
Abstract: We present a new model for handling messages
and state in a distributed application that we call Messages
in Local Transactions (MLT). Under this model, messages
and data are not lost after crashes, and all sends and receives
are performed in local transactions. The model is unique in
that it guarantees consistent recovery without the complex-
ity or overhead of other recovery techniques. Applications
using MLT do not need to coordinate checkpoints, track
causal dependencies, or perform distributed commits. We
show that MLT can be implemented using any reliable pro-
tocol. Finally, we describe our implementation of Vista-
grams, a system based on the MLT model. We show that
Vistagrams are just as fast as traditional messages, despite
the recoverability they offer. The efficiency of our model
and our Vistagrams implementation is enabled by the avail-
ability of fast stable storage, such as the reliable memory
provided by the Rio file cache.

1. Introduction
Writing a distributed application that can reliably man-

age persistent data is difficult. Such applications have to
contend with the possibility of system crashes occurring at
inopportune moments, possibly leaving the distributed com-
putation in a meaningless state. Furthermore, this problem
worsens as distributed systems grow: the probability of
some node in a distributed system experiencing a crash
increases as more and more nodes are involved in the dis-
tributed computation.

Over the years, researchers have developed techniques
such as message logging, distributed transactions, and coor-
dinated checkpointing to help ameliorate these difficulties.
These methods work by making the state of a distributed
computationrecoverable—that is, they restore or recompute
a consistent view of the system’s state after a crash. Unfor-
tunately, current recovery techniques tend to send extra

messages, use complex recovery, or work only for piece-
wise-deterministic applications.

In this paper we introduce a new model for handling
messages and state in a distributed system that we callMes-
sages in Local Transactions(MLT). Applications built
around this model receive several important guarantees that
help them recover from crashes:
• No data or messages from a committed transaction will

ever be lost as a result of a system crash.
• Processes will never have to roll back state as a result of

another node’s crash.
• Message sends and receives are grouped atomically with

local state changes.
• Orphan processes are never created.

The efficient implementation of systems based on our
model depends on the availability of fast stable storage,
such as the reliable memory provided by the Rio file cache
[Chen96]. Such memory can provide the necessary durabil-
ity for data and messages under our model, without the
latency of disk writes.

To show that efficient systems based on the MLT
model can be built, we have implemented an MLT-based
system calledVistagrams. Vistagrams is an extension to our
lightweight transaction system Vista [Lowell97]. Vista-
grams imposes no overhead for the reliability it offers,
thanks to the reliable memory provided by the Rio file
cache.

2. Background and Related Work
The trick in restoring the state of a distributed compu-

tation after a crash is making sure that the state restored is
meaningful. For example, consider the distributed computa-
tion depicted in Figure 1. In that computation, process A
unlocks a distributed lock, and then sends a lock grant mes-
sage to process B.

Consider a situation in which process A crashes at
point 1, and then recovers to the time in its computation
labeled 2 (perhaps because it wrote out a checkpoint at that
time). The distributed computation would be in aninconsis-
tent state because process B has received a message that
process A does not remember it sent [Lamport78]. In this
situation process B is said to be anorphan. The result of this
inconsistency is that both processes could think they hold
the lock.

One way to solve this problem is to roll the state of
process B back to a point before it received the lock grant
message, making its state consistent with process A’s state.

Persistent Messages in Local Transactions

David E. Lowell and Peter M. Chen
Computer Science and Engineering Division

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122
{dlowell,pmchen}@eecs.umich.edu

http://www.eecs.umich.edu/Rio

This research was supported in part by NSF grant
MIP-9521386, Intel, and Digital Equipment Corporation.
Peter Chen was also supported by an NSF CAREER and
Research Initiation Award (MIP-9624869 and MIP-
9409229).

17th ACM Symposium on Principles of Distributed Computing, June 1998

Point 3 in the figure would be such a consistent state. The
problem with rolling back processes is that doing so can
lead tocascading rollbacks. If process B rolls back, it might
roll back past a message sent to process A, requiring A to
roll back further. But rolling back A could force B to roll
back further still. This problem could conceivably result in
uncontrolled rollback of the distributed computation to
some initial state, a scenario called thedomino effect
[Strom85].

2.1. Existing recovery techniques
Researchers have developed several techniques to help

distributed computations recover to consistent states while
avoiding the domino effect.

