Py | MichiganEngineering

Persistency Programming 101
Why and What of memory persistency

Aasheesh Kolli* Steven Pelley' Ali Saidi®
Peter M. Chen* Thomas F. Wenisch*

* University of Michigan
" Snowflake Computing
*ARM

MichiganEngineering

Executive summary

NVMs = in-memory, recoverable data structs
Require ordering of NVM writes (persists)
Consistency models do not order persists

Memory persistency [ISCA ‘14]
— Consistency models for NVM
This talk:

— Motivate memory persistency
— Summarize persistency models

MichiganEngineering

Background - Memory consistency

O

e Contract b/w hardware and software on store
visibility (implementation independent)

e May be strict (SC) or relaxed (RMO)

0%¢ A

Overlap Accesses
e Does not apply to persists

A AdLA AA

)

Relaxed ordering

Need persistency models to order persists

MichiganEngineering

Future system abstraction
Q Memory events (stores/loads)

Recovery

awi]

Volatile memory order
v (consistency model)

Persist memory order
(persistency model)

@ No Failures , Failures 4

=

MichiganEngineering

Future system abstraction
Q Memory events (stores/loads)

Persistency model governs store visibility in the

presence of failures
S o =hd

I
-3y
I
. I'S
= 6 : 6 Recovery
cao Volatile memory order l Persist memory order
v (consistency model) ! (persistency model)

@ No Failures , Failures c

MichiganEngineering

Types of persistency models

Q Memory events (stores/loads)

JCOR0) [SoEN . N SR ZIE@

Strict Relaxed

persistency persistency i

Consistency

MichiganEngineering

Strict vs relaxed persistency

e Strict persistency
— Consistency model = persistency model
— Expensive (cost of persist > cost of store)

e Relaxed persistency
— Separate consistency and persistency models
— Reduces persist memory order constraints
— Might require more robust recovery software
— Failures are infrequent = recovery overhead OK

Relaxed persistency models -2 T performance

MichiganEngineering

How do persists affect performance?

e Persists form a directed acyclic graph (DAG)
— Critical path limits overall performance

1: persist Qe.data[0] = x @ @ @
2: persist Qe.data[l] =y

3: persist Qe.valid = true @
Models should allow expression of minimal constraints

Py | MichiganEngineering

Strict persistency

e Consistency model = persistency model
e Relaxed consistency 2 Tpersist concurrency

MichiganEngineering

Strict persistency with SC

1. lock (volatile mutex) @

2. persist Qe.data[0] = x

3. persist Qe.data[1] =y @

4. persist Qe.valid = true

5. unlock o

e Program order = store order > persist order

e No annotations required
e Suboptimal persist critical paths

10

MichiganEngineering

Strict persistency with RMO

. lock (volatile mutex)

< barrl@

3. persist Qe.data[0] = x @ @
y

4. persist Qe.data[1] =
5. barrier

6. persist Qe.valid = true 0
CZ_ barrier)

8. unlock

e Barriers for ynchroniz@and recovery
e Annotation burden on the programmer

e Affects volatile perf

11

MichiganEngineering

Strict persistency with RMO

. lock (volatile mutex)

< barrl@

3. persist Qe.data[0] = x @ @
y

4. persist Qe.data[1] =

C._barrier)
6. persist Qe.valid = true 0
7 barrier)

8. unlock

e Barriers for synchronization and

e Annotation burden on the programmer

e Affects volatile perf

MichiganEngineering

Relaxed persistency models

e Decouple consistency and persistency models
e Expose additional persist concurrency

— Important for conservative consistency models

e Will use SC as underlying consistency model

13

Py | MichiganEngineering

Epoch persistency

1. lock (volatile mutex) 4

2. persist Qe.data[0] = x Epoch 1 @ @

3. persist Qe.data[1] =y

@ persist bar@ M

5. persist Qe.valid = true IEpoch 2 o
6. unlock

e Persist barriers divide program into epochs
— Inspired from BPFS [SOSP ‘09]

— Persists within epoch concurrent

— Persists from successive epochs ordered
— Store visibility still dictated by program order

14

MichiganEngineering

Epoch persistency drawback

Ideal | DAG-1 | DAG-2
|
: persist A persist A | persist A persist C
perS!St A persist barrier persist barrier 1 persist C persist A
persist B persist B persist C : persist barrier persist barrier
persist C persist C persist B Iperslst B persist B

GO
o

Cannot express minimal constraints

15

23 MichiganEngineering

Strand persistency

e Divide thread’s execution into strands
— A strand can be abstracted as a logical thread

e Persists on different strands are concurrent
e New memory event newStrand

— Persist barriers order persists within a strand

persist A
persist barrier o
persist B @
newStrand o
persist C
Can enforce only the necessary constraints

MichiganEngineering

Ordering persists across threads

e Conflicting accesses establish persist order
— Two accesses to same address, at least one store
— Persist order must match volatile order
— Could be to volatile/non-volatile addresses
— Strong persist atomicity

J MichiganEngineering
Py

Strong persist atomicity example

Thread - 1 Thread - 2

lock X (volatile mutex)
Persist order

persist barrier
Conflicting

persist A accesses

persist barrijer.

unlock X IockD

persist barrier

Time persist B

persist barrier
v unlock X

MichiganEngineering

Conclusions

e Strict persistency
— Unifies consistency and persistency model

e Epoch persistency

— Persists within epoch concurrent, epochs ordered
e Strand persistency

— Allows enforcing only minimal constraints

e Strong persist atomicity

— Allows ordering persists across threads/strands

19

MichiganEngineering

Thank You!

Questions?

20

