The faults described in Section 5 successfully generated a
diverse set of crashes. We generated a total of 1300 crashes and observed 74 unique crash error messages, including 59
different kernel consistency error messages.

Fault Type
kernel mem-

ory faults

kernel
consistency

checks

application
failures

hardware
errors

illegal
instructions

deadlock

kernel text 60% 23% 1% 1% 11% 4%

kernel heap 79% 18% 0% 0% 0% 3%

kernel stack 80% 15% 0% 1% 2% 2%

destination reg. 69% 22% 1% 2% 0% 6%

source reg. 69% 23% 1% 2% 0% 5%

delete branch 19% 79% 2% 0% 0% 0%

delete random
inst.

45% 43% 3% 3% 1% 4%

initialization 46% 51% 0% 2% 0% 1%

pointer 80% 5% 2% 2% 1% 10%

allocation 97% 2% 1% 0% 0% 0%

copy overrun 85% 13% 0% 0% 0% 2%

off-by-one 12% 31% 37% 0% 0% 20%

synchronization 0% 17% 0% 0% 0% 83%



is up and running. These faults are easy to inject, and they
cause a variety of different crashes. They are the least real-
istic of our bugs, however. It is difficult to relate a bit flip
with a specific error in programming, and most hardware
bit flips would be caught by parity on the data or address
bus.

5.2 Low-level software faults
The second category of fault changes individual

instructions in the kernel text. These faults are intended to
approximate the assembly-level manifestation of real C-
level programming errors (Table 2) [Kao93]. We corrupt
assignment statements by changing thesource or destina-
tion register. We corrupt conditional constructs by deleting
branches. We also deleterandom instructions (both
branch and non-branch).

5.3 High-level software faults
The last and most extensive category of faults imitate

specific programming errors in the kernel (Table 2)
[Sullivan91b]. These are more targeted at specific pro-
gramming errors than the previous fault category. We
inject an initialization fault by deleting instructions
responsible for initializing a variable at the start of a pro-
cedure [Kao93, Lee93]. We injectpointer corruption by 1)
finding a register that is used as a base register of a load or
store and 2) deleting the most recent instruction before the
load/store that modifies that register [Sullivan91b, Lee93].
We do not corrupt the stack pointer register, as this is used

to access local variables instead of as a pointer variable.
We inject anallocation management fault by modifying
the kernel memory allocation procedure (i.e. malloc) to
occasionally start a thread that sleeps 0-256 ms, then pre-
maturely frees the newly allocated block of memory. Mal-
loc is set to inject this error every 1000-4000 times it is
called; this occurs approximately every 15 seconds. We
inject acopy overrun fault by modifying the kernel’s data
copy procedure (i.e. bcopy) to occasionally increase the
number of bytes it copies. The length of the overrun was
distributed as follows: 50% corrupt one byte; 44% corrupt
2-1024 bytes; 6% corrupt 2-4 KB. This distribution was
chosen by starting with the data gathered in [Sullivan91b]
and modifying it somewhat according to our specific plat-
form and experience. bcopy is set to inject this error every
1000-4000 times it is called; this occurs approximately
every 15 seconds. We injectoff-by-one errors by changing
conditions such as > to >=, and < to <=, and so on. We
mimic commonsynchronization errors by randomly caus-
ing the procedures that acquire/free a lock to return with-
out acquiring/freeing the lock.

6 Results
This section focuses on two major results from the

fault-injection experiments: the variety of crashes and
their effect on disk and memory-resident files. For each
run, we inject faults to crash a running system, reboot,

Table 2: Relating faults to programming errors. This table shows examples of how real-world programming errors
can manifest themselves as the faults we inject in our experiments. None of the errors shown above would be caught
during compilation.