In coordinated checkpointing [Chandy85, Koo87],
processes in a distributed system employ a protocol to syn-
chronize the action of taking local checkpoints. The syn-
chronization ensures that the point in the global
computation preserved by the local checkpoints represents a
consistent state in the computation. If a crash occurs in the
system after such a checkpoint, all nodes simply roll back to
their most recent checkpoint without further regard for con-
sistency. However, taking a coordinated checkpoint involves
sending many messages at checkpoint time, and can thus
delay normal processing.

Message logging schemes, such as sender-based log-
ging [Johnson87], optimistic logging [Strom85], and the
logging used in Targon/32 [Borg89], all record messages so
they can be used to recompute the state of a distributed com-
putation after a crash. All message logging systems assume
the processes to be recovered are deterministic (i.e. given
the same sequence of messages as input, they will compute
the same result).

In sender-based logging, outgoing messages are
logged in volatile memory so they can be resent to a failed
process. A crashed process recovers by restarting its compu-
tation from a recent checkpoint, and then requesting that all
messages sent to it since that checkpoint be resent. The
downsides of sender-based logging are that it involves
working nodes in the recovery of a failed node, it adds mes-
sages to the message transfer protocol, and it can only
recover from a single failed node at a time. Manetho extends

sender-based logging to be able to survive the failure of
arbitrary numbers of processes [Elnozahy92].

In optimistic logging, incoming messages and check-
points are recorded asynchronously on stable storage.
Because checkpointing and message logging proceed asyn-
chronously, the system may have to roll back working nodes
when some other node fails. To determine which processes
might need to roll back in a crash, the system has to keep
track of causal relationships between processes. Optimistic
logging can recover from the failure of an arbitrary number
of processes.

In Targon/32, all messages sent in the system are pes-
simistically mirrored at relevant backup processes. If a pro-
cess fails, its backup process is activated and brought into a
consistent state by letting it play through its input queue of
messages. Targon/32 relies on specialized interconnect
hardware to provide efficient, 3-way, atomic message deliv-
ery.

Distributed transactions [Gray78] are also used to pro-
vide recovery for distributed systems. In distributed transac-
tions, the decision to commit a transaction involves
coordinating the commit of related transactions on other
nodes. Several rounds of messages are needed to ensure that
all the processes commit or abort together. Distributed com-
mit protocols are similar to coordinated checkpointing, and
like coordinated checkpointing, they can involve a signifi-
cant amount of overhead at commit time.

2.2. Rio and Vista
As we will see in Section 3, an efficient implementa-

tion of our MLT model requires fast stable storage and fast
transactions, such as that provided by the Rio file cache and
the Vista transaction library respectively.

Like most file caches, Rio caches recently used file
data in main memory to speed up future accesses [Chen96].
Rio seeks to protect this area of memory from its two com-
mon modes of failure: power loss and system crashes.
While systems can protect against power loss in a straight-
forward manner (by using a $100 uninterruptible power
supply, for example), protecting against software errors is
trickier. Rio uses virtual memory protection to prevent oper-
ating system errors (such as wild stores) from corrupting the

Process A

Process B

lock = NOT_HELD send

receive

lock grant

lock = HELD

12

3

Figure 1: A space-time diagram depicting a distributed computation. Process A releases a distributed lock and grants that lock
to process B.

file cache during a system crash. This protection scheme
does not significantly affect performance. After a crash, Rio
writes the file cache data in memory to disk, a process called
warm reboot. In essence Rio makes the memory in the file
cache persistent. Chen et al. verified experimentally that the
Rio file cache was as safe as a disk from operating system
crashes.

Vista builds on the persistent memory Rio provides.
Vista lets applications allocate chunks of persistent memory
and perform atomic and durable transactions on that mem-
ory [Lowell97]. Vista provides atomicity by logging to per-
sistent memory (provided by Rio) rather than to disk, and as
a result Vista’s transactions are extremely fast: small trans-
actions can complete in under two microseconds.

As we will show, Rio and Vista combine to provide the
perfect substrate for an MLT implementation: Rio makes
writing to stable storage very fast; Vista makes local trans-
actions almost free.

2.3. Failure model
Our MLT model and Vistagrams implementation of

the model are designed to handle a specific class of failures.
Like most distributed systems, we assume processes

follow the fail-stop model [Schneider84]. Specifically, we
assume that processes do not commit transactions contain-
ing faulty memory stores or message sends.

As the reader will see in Section 3, our model writes to
stable storage. Correspondingly, its reliability is as good as
the stable storage employed. Users of our model who want
their data to survive faults ranging from bit flips to nuclear
bombs need merely employ a suitable storage subsystem.

Our Vistagrams implementation of MLT uses the reli-
able memory provided by the Rio file cache for its stable
storage. Rio is geared towards providing safety from soft-
ware failures (operating system and process crashes), which
account for 90% of all failures [Gray91]. Furthermore, Rio
can be extended to handle hardware failures by replicating
data across multiple memories [Abbott94, Muller96,
Gillett96].

Our work further assumes that failures in a distributed
system will be transient. System crashes, packet loss, and
network failures are all assumed to be temporary problems.
In essence, we assume that if we send a message to a node
enough times, it will eventually be delivered (even if it
means continuing retransmission after a crash).

With this background for our work in place, we next
describe our model for reliable, distributed computation that
overcomes the drawbacks of existing consistent recovery
techniques.

3. Messages in Local Transactions Model
A traditional atomic durable transaction groups a

series of updates to persistent data into an indivisible unit.
The transaction mechanism guarantees that either all the
updates in a transaction will take place, or none will, and
maintains this invariant even if a crash occurs in the middle
of processing the transaction. In the Messages in Local
Transactions model, we add message sends and receives to

the class of operations that can be performed atomically and
durably within a local transaction.

The Messages in Local Transactions model has two
principle components. First, committed messages and data
are not lost across system crashes. Second, sending and
receiving messages is done atomically with the other opera-
tions in the transaction.1

An application using this model would group a series
of persistent updates, sends, and receives into an atomic unit
using a local transaction.

Once the local transaction commits, the application
receives several assurances. First, the updates performed in
the transaction are permanent. The messages sent in the
transaction are guaranteed to be sent and not lost, even in
the presence of crashes by either the sender or receiver. Fur-
thermore, it is impossible for the sender to “forget” that a
message has been sent: since the send and local state
changes are done together atomically, the process’ local per-
sistent state will always accurately reflect whether the mes-
sage was sent.

Second, if the transaction aborts, the messages “sent”
within the transaction will not go out, and the state of the
process’ persistent data will be rolled back to its state at the
beginning of the transaction. Any receives of messages per-
formed within the transaction will be undone so that those
messages will be delivered again during a subsequent
receive.

Making message sends atomic requires deferring mes-
sage sends until commit. An alternative is to send the mes-
sage before commit, then abort the receiver if the sender
aborts. However, this alternative requires senders and
receivers to coordinate during commit. One immediate
implication of deferring sends until commit is that an appli-
cation cannot send a request and receive the response to that
request in a single transaction. The application would
instead have to commit the transaction in which the send of
the request appears, and then begin another transaction in
which to receive the response. Hence the application may
need to recover to an increased number of points in the pro-
gram.

4. Implications of the model
The Messages in Local Transactions model has several

important ramifications for distributed systems.

4.1. Guarantees to the application
Applications built around the MLT model will never

recover to an inconsistent state and will never create orphan
processes. This is because local state changes are durable
and done atomically with any related message sends. In the
example in Figure 2, the marking of the lock ‘NOT_HELD’
by process A and the act of sending the lock grant message
to process B would be done atomically in a local transac-
tion. Once that transaction commits, all the operations in

1. Aspects of this model were proposed by Soparkar et al.
as a construct for databases [Soparkar90]. They were not
able to explore the implications fully because they lacked
fast stable storage.

that transaction are permanent and will not be lost if the sys-
tem crashes. If that transaction aborts, the lock grant mes-
sage will not be sent to process 2 and the lock variable will
not be marked ‘NOT_HELD’ when the process recovers.

Similarly, the receiving of the lock grant message and
marking the lock ‘HELD’ by process B would also be done
atomically in a local transaction.

4.2. Comparison to existing systems
The MLT model provides applications the same guar-

antees of recoverability and consistency as other protocols.
However, MLT lacks much of the complexity and overhead
of other recovery systems.

First, since MLT does not require the state of the sys-
tem to be recomputed from past input, MLT works perfectly
well with processes that are not deterministic.

Second, when a process crashes under MLT, surviving
processes are unaware of the fault (other than a delay while
the crashed node recovers) and are unaffected. Surviving
nodes are not involved in the recovery of failed nodes: they
will never have to roll back to a prior state or be involved in
any coordination of checkpoints to support recovery.