Fault Type
Example of Programming Error

Correct Code Faulty Code

destination reg.
numFreePages  =
count(freePageHeadPtr)

numPages =
count(freePageHeadPtr)

source reg.
numPages =
physicalMemorySize /pageSize

numPages =
virtualMemorySize /pageSize

delete branch while  (...) {body} if  (...) {body}

delete random inst. for (i=0; i<10; i++, j++ ) {body}
for (i=0; i<10; i++)
{body}

initialization function () {int i =0; ...} function () {int i; ...}

pointer ptr = ptr->next ->next ; ptr = ptr->next;

allocation
ptr = malloc(N); use ptr; use
ptr; free(ptr);

ptr = malloc(N); use ptr;
free(ptr) ; use ptr again;

copy overrun
for (i=0; i< sizeUsed ; i++)
{a[i] = b[i]};

for (i=0; i< sizeTotal ; i++)
{a[i] = b[i]};

off-by-one for (i=0; i <size; i++) for (i=0; i <=size; i++)

synchronization
getWriteLock;  write();
freeWriteLock;

write();



reboot the system and runmemTest until it reaches the
point when the system crashed. This reconstructs the cor-
rect contents of the test directory at the time of the crash,
and we then compare the reconstructed contents with file
system contents at the time of the crash (restored during
the warm reboot in the memory tests).

As a final check for corruption, we keep two copies of
all files that are not modified by our workload and check
that the two copies are equal. These files were not cor-
rupted in our tests.

In addition to memTest, we run four copies of the
Andrew benchmark [Howard88, Ousterhout90], a general-
purpose file-system workload. Andrew creates and copies
a source hierarchy; examines the hierarchy using find, ls,
du, grep, and wc; and compiles the source hierarchy.

5 Description of faults
Conducting a thorough experiment on operating system

crashes is a vexing problem. Data on real crashes is rarely
on the platform of interest, usually describes relatively few
crashes, and almost never contains enough detail to repeat
the crash (and most crashes are not easily repeatable). Yet
many experiments require a controlled environment with
hundreds of crashes, and measuring how often files are
corrupted is one of these experiments. We therefore chose
to conduct a fault-injection experiment.

The primary issue in fault injection is how accurately
the faults represent real-world faults. This is an especially
difficult problem with software faults. Software errors are
by nature design flaws, and it is notoriously difficult to
precisely model human errors. Hardware faults such as bit
flips are easier to model because we can more easily
understand the physical processes behind the faults. Since
it is difficult to prove that injected software faults represent
real faults, our approach is to focus instead on generating a
large number and wide variety of system crashes. Our
results in Section 6 represent four machine-months of con-
tinuous testing, which is a huge improvement over cur-
rently available data on memory and disk corruption due
to system crashes.

This section describes the types of faults we inject to
measure memory’s resistance to operating system crashes.
Many different hardware and software faults can cause
operating system crashes. We use software to emulate both
software and hardware faults because software fault injec-
tion has proven to be an easy and effective injection mech-
anism [Kanawati95].

The faults we inject range from low-level hardware
faults such as flipping bits in memory to high-level soft-
ware faults such as memory allocation errors and race con-
ditions. Hardware faults are usually specific and relatively
easy to model [Lee93], and various techniques such as
ECC and redundancy have been successfully used to pro-

tect against these errors [Abbott94]. We focus primarily on
software faults because:

• Kernel programming errors are the errors most likely
to circumvent hardware error correction schemes and
corrupt memory.

• Software errors (like most design flaws) are difficult to
model and understand. After all, if you knew exactly
what was wrong with your program, you’d fix it! Our
understanding of software errors is hazy, and this
erodes our confidence that memory will survive a crash
caused by a software bug.

In choosing what type of fault to inject, there is a
tradeoff between the size of the fault universe it can gener-
ate and how realistic the fault is. Random faults such as
changing memory words are very general, because almost
any real fault can be expressed as a change in memory
state. However, it is difficult to relate specific software or
hardware errors to the changes of state that are injected.
On the other hand, faults such as misallocating memory
can be quite realistic, but can only mimic specific real
faults. For example, misallocating memory can not pre-
cisely mimic the behavior of most erroneous if statements.
We classify the faults we inject into three categories: ran-
dom bit flips, low-level software faults, and high-level
software faults. Each succeeding fault category is progres-
sively more realistic. See Table 2 for examples of how
real-world programming errors can manifest themselves as
the faults we inject in our experiments.

Unless otherwise stated, we inject 20 faults for each run
to increase the chances that a fault will be triggered. Most
crashes occurred within 15 seconds after the fault was
injected. Accelerating the rate at which faults are triggered
should not alter the results (other than producing them
more quickly) because the behavior we are most interested
in is how the system crashes after the fault is activated. If a
fault does not crash the machine after ten minutes, we dis-
card the run and reboot the system. This potentially dis-
cards faults that are activated quickly but allow the system
to keep running for a long time. These long-latency faults
can corrupt files, but will likely corrupt memory and disk
equally because any corrupted file data cached in main
memory will propagate to disk after 15-30 seconds. Thus
these faults will not affect the relative reliabilities of disk
and memory. In practice, we have seen only two faults
(one in the disk tests, one in the memory tests) that corrupt
data and leave the system running for very long.

5.1 Random bit flips
The first category of faults flips randomly chosen bits in

the kernel’s address space [Barton90, Kanawati95]. We
target three areas of the kernel’s address space: thekernel
text, heap, andstack. For kernel text tests, we corrupt ten
randomly chosen instructions in memory after the system



memory that relates to files, including both file data and
metadata. We also include any mapping information nec-
essary to find and interpret the contents of files in memory.

Digital Unix stores file data in two distinct buffers.
Directories, symbolic links, inodes, and superblocks are
stored in the traditional Unix buffer cache [Leffler89],
while regular files are stored in the Unified Buffer Cache
(UBC). The buffer cache is wired in virtual memory so
that it cannot be paged out, and is usually only a few
megabytes. To conserve space in the address translation
cache, the UBC is not normally mapped into the kernel’s
virtual address space; instead it is accessed using physical
addresses. The virtual memory system and UBC dynami-
cally trade off pages depending on system workload. For
the I/O-intensive workloads we use in this paper, the UBC
uses 80 MB of the 128 MB on each computer.

We use different methods to measure the effects of a
crash on disk and memory. To measure disk reliability, we
use a write-through file cache and the default Digital Unix
kernel. To achieve write-through, we force the data to be
written to disk synchronously via the fsync system call
after every write. Without this, many runs would lose data
written within 30 seconds of the crash.

To measure memory reliability, we modify the Digital
Unix kernel in several ways. First, we turn off all reliabil-
ity-induced writes to disk so that the tests measure mem-
ory corruption rather than disk corruption. Reliability-
induced writes include all disk writes that maintain consis-
tency between file data cached in memory and file data on
disk. Digital Unix includes tunable parameters to turn off
reliable writes for the UBC. We disable buffer cache
writes as in [Ohta90] by turning both synchronous and
asynchronous disk writes (i.e. bwrite and bawrite) system
calls to delayed disk writes (i.e. bdwrite); we take out file
system calls that explicitly synchronize the file cache and
disk (i.e. sync and fsync); and we modify the panic system
call to avoid writing dirty data back to disk before a crash.
With these changes, writes to disk occur only when the

UBC or buffer cache overflow, so dirty blocks can remain
in memory indefinitely. To recover the dirty memory con-
tents at the time of the crash, we implementwarm
reboot—a special reboot that restores to disk the dirty files
in memory at the time of the crash [Chen96]. This is simi-
lar to performing a crash dump as the system is going
down. While a standard crash dump often fails, however,
warm reboot is performed on a healthy, booting system
and will always work.

4 Detecting corruption
File corruption can occur in two ways. Indirect corrup-

tion, a series of events eventually causes a procedure (usu-
ally a non-I/O procedure) to accidentally write to file data.
Memory is more vulnerable than disks to direct corrup-
tion, because it is nearly impossible for a non-disk proce-
dure to directly overwrite the disk drive. However, direct
memory corruption can affect disk data if the system stays
up long enough to propagate the bad file data cached in
main memory to disk. Inindirect corruption, a series of
events eventually causes an I/O procedure to be called
with the wrong parameters. The I/O procedure obediently
carries out the request and corrupts the file cache. Disks
and memory are both vulnerable to indirect corruption.

We use two strategies to detect file corruption: check-
sums detect direct corruption, and a synthetic workload
calledmemTest detects direct and indirect corruption.

The first method to detect corruption maintains a
checksum of each memory block in the file cache
[Baker92b]. We update the checksum in all procedures
that write the file cache; unintentional changes to file
cache buffers result in an inconsistent checksum. We iden-
tify blocks that were being modified while the crash
occurred by marking a block aschanging before writing to
the block; these blocks cannot be identified as corrupt or
intact by the checksum mechanism. Files mapped into a
user’s address space for writing are also marked changing
as long as they are in memory, though this does not occur
on the workloads we use.