Third, all decisions by a process to commit transac-
tions, send or deliver messages, or modify local state are
strictly local under MLT. No distributed commit is needed.
Nor is there any need to track causal dependencies between
processes to maintain consistent recovery.

Fourth, recoverable distributed systems can be built in
which only a subset of the nodes are designed around the
MLT model. It is sufficient for processes to pass messages
using the same reliable protocol, but to handle their own
recovery using any appropriate method. On a related note,
since every message that goes out on the wire represents
committed data, there is no need to further delay messages
to nodes outside the system that may or may not be recover-
able (a printer for example).

Finally, systems built around the MLT model can tol-
erate the simultaneous failure of every node in the system

because each node handles its own recovery. Furthermore,
nodes can safely fail while recovering.

An interesting feature of MLT is its ability to group
multiple message sends into atomic units, providing a
relaxed variant of atomic multicast. In traditional atomic
multicast, the sender is guaranteed that either all recipients
will deliver a multicast message, or none will. When group-
ing multiple sends within a local transaction under MLT, the
sender receives a related guarantee: if the sender’s transac-
tion commits, all destination processes will eventually
deliver the message. If the sender’s transaction aborts, none
will deliver.

4.3. Protocol independence
MLT can be implemented as a part of any reliable pro-

tocol, without adding extra copies or messages. To see why
this is so, consider that a reliable protocol must already
buffer messages and retransmit them in case of packet loss.
To provide an MLT service, a reliable protocol must simply
perform its message buffering on stable storage, and retrans-
mit messages until received, even over crashes. Hence, pro-
viding MLT service merely constrainswhere a protocol
buffers messages andwhen it retransmits.

MLT implementations must also defer message opera-
tions in order to commit them atomically with local state
changes. Deferring message operations again does not con-
strain the specifics of the reliable protocol employed. It
merely constrains when the protocol is initiated.

5. Design and implementation of Vistagrams
We have implemented a system based on the Messages

in Local Transactions model. Our system, which we call
Vistagrams, is an extension to our lightweight transaction
library Vista.

As shown in Figure 3, Vistagrams provides a
request/response-based interface. Clients send requests to
servers and get back responses, and can do work in between.
Each request by the client and corresponding response from
the server are correlated by a globally unique request ID.

Process A

Process B

lock = NOT_HELD send

receive

lock grant

lock = HELD

Figure 2: The same distributed computation as shown in Figure 1, except that this system uses the MLT model. Persistent
state changes are grouped in local transactions with relevant message sends and receives.

local transaction

local transaction

Although we refer to processes as clients and servers, any
process can be a client or server in our system. In a
request/response cycle the process initiating the request is
called the client and the process that receives the request
and sends the response is called the server. In a subsequent
cycle, these roles may be reversed.

Our message delivery protocol is optimized for
request/response interactions. The server’s response con-
firms that it received the client’s request, and the acknowl-
edgment for the server’s response is then piggybacked on a
subsequent request. This protocol preserves the common
case of a total of two messages used in a reliable
request/response cycle between client and server.

At a high level, Vistagrams has several key tasks to
attend to.

First, Vistagrams has to buffer outgoing messages per-
sistently so it can retransmit them after packet loss or sys-
tem crashes.

Second, Vistagrams has to defer many operations until
commit, such as sending messages, freeing buffers, remov-
ing requests and responses from tables, and enqueueing
acknowledgments to be sent to servers. These operations are
deferred by adding them to various operation logs that are
played back at commit.

Third, Vistagrams must commit outgoing message
sends atomically with updates in the surrounding transac-
tion. Committing atomically involves setting a single flag
that marks the transaction committed, and then performing
all the deferred operations. Those operations are carefully
designed to be idempotent so that they can be redone if a
crash occurs during log playback.

Finally, Vistagrams has to keep retransmitting com-
mitted messages until they are received, possibly after a
crash by the sender or receiver.

Because Vistagrams messages are retransmitted over
crashes, and because the information needed for the recipi-
ent to filter messages is persistent, Vistagrams provides effi-
cient,exactly-once message delivery. Exactly-once delivery
guarantees that a sent message will be delivered exactly one
time by the receiving process. Providing such a semantic
efficiently has been acknowledged widely to be difficult,
because system crashes can cause processes to forget which
messages have already been delivered [Lampson93].