Catching indirect corruption requires an application-
level check, so we create a special workload called
memTest whose actions and data are repeatable and can be
checked after a system crash. Checksums andmemTest
complement each other. The checksum mechanism pro-
vides a means for detecting direct corruption for any arbi-
trary workload;memTest provides a higher-level check on
certain data by knowing its correct value at every instant.

memTest generates a repeatable stream of file and direc-
tory creations, deletions, reads, and writes, reaching a
maximum file set size of 100 MB. Actions and data in
memTest are controlled by a pseudo-random number gen-
erator. After each step,memTest records its progress in a
status file across the network. After the system crashes, we

Table 1: Specifications of experimental platform
[Dutton92].

machine type DEC 3000

model 600

CPU chip Alpha 21064, 175 MHz

SPECint92 114

SPECfp92 165

memory bandwidth 207 MB/s

memory capacity 128 MB (512 MB max)

system bus Turbochannel

system bus bandwidth 100 MB/s



1/3 to 2/3 of newly written data lives longer than 30
seconds [Baker91, Hartman93], so a large fraction of
writes must eventually be written through to disk any-
way. A longer delay can decrease disk traffic due to
writes, but only at the cost of losing more data. The
extreme approach is to use a pure write-back scheme
where data is only written to disk when the memory is
full. This is only an option for applications where reli-
ability is not an issue, such as compiler-generated tem-
porary files.

• Memory’s unreliability also increases system complex-
ity [Rahm92]. Increased disk traffic due to extra write
backs forces the use of extra disk optimizations such as
disk scheduling, disk reorganization, and group com-
mit. Much of the research in main-memory databases
deals with checkpointing and recovering data in case
the system crashes [GM92, Eich87].

• Ideal semantics, such as atomicity for every transac-
tion, are also sacrificed because disk accesses are slow
and memory is unreliable. Finally, memory’s unreli-
ability forces systems to keep a copy of permanent
memory data on disk; this shrinks the available storage
capacity.

Although it is common to assume that files in memory
(the file cache) are more vulnerable to operating system
crashes than files on disk, there is remarkably little data on
how often crashes actually do corrupt files in memory or
on disk. The main objective of this paper is to quantify the
vulnerability of disk and memory to OS crashes. The ideal
way to measure how often system crashes corrupt files on
disk and in memory would be to examine the behavior of a
large number of real system crashes. Unfortunately, data
of this nature is not recorded (or is not available) from pro-
duction systems. Instead, we use software fault injection to
induce a wide variety of operating system crashes in our
target system (DEC Alphas running Digital Unix). We find
that only 1.1% of crashes corrupt files on disk, which
agrees with our intuition that disk is safe from software
crashes. Surprisingly, we find that a similar fraction of
crashes (1.5%) corrupt files in memory, implying that
memory is much safer from operating system failures than
people assume.

The rest of this paper is organized as follows: Section 2
reviews the work most closely related to this research;
Section 3 describes the platform used in the experiments;
Section 4 describes the way we detect file corruption; Sec-
tion 5 describes the different types of faults injected into
the system; Sections 6 and 7 describe and discuss the
results of our experiments.

2 Related work
We divide the research related to this paper into three

areas: field studies, fault injection, and protection

schemes. Many papers have also examined the perfor-
mance advantages and management of reliable memory
[Copeland89, Baker92a, Biswas93, Akyurek95].

2.1 Field studies of system crashes
Studies have shown that software has become the dom-

inant cause of system outages in fault-tolerant systems
[Gray90, Lee95]. Many studies have investigated system
software errors. The studies most relevant to this paper
investigate operating system errors on production IBM
and Tandem systems. Sullivan and Chillarege classify soft-
ware faults in the MVS operating system and DB2 and
IMS database systems; in particular, they analyze faults
that corrupt program memory (overlays) [Sullivan91b].
Lee and Iyer study and classify software failures in Tan-
dem’s Guardian operating system [Lee93]. These studies
provide valuable information about failures in production
environments; in fact many of the fault types in Section 3
were inspired by the major error categories from
[Sullivan91b] and [Lee93]. However, they do not provide
specific information about how often system crashes cor-
rupt the permanent data in memory.

2.2 Using software to inject faults
Software fault injection is a popular technique for eval-

uating how prototype systems behave in the presence of
hardware and software faults. We review some of the most
relevant prior work; see [Iyer95] for an excellent introduc-
tion to the overall area and a summary of much of the past
fault injection techniques.