5.1. Vistagrams implementation
To show the structure of our Vistagrams implementa-

tion we will follow a request message from the client to the
server and back.

Client sends request: When the client makes a call to
vista_send_request , the outgoing message is assem-
bled in a persistent buffer and added to the request table.
The request table is the main client-side data structure. It is
a hash table of vistagrams (hashed on request ID). It is used
to correlate requests and responses, as well as to buffer mes-
sages for retransmission, or responses that are received out
of order. Once the new request is in the request table, it is
added to a log of messages to send when the enclosing
transaction commits. At commit, the request is sent to the
server using UDP.

Server receives request: The server waits for a new
request invista_receive_request . When it receives
a request, it adds an entry to the response table. The
response table is the central server-side data structure. Like
the request table, it is a hash table hashed on request IDs. It
is used to record the return address for a response, as well as
to buffer outgoing response messages. After adding an entry
to the response table, the incoming request message is
returned to the user.

Server sends response: The server processes the
request and then sends a response by calling
vista_send_response . vista_send_response
builds the outgoing message using the return address stored
in the response table. It then persistently buffers the
response in the appropriate response table entry (in case the
response message is lost and needs to be retransmitted), and
adds the response message to the log of messages to be sent
at commit. When the server’s transaction commits, the
response message is sent from the server to the client.

Client receives response: The client calls
vista_receive_response to receive the response
message. Thevista_receive_response function
waits up to a fixed interval for the response to arrive. If the
response does not arrive in that time,
vista_receive_response sends the request to a spe-
cial retransmit port on the server, and the routine waits
again. Clients can retransmit indefinitely.

Once the response arrives, the response message is
copied into a user-supplied buffer. An ack for the response
is added to a special “ack queue” so that if the surrounding
transaction commits, the response will be acknowledged
during a subsequent request to the server. In addition,
entries are made in appropriate operation logs so that the
request table entry and its buffered request message are both
deleted on commit.

Retransmission of messages: The server maintains
retransmit ports that receive any retransmitted requests so
that they can be handled specially. The server is notified
asynchronously via a signal when a retransmitted message
arrives. When a request arrives on one of those ports, the
signal handler checks to see if the server already knows
about the request by looking up the request ID in the
response table. If the table contains an entry with a commit-
ted response message, that response is resent to the client

vista_begin_transaction
vista_end_transaction
vista_abort_transaction

vista_send_request
vista_receive_request
vista_send_response
vista_receive_response
vista_select

Figure 3: Some of the routines in the Vista and
Vistagrams API.

(presumably the original response message was lost). If the
entry in the response table does not contain a committed
response, the retransmitted request is dropped. This situa-
tion could arise when the server has received the request,
but not yet sent or committed the response. Finally, if the
response table does not already contain an entry for the
retransmitted request (which could occur if the original
request message was lost), the request message is forwarded
to the waiting server port on the same host.

5.2. Sample application
Figure 4 shows a simple recoverable distributed appli-

cation built with Vista and Vistagrams.
The client is shown at some point in its execution

requesting a lock from the server. The client is forced to
break up its lock request into two transactions because the
sending of the lock request is deferred until commit. If the
client should crash, it will have to check during recovery if
the lock is in a “PENDING” state, and if so redo the second
transaction. The server is completely recoverable as is, and
needs to do no extra work to recover after a crash.

6. Vistagrams performance
Vistagrams are designed to be very fast. Our Vista-

grams implementation does not add any messages to the
standard reliable request/response protocol used for mes-
sage delivery. Nor does our Vistagrams implementation add
any copies to the process of sending messages through the
protocol. All the persistent buffering and logging that Vista
and Vistagrams do to ensure atomicity and durability of
messages and data is done using persistent VM provided by
the Rio file cache. No disk I/Os are done during the course
of performing a transaction or sending a message. We
would expect that avoiding extra messages, copies, and disk
I/Os would translate into a very fast system.

6.1. Microbenchmark
To evaluate our claims about Vistagrams performance,

we use a simple distributed application that sends requests
of varying sizes to a server and receives responses from that
server. The server simply sends the request data it receives
back to the client. We use two versions of this distributed
application.

Our baseline system is a volatile and non-recoverable
implementation of this system. Like Vistagrams, it retrans-
mits messages to handle packet loss, and it correlates
requests and responses. It does not use local transactions to
send and receive messages atomically with local state, and
messages and data are lost after crashes. We compare this
baseline system with a fully persistent and recoverable
implementation, built using Vista and Vistagrams.

Both versions of the application use identical reliable
request/response protocols for message delivery. Hence by
comparing the round-trip request/response times for each of
these two systems, we get an accurate picture of the cost of
making the sample application recoverable using Vista-
grams and Vista transactions.

6.2. Environment
We run our benchmark on two Intel-based PCs, each

with a 266 MHz Pentium II CPU and 128 Megabytes of
memory. The systems are connected via a switched
100Base-T network, using an Intel Express 10/100 Fast
Ethernet Switch. The server and client processes run on sep-
arate machines.

6.3. Results
Figure 5 shows the results of our benchmark runs. The

plot shows the time for a request/response cycle for each of
our two test systems. For reference, we also show the round-
trip time to send a UDP message of the given size from cli-
ent to server and back.

Client

.

.

.
vista_begin_transaction();

lock->status = PENDING;
vista_send_request(lock_req);

vista_end_transaction();

vista_begin_transaction();
lock->status = LOCKED;
vista_receive_response(lock_grant);

vista_end_transaction
.
.
.

Server

main()
{

/*
 * Vista setup and allocation of
 * persistent data...
 */

for (;;) {
vista_begin_transaction();

vista_receive_request(req);
process_request_in_transaction();
vista_send_response(lk_grant_msg);

vista_end_transaction();
}

}

Figure 4: A sample recoverable distributed lock manager using Vistagrams. Pseudocode is used in the parameter lists for
brevity. The client is shown at some point in its execution requesting a lock from the server.

As expected, Vistagrams adds almost no overhead to
the baseline system (the Vistagrams and baseline curves are
coincident). A Vistagrams request/response cycle takes 2-6
microseconds longer than a non-recoverable
request/response cycle. This is a negligible fraction of the
240-2300 microsecond round-trip time. Vistagrams
achieves high performance by avoiding extra copies and
messages, and by using the reliable memory and fast trans-
actions provided by Rio and Vista.

7. Future Work
The MLT model and Vistagrams have two principle

drawbacks. First, applications have to be written using
transactions. Transactions can be difficult to retrofit into
existing applications. Second, as mentioned in Sections 3
and 5.2, applications might have to commit transactions ear-
lier than desired because sends are deferred until commit.
These early commits can in some instances complicate
recovery because it may force an application to end a trans-
action in the middle of a logically atomic series of steps.
Hence the application must be able to recover to an
increased number of points in the program.

We are working on a lightweight checkpointing sys-
tem that addresses both of these issues. By transparently
performing local-process checkpoints synchronously with
every message send, this system provides consistent recov-
ery for distributed systems without the burden of using
transactions or handling any aspects of recovery.

Since our MLT model is protocol independent, it
might be interesting to use MLT with protocols that provide
richer guarantees to the application, such as causal delivery,
totally ordered delivery, or atomic multicast.

8. Conclusion
Writing distributed applications that reliably manage

persistent data involves navigating a host of thorny issues,
such as ensuring consistent recovery while avoiding the
domino effect. Furthermore, many of the traditional tech-
niques for recovery of distributed applications have not been
widely adopted in the field because of performance issues,
or because of the limited scope of applications those tech-
niques support [Birman96].

The advent of reliable memory and fast transactions
have created new options for recovery of distributed sys-
tems. Our Messages in Local Transactions model guaran-
tees that applications will not lose persistent data or
messages as a result of a system crash, surviving processes
will never have to roll back, and systems will always
recover to a consistent point in the computation. Further-
more, systems designed around our MLT model can be high
performance, and can be nondeterministic.

We have shown that it is possible in practice to build
an efficient system based on MLT. Our Vistagrams system2

provides MLT service while achieving the same perfor-
mance as an ordinary reliable-messaging protocol.

2. Vista, Vistagrams, and the Rio version of the FreeBSD
kernel are available at http://www.eecs.umich.edu/Rio.

9. Acknowledgments
We would like to thank Farnam Jahanian, M. Satya-

narayanan, Nandit Soparkar, and Willy Zwaenepoel for
their timely insights that helped with the development of our
thoughts in this paper.

10. References
[Abbott94] M. Abbott, D. Har, L. Herger,

M. Kauffmann, K. Mak, J. Murdock,
C. Schulz, T. B. Smith, B. Tremaine,
D. Yeh, and L. Wong. Durable Memory
RS/6000 System Design. InProceedings of
the 1994 International Symposium on
Fault-Tolerant Computing, pages 414–423,
1994.