The most relevant work to this paper is the FINE fault
injector and monitoring environment [Kao93]. FINE uses
software to emulate hardware and software bugs and mon-
itors the effect of the fault on the Unix operating system.
Another tool, FIAT, uses software to inject memory bit
faults into various code and data segments of an applica-
tion program [Barton90]. FERRARI also uses software to
inject various hardware faults [Kanawati95]. FERRARI is
extremely flexible: it can emulate a large number of data,
address, and control faults, and it can inject transient or
permanent faults into user programs or the operating sys-
tem.

As with field studies of system crashes, these papers on
fault injection inspired many of the fault categories used in
this paper. However, we know of no paper that has mea-
sured the effects of faults on permanent data in memory.

3 Experimental setup
Our experiments were run on DEC Alpha 3000/600

workstations (Table 1) running the Digital Unix V3.0
operating system. Digital Unix is a monolithic kernel
derived from Mach 2.5 and OSF/1.

The user expects file data to survive system crashes,
and hence we seek to preserve the file cache—all data in



Abstract
Memory is commonly viewed as an unreliable place to

store permanent data (files) because it is perceived to be
vulnerable to system crashes. Yet despite all the negative
implications of memory’s unreliability, no data exists that
quantifies how vulnerable memory actually is to system
crashes. This paper quantitatively compares the vulnera-
bility of disk and memory to operating system crashes.

We use software fault injection to induce a wide variety
of operating system crashes in DEC Alpha workstations
running Digital Unix, ranging from bit errors in the kernel
stack to deleting branch instructions to C-level allocation
management errors. We find that files on disk are rarely
corrupted (1.1% corruption rate), which agrees with our
intuition. We also find that, surprisingly, files in memory
are nearly as safe as files on disk. Only 10 of the 650
crashes we observed (1.5%) corrupt any files in memory.
Our data contradicts the common assumption that operat-
ing system crashes often corrupt files in memory and sug-
gests that memory can be used to store permanent data
rather than needing to write it back to disk.

1 Introduction
A modern storage hierarchy combines random-access

memory, magnetic disk, and possibly optical disk or mag-
netic tape to try to keep pace with rapid advances in pro-
cessor performance. I/O devices such as disks and tapes
are considered fairly reliable places to store long-term data
such as files. However, random-access memory is com-
monly viewed as an unreliable place to storepermanent
data (files) because it is perceived to be vulnerable to
power outages and operating system crashes
[Tanenbaum95, page 146].

Memory’s vulnerability to power outages is straightfor-
ward to understand and fix. A $119 uninterruptible power
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and Research Initiation Award (MIP-9624869 and MIP-
9409229).

supply can keep a system running long enough to dump
memory to disk in the event of a power outage [APC96].
Another solution is to switch to a non-volatile memory
technology such as Flash RAM [Wu94]. We do not con-
sider power outages further in this paper.

Memory’s vulnerability to OS crashes is more chal-
lenging. Most people would feel nervous if their system
crashed while the sole copy of important data was in mem-
ory, even if the power stayed on [DEC95, Tanenbaum95
page 146, Silberschatz94 page 200]. As evidence of this
view, most systems periodically write file data to disk, and
transaction processing applications view transactions as
committed only when the changes are made to the disk
copy of the database.

The reason most people view battery-backed memory
as unreliable yet view disk as reliable is theinterface used
to access the two storage media. The interface used to
access disks is explicit and complex. Writing to disk uses
device drivers that form I/O control blocks and write to
I/O registers. Procedures that use the device driver are
checked for errors, and procedures that do not use the
device driver are unlikely to accidentally mimic the com-
plex actions performed by the device driver. In contrast,
the interface used to access memory is simple—any store
instruction by any kernel function can easily change any
data in memory simply by using the wrong address. It is
hence relatively easy for many simple software errors
(such as de-referencing an uninitialized pointer) to acci-
dentally corrupt the contents of memory [Baker92a].

The assumption that memory is unreliable hurts system
performance, reliability, simplicity, and cost, and sacrifices
ideal semantics.

• Because memory is unreliable, systems that require
high reliability, such as databases, write new data
through to disk (i.e. write-through file cache), but this
slows performance to that of disks. Many systems,
such as Unix file systems, wait 30 seconds before writ-
ing new data to disk (delayed writes). This improves
performance by decreasing the number of writes to
disk but sacrifices reliability by ensuring the loss of
data written within 30 seconds of a crash. In addition,
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