[Birman96] Kenneth P. Birman.Building Secure and
Reliable Network Applications. Manning
Publications, 1996.

[Borg89] Anita Borg, Wolfgang Blau, Wolfgang Gra-
etsch, Ferdinand Herrman, and Wolfgang
Oberle. Fault Tolerance Under UNIX.ACM
Transactions on Computer Systems, 7(1):1–
24, February 1989.

[Chandy85] K. Mani Chandy and Leslie Lamport. Dis-
tributed Snapshots: Determining Global
States in Distributed Systems.ACM Trans-
actions on Computer Systems, 3(1):63–75,

Figure 5: Vistagrams performance. This graph shows the
time for a reliable request/response cycle between client
and server with requests and responses of varying size. The
baseline system is a non-recoverable system with volatile
messages and data. The Vistagrams system is fully
persistent and recoverable. Note that the Vistagrams and
baseline curves are coincident. For reference, we show the
round-trip time to send a UDP message of the given size
from client to server and back.

1 10 100 1000 10000
Request size (bytes)

0.0

1.0

2.0

3.0

R
eq

ue
st

/r
es

po
ns

e
tim

e
(m

s)

Round trip UDP

Baseline request/response
Vistagrams request/response

February 1985.

[Chen96] Peter M. Chen, Wee Teck Ng, Subhachan-
dra Chandra, Christopher M. Aycock, Gu-
rushankar Rajamani, and David Lowell. The
Rio File Cache: Surviving Operating Sys-
tem Crashes. InProceedings of the 1996 In-
ternational Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS), pages 74–83,
October 1996.

[Elnozahy92] Elmootazbellah N. Elnozahy and Willy
Zwaenepoel. Manetho: Transparent Roll-
back-Recovery with Low Overhead, Limit-
ed Rollback, and Fast Output Commit.
IEEE Transactions on Computers, C-
41(5):526–531, May 1992.

[Gillett96] R. B. Gillett. Memory Channel Network for
PCI. IEEE Micro, 16(1):12–18, February
1996.

[Gray78] J. N. Gray.Operating Systems: An Ad-
vanced Course. Springer-Verlag, 1978.
Notes on Database Operating Systems.

[Gray91] Jim Gray and Daniel P. Siewiorek. High-
Availability Computer Systems.IEEE
Computer, 24(9):39–48, September 1991.

[Johnson87] David B. Johnson and Willy Zwaenepoel.
Sender-Based Message Logging. InPro-
ceedings of the 1987 International Sympo-
sium on Fault-Tolerant Computing, pages
14–19, July 1987.

[Koo87] R. Koo and S. Toueg. Checkpointing and
Rollback-Recovery for Distributed Sys-
tems.IEEE Transactions on Software Engi-
neering, SE-13(1):23–31, January 1987.

[Lamport78] Leslie Lamport. Time, Clocks, and the Or-
dering of Events in a Distributed System.
Communications of the ACM, 21(7):558–
565, July 1978.

[Lampson93] Butler W. Lampson.Reliable Messages and
Connection Establishment. Addison-Wes-
ley, 1993. in Distributed Systems, edited by
Sape Mullender.

[Lowell97] David E. Lowell and Peter M. Chen. Free
Transactions with Rio Vista. InProceedings
of the 1997 Symposium on Operating Sys-
tems Principles, pages 92–101, October
1997.

[Muller96] Gilles Muller, Michel Banatre, Nadine Pey-
rouze, and Bruno Rochat. Lessons from
FTM: An Experiment in Design and Imple-

mentation of a Low-Cost Fault-Tolerant
System.IEEE Transactions on Reliability,
45(2):332–340, June 1996.

[Schneider84] Fred B. Schneider. Byzantine Generals in
Action: Implementing Fail-Stop Processors.
ACM Transactions on Computer Systems,
2(2):145–154, May 1984.

[Soparkar90] N. Soparkar and A. Silberschatz. Data-Val-
ue Partitioning and Virtual Messages. In
Proceedings of the 1990 ACM Symposium
on Principles of Database Systems, pages
357–364, April 1990.

[Strom85] Robert E. Strom and Shaula Yemini. Opti-
mistic Recovery in Distributed Systems.
ACM Transactions on Computer Systems,
3(3):204–226, August 1985.

